論文

査読有り
2015年4月

Measurement of the first ionization potential of lawrencium, element 103

NATURE
  • T. K. Sato
  • M. Asai
  • A. Borschevsky
  • T. Stora
  • N. Sato
  • Y. Kaneya
  • K. Tsukada
  • Ch E. Duellmann
  • K. Eberhardt
  • E. Eliav
  • S. Ichikawa
  • U. Kaldor
  • J. V. Kratz
  • S. Miyashita
  • Y. Nagame
  • K. Ooe
  • A. Osa
  • D. Renisch
  • J. Runke
  • M. Schaedel
  • P. Thoerle-Pospiech
  • A. Toyoshima
  • N. Trautmann
  • 全て表示

520
7546
開始ページ
209
終了ページ
U153
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/nature14342
出版者・発行元
NATURE PUBLISHING GROUP

The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row including the actinides even affecting ground-state configurations(1,2). Atomic s and p(1/2) orbitals are stabilized by relativistic effects, whereas p(3/2), d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time(3-5). Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(-0.07)(+0.08) electronvolts. The IP1 of Lr was measured with Lr-256. (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.

リンク情報
DOI
https://doi.org/10.1038/nature14342
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000352454600036&DestApp=WOS_CPL
ID情報
  • DOI : 10.1038/nature14342
  • ISSN : 0028-0836
  • eISSN : 1476-4687
  • Web of Science ID : WOS:000352454600036

エクスポート
BibTeX RIS