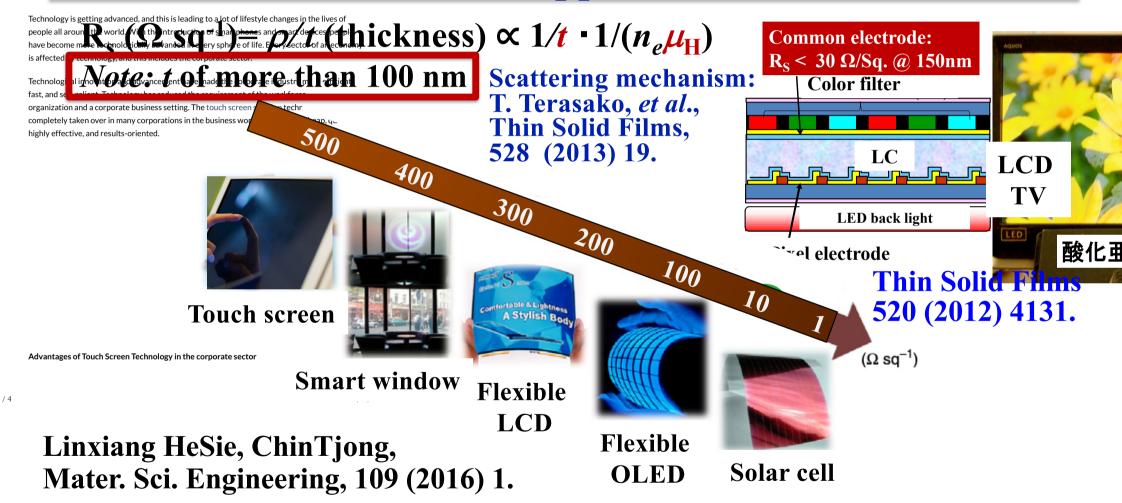
The ICMCTF, the Town & Country Hotel and Convention Center, San Diego, California, USA, May 21-26 2023.

Functional Thin Films and Surfaces, Room Pacific C, Session C1-1-WeM, Optical Marials and Thin Films I, Wednesday, May 24, 2023, C1-1-WeM5 (9:20 - 9:40)


High Hall Mobility W-Doped In₂O₃ Conductive Films with Thicknesses of Less Than 10 nm Deposited on Glass Substrates

Tetsuya YAMAMOTO, Rajasekaran Palani and Hisao Makino Materials Design Center, Kochi University of Technology

Street of Touch-Screen Technology Benefits Of Touch-Screen Technology Voted on NOVEMBER 29, 2020 BY ALLAN BURNS Refer to NOVEMBER 29, 2020 BY ALLAN BURNS Refer to NOVEMBER 29, 2020 BY ALLAN BURNS

For wide applications, to develop a low-temperature process with Solid Phase Crystallization

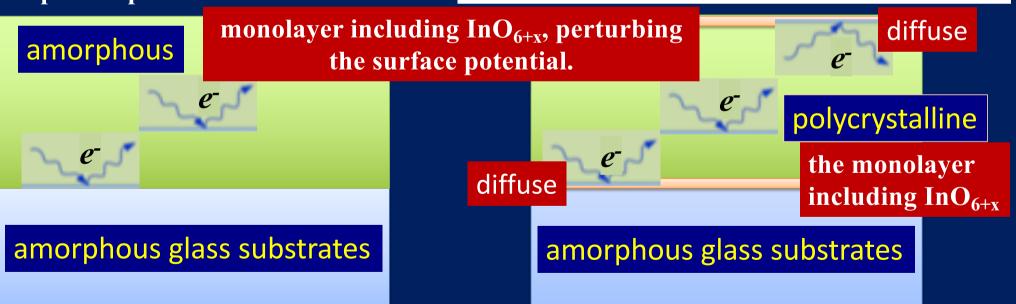
Firstly, *n*-type doped amorphous (*a*-) In₂O₃ films

deposited on glass substrates at room temperature.

Then, the *a*-films are annealed at temperatures ranging from 150 to 300 °C for 30 min in air or under vacuum condition, to achieve high Hall mobility transparent conductive polycrystalline In₂O₃ films.

Ce-doped In₂O₃: thickness was 100 nm. E. Kobayashi, Y. Watabe, T. Yamamoto, APEX, 8 (2015) 015505. E. Kobayashi, Y. Watabe, T. Yamamoto, Y. Yamada, Sol. Energy Mater., Sol. Cells, 149 (2016) 75. cells: *commercially* solar cells

W-doped In₂O₃: thicknesses range *from 5 to 50 nm*.


Y. Furubayashi, M. Maehara, T. Yamamoto, J. Physics D, 37 (2020) 375103. Y. Furubayashi, S. Kobayashi, M. Maehara, K. Ishikawa, K. Inaba, T. Sakemi, H. Kitami, T. Yamamoto, APEX, 13 (2020) 065502.

What determines carrier transport ? before/after solid phase crystallization

 $\tau_{\rm sur}$

 $\tau_{\rm if}$

Diffuse scattering causes randomization of the electron momentum while specular scattering conserves the electron momentum component parallel to the surface.

specular

External electric field

 \vec{E}

 $\tau_{\rm R}$

 $\tau_{\rm sur}$

Conclusions

We successfully achieved *p*-IWO films showing a high $\mu_{\rm H}$ with the under-vacuum solid-phase crystallization of *a*-IWO films on glass substrates.

issue: to mitigate the carrier transport bottleneck by facilitating specular electron interface scattering

For ultra-thin IWO films,

a diffuse scattering mechanism at the surfaces and film/substrate interfaces would cause a reduction in $\mu_{\rm H}$; the presence of excess O atoms in the vicinity of the surfaces and near the film/substrate interfaces may be a factor limiting $\mu_{\rm H}$.