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Abstract: Burrow-dwelling shrimps, formerly known as “thalassinids,” are attracting the attention of researchers as 
ecosystem engineers. This review focuses on the ecology of upogebiid shrimps worldwide, especially their life history 
and burrow traits. The mud shrimp has a larval period consisting of three to four zoeal stages with one decapodid stage. 
The time required for maturity and longevity has been estimated to be 1–3 years and 3–5 years, respectively. However, 
data on shrimp lifespan may be updated with the development and application of age determination methodologies. The 
structure of the shrimp burrow is mainly U- or Y-shaped and is similar among species but with some interspecific dif-
ferences. Mud shrimps are filter feeders due to the ventilation activity in the U-shaped structure, and inhabit burrows 
with an inner diameter that fits their body. Burrow connections were recorded between burrows of males and females. 
Some juvenile mud shrimps may branch off from adult burrows to create their own burrows. This review discusses the 
response of shrimp populations in areas affected by the 2011 Great East Japan Earthquake. Owing to long maturation 
times, the recovery of these populations was slow in habitats affected by tsunamis. These results highlight the future ef-
fects of climate change on shrimp populations.
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Introduction

Mud shrimps of the family Upogebiidae (infraorder 
Gebiidea) dig and inhabit burrows in the substrate. Pre-
viously, they were included in the infraorder Thalassini-
dea along with ghost shrimps (Callianassidae; current 
infraorder Axiidea) (Shen et al. 2013, Poore et al. 2014), 
which also create deep burrows. Most mud shrimps dig 
burrows in substrates such as mud, sand, gravel, corals, 
and sponges (Dworschak 2000, 2015). The shrimps’ ac-
tivities have a variety of impacts on the abiotic environ-
ment of their habitat (Kinoshita et al. 2003a, 2008, Sasaki 
et al. 2014, Das et al. 2017) and can affect local benthic 
communities (Pillay & Branch 2011), creating spaces for 
other organisms (MacGinitie 1935, Atkinson & Taylor 
2005, Dworschak et al. 2012, Tseng et al. 2019). Such bur-
row inhabitants are well studied in Japan (Sato et al. 2001, 

Itoh & Nishida 2002, Itani & Kato 2002, Itani et al. 2002, 
Kinoshita 2002, Henmi & Itani 2014, 2021, Henmi et al. 
2014, 2017, Shiozaki & Itani 2020, Seike & Goto 2020). In-
formation on thalassinid burrow-dwelling shrimps is par-
ticularly abundant (Atkinson & Eastman 2015), as mud 
shrimps contribute to fishery resources. Large shrimp are 
a delicacy in western Japan, Korea, Taiwan, and Vietnam 
(Sato 2000, Ngoc-Ho 2001, Hong 2013, Das et al. 2017) 
and are used as bait in western Greece and South Africa 
(Hodgson et al. 2000, Conides et al. 2012). Juveniles serve 
as food resources for predators such as eels (Kaifu et al. 
2013). Mud shrimps have ecological, environmental, and 
economic importance.

This review characterizes the ecology of upogebiid mud 
shrimps, especially their life history and burrow structure. 
Current knowledge of mud shrimp biology aids in the con-
servation of its symbiotic species, local ecosystems, and 
fisheries. The impact of climate change on the ecology of 
shrimps is also discussed based on shrimp distribution in 
areas affected by the 2011 Great East Japan Earthquake. As 
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mud shrimps are mainly distributed in coastal waters, such 
as tidal flats and estuaries (Dworschak et al. 2012, Korn-
ienko 2013, Dworschak 2015), there are concerns regard-
ing the impact of human-induced sea level rise and floods 
on mud shrimp habitats.

