Characteristics of incident particle flux determining growth rates and electrical properties of indium tin oxide films deposited by ion-plating with dc arc discharge

^{1, 2}Hisashi Kitami*, ¹Toshiyuki Sakemi and ²Tetsuya Yamamoto

¹Sumitomo Heavy Industries, Ltd., Japan

²Research Institute, Kochi University of Technology, Japan

¹19, Natsushima, Yokosuka, Kanagawa 237-8555, Japan ²185, Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan phone: +81-46-869-2334, fax: +81-46-869-2357 e-mail: hisashi.kitami@shi-g.com

1. Introduction

Reactive plasma deposition (RPD) is a commercially available ion plating system with dc arc discharge for thin film deposition, which enables us to achieve high-quality transparent conductive oxide (TCO) films, such as indium tin oxide (ITO) and Ga-doped zinc oxide (GZO), deposited on amorphous substrates at low temperature [1, 2]. We have investigated the factors limiting growth rates and electrical properties of 150-nm-thick ITO films deposited on glass substrates (@200°C) by RPD.

2. Experimental Methods

We measured the incident particle fluxes during film growth under the preparation conditions; the working pressure ranged from 0.18 to 0.71 Pa and the discharge current of 150 A. The carrier concentration (*N*) of the ITO films was 1.0×10^{21} (±3 %) cm⁻³. We measured the incident particle fluxes of the neutral atoms such as In and O as host atoms and their ions at the substrate level using a mass-energy analyzer (Hiden, EQP300), a Langmuir probe and a diaphragm gauge during the ITO film deposition [3]. To clarify the factors limiting the growth rate and Hall mobility ($\mu_{\rm H}$) of ITO films, we analyzed the relationship between the growth rates, $\mu_{\rm H}$, and the incident fluxes of In and O species.

3. Results and Discussion

As the working pressure increased, the intensity of fluxes of In^+ ions with their energy of more than 10 eV (*h*-In⁺ ions) decreased, resulting in a decrease in the growth rates of ITO films from 376 to 294 nm/min, whereas the intensity of

fluxes of In⁺ ions showing their energy of less than 10 eV $(l-In^+ \text{ ions})$ increased. Assuming that the sticking coefficient of In species should depend on the incident energy of their fluxes to the substrate, we concluded that the h-In⁺ ions was a dominant factor that limits the growth rate of films. On the other hand, we found that an increase in the intensity of fluxes of h-In⁺ ions and/or O^+ ions with their energy of more than 10 eV (h-O⁺ ions) enhanced $\mu_{\rm H}$ of ITO films from 44.7 to 47.1 $\text{cm}^2/\text{Vs.}$ Note that Hall effect measurement results yield that the above growth conditions affects N little; N retained almost constant, 1.0×10^{21} cm⁻³. These, thus, resulted in a decrease in the electrical resistivity (ρ) , which is inversely proportional to a product of $\mu_{\rm H}$ with N, of ITO films from $1.41 \times$ to $1.34 \times 10^{-4} \Omega$ cm. The above results show that RPD enables us to tailor ρ of ITO films with maintaining N. We will discuss the cause of the increase in $\mu_{\rm H}$ in terms of the incident particle fluxes of neutral species and ions.

References

- M. Tanaka, H. Makino, R. Chikugo, T. Sakemi, K. Awai: J. Vac. Soc. Jpn. 44, p. 435 (2001).
- [2] J. Nomoto, H. Makino, T. Yamamoto: Thin Solid Films 601, p. 13 (2016).
- [3] H. Kitami, M. Miyashita, T. Sakemi, Y. Aoki, T. Kato: Jpn. J. Appl. Phys. 54, 01AB05 (2015).