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Abstract— The perturbation method for open boundary problems based on the equivalence
theorem has been proposed. Most of the open boundary techniques in electromagnetic analysis
are approximate, whereas more accurate techniques require large computational resources. In
order to improve the accuracy of the open boundary solution, the equivalence theorem has been
employed as a perturbation correction to the electromagnetic analysis with the approximate open
boundary conditions. In this manuscript, the proposed method has been verified with numerical
examples.

1. INTRODUCTION

Various types of techniques have been proposed to solve electromagnetic openboundary problems [1–
25]. Open boundary techniques for electromagnetic analysis are a long-standing topic which is still
discussed in the recent literature [19–25]. Each technique has certain advantages and limitations.
Some of them are only applicable to low-frequency problems [1, 2, 4, 5–8, 11, 22, 23], while others are
high-frequency only [3, 9, 12, 15]. Most of the open boundary techniques in electromagnetic analysis
are approximate, whereas more accurate techniques require large computational resources [6, 18, 25].
To improve the accuracy of the open boundary solution, the equivalence theorem has been employed
as a perturbation correction to the electromagnetic analysis with the approximate open boundary
conditions. In this manuscript, the proposed method has been verified with numerical examples.

2. FORMULATION

Figure 1 shows a schematic image of the electromagnetic radiation problem. The analysis domain
is truncated by the exterior boundary where the open-boundary condition is employed. If the
open-boundary condition is not perfect, the wave is reflected by the exterior boundary and that
reflected wave is again reflected by the radiating object and re-radiate. In our proposed method, the
reflected wave is considered as a first-order perturbation and the re-radiating wave as a second-order
perturbation which is neglected.

radiating

object

analysis domain

Figure 1: Schematic image of the electromagnetic radiation problem.

Figure 2 shows schematic images of the equivalence theorem. When the sources are only inside
the boundary, the electric and magnetic equivalent surface currents will reproduce the radiating
field outside and zero field inside. When the sources are only outside the boundary, the electric and
magnetic equivalent surface currents will reproduce the incoming field inside and zero field outside.
When the sources are both inside and outside, the electric and magnetic equivalent surface currents
will reproduce the radiating wave outside and the negative of reflecting wave inside. We employ
the last equivalent theorem and Eqs. (1) and (2) to reproduce the reflecting wave to eliminate the
unexpected reflection from the boundary. The flowchart of the method is given in Fig. 3. The
first step is to obtain the open boundary solution using approximate open boundary technique.
The second step is to reconstruct the field using equivalence theorem. The final step is to add
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the reconstructed field to the former obtained field thus to make the approximated open boundary
solution more accurate.
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Figure 2: Schematic image of the equivalence theorem. (a) Sources are inside the boundary, (b) sources are
outside the boundary, and (c) sources are both inside and outside the boundary.
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Figure 3: The flowchart of the perturbation approach proposed in this manuscript.

3. NUMERICAL RESULT

3.1. TEAM Workshop Problem 7 (Asymmetrical Conductor with a Hole)

Figure 4 shows a schematic image of the TEAM workshop problem 7 [26]. A coil is placed over
the asymmetrical aluminum conductor with a hole. The size of the analysis domain is chosen to
be 530× 540× 380 mm and the exterior boundary is a perfect conducting wall. The magnetic flux
lines are shown in Fig. 5. The FEM result is obviously not an open boundary solution, however,
the sum of the FEM and the reconstructed field from the surface is a good approximation to the
open boundary solution.
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Figure 4: TEAM workshop. problem 7 (asymmetrical conductor with a hole). The exterior boundary is
settled as a perfect conducting wall.
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Figure 5: Contour plots and flux lines of the magnetic field. (a) Real part obtained by FEM, (b) imaginary
part obtained by FEM, (c) real part reconstructed from the surface, (d) imaginary part reconstructed from
the surface, (e) real part obtained by the proposed method, and (f) imaginary part obtained by the proposed
method.

3.2. Monopole Antenna

Figure 6 shows a schematic image of a monopole antenna with a ground. The length of the
antenna element is a quarter of the wave length whose frequency is 300 MHz. The analysis domain
is a cube and the edge length of the cube is 750 mm and the antenna is offset by (0.4 m, 0.0 m,
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Figure 6: A monopole antenna with a ground disk.
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0.4 m). Figs. 7 and 8 show the contour plots of the magnetic field when the exteriorboundary is the
radiation boundary condition [9] and the PML [12], respectively. In Fig. 7, a significant reflection
is observed whereas a small reflection occurs at the boundary in Fig. 8. However, the corrected
results (proposed method) are almost identical in both cases.
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Figure 7: Contour plots of the magnetic field in a logarithmic scalewith the radiation boundary condition.
(a) Real part obtained by FEM, (b) imaginary part obtained by FEM, (c) real part reconstructed from the
surface, (d) imaginary part reconstructed from the surface, (e) real part obtained by the proposed method,
and (f) imaginary part obtained by the proposed method.
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Figure 8: Contour plots of the magnetic field in a logarithmic scalewith the PML (a) real part obtained
by FEM, (b) imaginary part obtained by FEM, (c) real part reconstructed from the surface, (d) imaginary
part reconstructed from the surface, (e) real part obtained by the proposed method, and (f) imaginary part
obtained by the proposed method.
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4. CONCLUSION

In this manuscript, the perturbation correction method for open boundary problems based on the
equivalence theorem has been proposed and numerical examples are demonstrated. Even when the
open boundary technique is approximate, more accurate solutions can be obtained with this method.
Since we only consider the first-order perturbation, the obtained results are still approximate.
However, the additional computation time is rather small because it only requires the forward
integration given in Eqs. (1) and (2), thus, no matrix inversions. Another advantage of this method
is to visualize of the performance of the open boundary technique. The examples in this manuscript
visualize explicitly how better the PML is compared with the radiation boundary condition.
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