1. Life history

Larval stage

The life history of the 16 species of mud shrimp (shown 
in Table 1), similar to that of many other crustaceans, con-
sists of planktonic (larval) and benthic (juvenile-adult) 
stages (Fig. 1). Larval forms of the mud shrimp include 
zoea and decapodid (megalopa) stages. Although both zoea 
and decapodid are nymphoid, their athletic performance is 
different. The zoea swim using pleopods, whereas decapo-
dids can also walk on the ground using pereiopods (Anger 
2006). The most common larval development pattern of 
upogebiid shrimp is three to four zoeal and one decapodid 
stage, except for Austinogebia edulis (Ngoc-Ho & Chan 
1992), with two zoeal stages (Shy & Chan 1996), Upogebia 
kempi Shenoy, 1967, with two decapodid stages (Shenoy 
1967), Upogebia paraffinis Williams 1993, with five zoeal 
stages (Melo & Brossi-Garcia 2000), and Upogebia savi-
gnyi (Strahl 1892), with one zoeal stage and no decapodid 
stage (Gurney 1937). Development patterns of five to eight 
zoeal stages have been reported in larvae of other gebi-
idean (genus Axianassa, Jaxea, Laomedia, and Naushonia) 
and axiidean species (Pohle et al. 2011). Upogebiid shrimp 
larvae in the laboratory take 12–19 days to develop from 
hatching to three to four zoeal stages and one decapodid 
stage (Siddiqui & Tirmizi 1995, Konishi 1989, Kornienko 
et al. 2012). The egg diameter of mud shrimp is typically 
less than 1 mm; however, two species with short larval pe-
riods (A. edulis and U. savignyi) have eggs that are 1 mm 
or more in diameter (Gurney 1937, Shenoy 1967, Tunberg 
1986, Dworschak 1988, Dumbauld et al. 1996, Shy & Chan 
1996, Kinoshita et al. 2003).

Some decapod larvae exhibit lecithotrophic behavior but 
major larvae, including those of the mud shrimp, feed af-
ter hatching (Anger 2001, Maszczyk & Brzeziński 2018). 
Upogebiid larvae ingest diatoms, flagellates, ciliates, pi-
coplankton, and nanoplankton (Fileman et al. 2014, Korn-
ienko & Golubinskaya 2018), but do not feed on potentially 
toxic dinoflagellates (Fileman et al. 2014). For benthic ani-
mals, larval dispersal helps with genetic exchange and the 
colonization of new habitats, but it is also necessary to 
return to their original habitat to replenish the population 
(Bashevkin et al. 2020). Larval dynamics are influenced by 
physical factors (such as flow, light intensity, temperature, 
and salinity) and biological factors (such as food and pred-
ators) (Wooldridge & Loubser 1996, Cowen & Sponaugle 
2009). Larvae are not only passively transported by these 
factors, but also change their dispersal distance in response 
to their behavior (Shanks 2009, Morgan & Fisher, 2010). 

The distribution of mud shrimp larvae appears to be re-
lated to their natal origin. In some estuarine decapods, 
larvae that prefer brackish water (such as Carcinus maenas 
(Linnaeus 1758)) (Nagaraj 1993) are known to migrate to 
coastal areas at early stages, avoiding the estuarine envi-
ronments of their progenitors. The larvae of the estuarine 
Upogebia africana (Ortmann 1984) and Upogebia pusilla 
(Petagna 1792) have been shown to exhibit this migration 
strategy (Emmerson 1983, Paula et al. 2001, Faleiro et al. 
2012, Pires et al. 2013). Salinity appears to be a major lim-
iting factor for survival of upogebiid larvae (Paula et al. 
2001, Faleiro et al. 2012). The distribution of mud shrimp 
larvae appears to be related to their natal origin. Mud 
shrimp larvae in both estuarine and coastal areas remain 
within 30 km of the coastline, but their dispersal patterns 
vary (Pires et al. 2013). Mud shrimp and ghost shrimp live 
sympatrically, and their larvae are likely to exhibit similar 
migratory patterns (Golubinskaya & Korn 2020). For these 
reasons, mud shrimp larvae have the potential to be regu-
larly dispersed over a moderately long larval period while 
selectively feeding.

