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Abstract − Improvised absorbing boundary conditions for high 
frequency electromagnetic problems have been studied. This 
method approximated unbounded space as series of isotropic 
spherical shells so as to emulate open boundaries without the 
need for additional code to any finite element solver. Previous 
work addressed applications of this technique to magnetostatic 
and electrostatic problems. This present work studies the 
wide-range frequency dependence of the IABC when applied 
to three-dimensional electromagnetic radiation problems.  

1 INTRODUCTION 

Although open boundary techniques for 
electromagnetic finite elements are an old research 
topic and lots of work has been done so far [1]-[12], 
it is still discussed in the recent literature [13]-[17]. 
Recently, Improvised Asymptotic Boundary 
condition (IABC) was proposed [16, 17]. This 
method approximated unbounded space as series of 
isotropic shells so as to emulate open boundaries. 
Those isotropic shells work on the same principle as 
other realizations of asymptotic boundary conditions, 
by reproducing the impedance of an unbounded 
region for low-order harmonics. The negligible error 
is introduced by not exactly modeling the boundary 
impedance for higher order harmonics. First-order 
ABCs specify the parameters of a mixed-type 
boundary condition that match the far-field 
characteristics of a magnetic dipole. While higher 
order ABCs that emulate the far-field behavior of 
multipoles are possible and provide improved 
accuracy. The biggest advantage of this method is 
that it requires no additional code to any finite 
element solver [16, 17]. In this paper, we extend the 
method to three-dimensional high-frequency 
electromagnetic wave propagation problems. The 
first-order Improvised Absorbing Boundary 
Conditions (hereafter IABC) in three-dimensional 
wave propagation finite element problems are 
presented. We have employed a commercial finite 
element solver FEMTET@ [18, 19] and studied the 
first-order IABC form static to high frequencies. 

2 FORMULATION 

Three-dimensional electromagnetic fields can be 
expressed with the sum of magnetic and electrical 
vector potentials; rA , and rF  [20]. The derivatives of 
the two potentials give the electromagnetic fields as 
(1). The vector potentials; rA , and rF divided by r  
obey the Helmholz equations (2), where 

0k  is the 

wavenumber of the vacuum, ε~  and μ~  is the relative 
permeability and relative permittivity, respectively. 
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The solutions of the Helmholz equations are 
expanded with (4). )()1( krhn  corresponds to the 

incoming wave and )()2( krhn outgoing wave, 
therefore, open boundary solutions can be expressed 
in the form of (4). and open boundary solutions are 
expressed in the form of (5). 
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whereas k  is a wave number in each shell and 0k  is a 
wave number of vacuum. 
Figure 1 shows a schematic image of the first-order 
improvised absorbing condition. The region of 
interest is inside the inner boundary and the outer 
shells work as absorbers. The exterior boundary is a 
PEC. 
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The continuity conditions (5) must hold at each 
boundary of the adjacent two shells, and they can be 
expressed as eq. (6) with vector potentials, rA , and 

rF . At the exterior boundary, the boundary condition 
is given as (7) which gives (8) in the spectrum 
domain. 
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whereas )()1( krnς  are defined by 
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We define two matrices defined by (9) which are 
dependent on relative complex permeability iε~  and 
relative complex rermittivity iμ~  of each shell. 
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From (6) and (8), (10) is obtained which is the 

formula for the IABC. Once iε~  and iμ~  are obtained 
by solving (10), the IABC will give the approximate 
open boundary solution up to the same order as the 
number of layers. 
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 (10)  
In this paper, we focus on the first-order IABC 

formulated by (11). 

[ ]

[ ]
⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

−

−

0
1

)~,~()~,~()~,~(010

0
1

)~,~()~,~()~,~(100

00
)1(

0
1

11
)1(

011
)1(

1

00
)1(

0
1

11
)1(

011
)1(

1

μεμεμε

μεμεμε

UUU

EEE

　

 (11)  

 

Figure 1: Schematic image of the first-order 
improvised absorbing condition. The region of interest 
is inside the inner boundary and the outer shell works 

as an absorber. The exterior boundary is a PEC.  

3 SOLUTION OF NONLINEAR EQUATION 

The numerical solutions of the non-linear equations 
(11) are obtained with the quasi-Newton method 
which is sensitive to the values of initial 
approximation. In order to obtain solutions which 
smoothly connect to the magnetostatic and 
electrostatic solutions, the following optimization 
procedure is performed. Starting from the lowest 
frequency, the static solutions, discussed in [16, 17], 
are chosen to be initial values of the quasi-Newton 
method. Those values have real part only. Then the 
frequency is incremented by fΔ  using the previously 
obtained result as an initial value. The incrimination 
of the frequency was repeated until the highest 
frequency using the former results as initial values. 
By doing so, the solutions smoothly connected to the 
static solutions, as shown in Figure 3 and Table I, are 
obtained. Otherwise (11) do not have a unique 
solution but multiple solutions. 
 

TABLE I 
COMPLEX RELATIVE PERMEABILITY AND PERMITTIVITY OF IABC 

c/ω  μ  ε  
0.06 10.099-0.002j  0.181-0.000j
2.00  0.800-6.104j  0.094+0.157j
6.00  0.039-1.533j  0.111+0.592j
20.00  0.004-0.092j  0.310+5.682j
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4 NUMERICAL EXAMPLES 

In order to verify the previous discussion, we have 
employed a commercial finite element solver 
FEMTET@ to solve wave radiation from an 
electrically small dipole shown in Figure 2. We 
compared the obtained results with the analytical 
solution of the electrically small dipole (12) as shown 
Figure 2. 

rE  and 
θE  are plotted along the white 

horizontal and vertical lines, respectively Exact 
matches inside the first-order IABC were observed. 
 
 
 

 

 
(a) 06.0/ =cω  

 

 
(b) 0.2/ =cω  

Figure 2: Contour plots and electric field along white 
lines compared with the analytical solutions. 

 

Figure 3: Normalized angular frequency dependence 
of the relative permeability and the relative 

permittivity of the first-order IABC  

 

 
(c) 0.6/ =cω  

 

 
(d) 0.20/ =cω  
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Fig. 4.  Electrically small dipole modelled in the FEM 
analysis.  
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5 CONCLUSION 

We have studied the first-order IABC with the 
electrically small dipole. The IABC is seamlessly 
appreciable to both static and high frequency 
problems.  
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