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ABSTRACT 
Metal oxides are a group of materials that fulfil a wide variety of present application properties 
and also encourage evolution or development of near-future applications. In our laboratory, as 
well as the materials design, we also have been developing a technology of reactive plasma 
deposition with dc arc discharge which enables high film-deposition-rate ranging from 170 to 220 
nm/min, low temperature of less than 200 ºC and low damage film growth to substrate surface. 
We, thereby, tailor electrical, optical and mechanical properties of highly transparent conductive 
oxide (TCO) films deposited on substrates with various sizes ranging from 10×10 to 200×200 cm2. 
The TCO films are based from n-type doped ZnO- and In2O3-based films. We have been choosing 
several types of dopants suitable for achieving oxide films that meet the properties and functionals 
specific applications require. For achieving reliable solid devices, the use of dopants that have 
high oxygen affinity compared with host metal atoms is essential. For example, for In2O3 films, W 
and Ce atoms have advantages over the conventional Sn atoms.(1-3) This will suppress the 
generation of oxygen vacancies in the vicinity of the substitutional-type dopant sites. On the other 
hand, note that solid phase crystallization from amorphous to polycrystalline phase is an effective 
way for achieving high Hall mobility films. Recently, we reported Ce- and H-codoped In2O3 films 
(ICO:H) with a thickness of 100 nm showing high Hall mobility of 145 cm2/(Vs). Incorporating 
ICO:H-based electrodes instead of Sn-doped In2O3-based electrodes improved the performance 
of Si heterojunction solar cells.(2,3)  

We, recently, achieved high Hall mobility W(0.6 at.%)-doped In2O3 (IWO) films: 5-nm- and 30-nm-
thick polycrystalline IWO films deposited on glass substrates show Hall mobility of 57.7 and 97.4 
cm2/(Vs), respectively.(1) We carried out the solid phase crystallization (SPC) under the condition 
of vacuum of 5×10-4 Pa for 30 min at 250 ºC. With decreasing thicknesses from 10 to 5 nm, we 
find classical size effects on electrical resistivity, especially Hall mobility: the decrease in 
thicknesses sharply reduce Hall mobility. Note that in such films, thicknesses are closely to 
electron mean free paths at any given thickness. The analysis of depth profile of In and O 
elements determined by Rutherford backscattering spectrometry (RBS) measurements reveals 
an increase in the density of O atoms in the vicinity of the surface and interface with the substrates 
compared with as-deposited amorphous IWO films. On the other hand, the postannealing 
changed from oxygen rich states to oxygen poor ones within the films. This implies that the charge 
transfer from In atoms to the oxygen interstitials that generate and form In–O chemical bonds due 
to SPC perturbs the surface and interface potential. This perturbation causes that the diffuse 
scattering affects carrier transport at the surface and interfaces, resulting in reduced Hall mobility 
thereby. In this talk, we elucidate the dominant factors that determine carrier transport of the ultra-
thin films.    
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Figure Caption: free carrier scattering mechanism before and after solid-phase crystallization of 
IWO films deposited on glass substrates. 
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What determines carrier transport ?
before/after solid phase crystallization
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