Reproductive cycles

Many aquatic invertebrates, including crustaceans, un-
dergo seasonal reproduction cycles. Some mud shrimps 
have distinct seasonality during the breeding season (Table 
1), but others, such as Upogebia omissa Gomes Corrêa, 
1968 breed perennially (Costa et al. 2020). Sexual dimor-
phism in shrimps suggest that females of many species 
of shrimp are iteroparous (Table 1) (Dworschak 1988, 
Hanekom & Baird 1992, Kevrekidis et al. 1997). Upogebia 
major (De Haan 1841) in Tokyo Bay (central Japan) pro-
duces only one brood during the breeding season, but some 
ovigerous females develop additional gonads (Kinoshita et 
al. 2003b). Golubinskaya & Korn (2020) suggest that U. 
major in Vostok Bay (Russia) has a long breeding period 
and repeatedly produce larvae during the breeding period 
under certain conditions.

Upogebia africana exposed to thermal pollution from 
thermal power stations have been shown to alter the initia-
tion or duration of the breeding season, or exhibit preco-
cious maturity (Hill 1977). Discussions about the repro-
ductive cycle of aquatic invertebrates need to account for 
the environment of the planktonic and benthic stages (An-
ger 2001). For example, the breeding season for U. major 
in Tokyo Bay is from December to May (Kinoshita et al. 
2003b), while the breeding season for mud shrimp in Rus-
sia is from April to May (Selin 2017). In Hokkaido, ovig-
erous U. major females were obtained in June (Konishi 
1989). According to Golubinskaya et al. (2016), the differ-
ence between the breeding seasons of mud shrimp found 
in Japan and Russia is likely to be determined by the char-
acteristics of larvae with low optimum water temperatures. 
Upogebia major larvae appear from March to May in Ja-
pan and from May to September in Russia (Kinoshita et 
al. 2003b, Golubinskaya et al. 2016, Golubinskaya & Korn 
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2020). For mud shrimp larvae, temperature conditions are 
not as restrictive as salinity (Paula et al. 2001, Faleiro et 
al. 2012), but if temperatures increase beyond the tolerance 
of the species, survival and development may be compro-
mised. We have not yet fully learned the environmental 
clues that regulate the reproductive cycle of mud shrimps.

Maturity and longevity

In the case of mud shrimp, there is not enough exist-
ing information to discuss maturity and longevity due to 
the difficulty in collecting large, mature individuals. The 
age at maturity of mud shrimp is one year for U. omissa 
(Costa et al. 2020), 1.5 years for U. africana (Hanekon 
& Baird 1992), 2–3 years for U. major (Kinoshita et al. 
2003b), and 3 years for Upogebia pugettensis (Dana, 1852) 
(Dumbauld et al. 1996). Upogebia pusilla and U. yokoyai 
had 1–3 years of intraspecific variation in maturity be-
tween different habitats (Dworschak 1988, Kevrekidis et 
al. 1997, Itani 2001, Yamasaki et al. 2010). The longev-
ity of mud shrimp is 3–4 years for U. omissa (Costa et al. 
2020), 3–5 years for U. pusilla (Dworschak 1988, Kevreki-
dis et al. 1997), and U. pugettensis (Dumbauld et al. 1996), 
and 4 years for U. africana (Hanekom & Baird 1992) and 
U. major (Selin 2017). According to Vogt (2019), average 
lifespan of decapod crustaceans in seawater and brackish 
water is approximately 6 years, but there is little research 
on aging and longevity of decapod crustaceans. In com-
parison, age determination in bivalves, sea urchins, and 
fish has been widely studied because it can be determined 
by examining hard tissues (shells, rotula, vertebrae, scales, 
and otoliths) on which growth bands are deposited (Pan-
fili et al. 2002, Watanabe & Natsukari 2008, Bodnar 2009, 
Gimenez et al. 2020). Age determination in crustaceans 
is primarily based on analysis of size frequency distribu-
tion and life history data, which are often combined with 
growth models (Vogt 2012, Kilada & Driscoll 2017). Size 
frequency dependent growth models have been widely ap-
plied to wildlife populations, not just crustaceans, but are 
less definitive in long-lived species (Hartnoll 2001). Meth-
odologies such as growth band analysis and the lipofuscin 
method have been developed that differ from traditional 
size frequency distribution approaches (Kilada & Driscoll 
2017, Vogt 2019). Kilada & Driscoll (2017) validated the 
annual pattern of bands deposited in the eyestalks of 
known-age Antarctic krill (Euphausia superba) and deter-
mined their absolute age. The lipofuscin method quantifies 
the pigment lipofuscin, which accumulates in the brain re-
gions of decapods as they age, and is used as an indicator 
for age determination (Sheehy 1992). The longevity of mud 
shrimp is currently thought to be approximately 3–5 years, 
but it may be updated with the development and applica-
tion of these methods.

2. Burrow Structure

Most species dig burrows in mud, sand, and gravel. 

A few species inhabit corals, such as Acutigebia trype-
ta (Sakai 1970), Pomatogebia operculata (Schmitt 1924) 
(Scott et al. 1988), and Upogebia amboiensis (De Man 
1888) (Kleemann 1984), and sponges, such as Upogebia 
darwinii (Miers 1884) (Ngoc-Ho 1977) and Upogebia sp. 
(Scott et al. 1988). Casting of burrows with polyester resin 
or polyurethane foam enables understanding of the burrow 
structure of many shrimps (Hamano 1990, Dworschak et 
al. 2012, Sepahvand et al. 2014). In particular, casts with 
clear structures̶because the hard smooth walls of upoge-
biid burrows prevent the casting material from penetrating 
the burrow̶have been reported (Pearse 1945, Li et al. 
2008). The basic burrow is a U-shaped structure with two 
openings, and burrows with a structure extending vertical-
ly from the bottom of the U-shape are known as Y-shaped 
burrows (Table 2) (Astall et al. 1997). Chambers and short 
branches are often found in these structures (Figs. 1–2) 
(Kinoshita 2002), and shrimp use them to reorient them-
selves within the burrows (Dworschak 1987). The cross 
section of the burrow is circular, and its diameter is depen-
dent on shrimp size (e.g., Dworschak 1983). Nickell and 
Atkinson (1995) categorized burrow types based on the 
feeding habits of thalassinidean shrimps. Feeding occurs 
through the intake of suspended particles in the burrow 
(Dworschak 1988). Other mud shrimps such as Laomedi-
idae and Axianassidae are deposit feeders and have more 

Fig. 1. Schematic life history of Upogebia major in Tokyo Bay. 
Modified from Kinoshita (2002) and Kinoshita et al. (2003b).
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complex burrow structures than upogebiids (Atkinson & 
Taylor 2005). Though the burrows of upogebiids appear 
similar, individualities in different burrows have also been 
reported. Most upogebiid shrimp burrows are less than 1 m 
deep, while A. edulis and U. yokoyai burrows are deeper 
than 1 m, and U. major burrows reach a depth exceeding 
2 m (Table 2) (Hamano 1990, Kinoshita 2002, Li et al. 
2008, Kinoshita et al. 2010). Burrows of Upogebia affinis 
(Say 1818) are branched, extending at least 2 m laterally 
(Frey & Howard 1975). Burrows of Austinogebia naruten-
sis (Sakai 1986) are characterized by their wide, shallow 
U-shaped structure (Kinoshita & Itani 2005).

Upogebiid shrimp dig their own independent burrows, 
and cases of inter-connected burrows have been reported 
in males and females or juveniles and adults (Frey & How-
ard 1975, Coelho et al. 2000, Candisani et al. 2001, Li et 
al. 2008, Kinoshita et al. 2010, Sepahvand et al. 2014). 
Observations of U. noronhensis in aquaria by Candisani et 
al. (2001) showed that male shrimp dig additional tunnels 
extending from their own burrows to connect to female 
burrows as a mating strategy. It is also known that in Cal-
lianassidae (current infraorder Axiidea), Nihonotrypaea 
harmandi (Bouvier 1901) copulate in their burrows (Somi-

ya & Tamaki 2017) and juvenile shrimp burrows have been 
found to emerge from adult burrows (Frey & Howard 1975, 
Candisani et al. 2001, Kinoshita et al. 2010). Juveniles 
of Kraussillichirus kraussi (Stebbing 1900) and Nihono-
trypaea japonica (Ortmann 1891) have also been shown to 
use conspecific burrows as recruitment sites (Forbes 1973) 
and to avoid heavy bioturbation by adults (Tamaki et al. 
1992). Forbes (1973) indicated that K. kraussi have a short 
larval period (3–5 days) and can metamorphose in adult 
burrows. Many juvenile mud shrimps may also inadver-
tently use adult burrows due to their long larval periods. In 
contrast, two mud shrimps, U. major and U. omissa, have 
their own independent burrows from the juvenile stage it-
self (Coelho et al. 2000, Kinoshita 2002). To the best of 
our knowledge, differences in the behavior of juvenile mud 
shrimps have not been discussed.

3. Future Effect of Climate Change on Mud 
Shrimp; Based on Lessons  

from the Great East Japan Earthquake

Little is known about the effect of climate change on the 
life history and habitat of benthic animals (Birchenough et 
al. 2015). The tsunami caused by the 2011 Great East Ja-
pan Earthquake greatly damaged the northwestern Pacific 
Ocean coastal area of Japan. Out of 13 species of Upogebia 
recorded in Japan (Komai 2020), three species̶Upoge-
bia issaeffi (Balss 1913), U. major, and U. yokoyai̶were 
found in areas affected by the 2011 tsunami (Yokoya 1939, 
Sakai 1982, Itani 2004, Biodiversity Center of Japan 2007). 
Mud shrimp disappeared from the tidal flats affected by 
the disaster, but slowly reappeared in several areas (Kana-
ya et al. 2012, Kinoshita & Matsumasa 2016, Biodiversity 
Center of Japan 2016). It was expected that U. major would 
settle on the tidal flats of disaster-hit areas earlier than U. 
yokoyai, as the juvenile U. major creates independent bur-
rows (Kinoshita 2002) but juvenile U. yokoyai use adult 
shrimp burrows to create burrows (Kinoshita et al. 2010). 
However, the earliest mud shrimps found in affected ar-
eas were U. yokoyai in the Orikasa River, Iwate prefec-
ture (Kinoshita & Matsumasa 2016). The deep-burrowing 
decapods (U. yokoyai and N. japonica) were less resistant 
to disturbances arising from changes in the characteristics 
of sediments as a result of the tsunami in the tidal flats in 
Gamo Lagoon, Miyagi prefecture (Kanaya et al. 2015). It is 
possible that U. yokoyai in the Orikasa River survived tsu-
nami disturbance by chance. Kanaya et al. (2015) reported 
that the rate of benthic animal recovery after heavy dis-
turbance depends closely on their life-history traits. Mud 
shrimps, which tend to mature slowly, are among benthic 
animals whose populations recover slowly from physical 
disturbances.

Global tidal flats have been lost at a rate of approxi-
mately 0.55% per year over the last 30 years (1984–2016) 
(Murray et al. 2019). This is caused by human activities 
such as coastal development but also the effects of climate 

Fig. 2. Typical Y-shaped burrow cast, Upogebia yokoyai. Back-
ground squares 10 cm×10 cm. The original data is from Kinoshita 
et al. (2010).
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change, such as rising sea levels, coastal erosion, and re-
duced sediment flux from rivers (Cazenave & Le Cozannet 
2013, Murray et al. 2014). The establishment of protected 
areas (PAs) is a major tool for habitat and biodiversity con-
servation management (Hanawa 2002, Barr et al. 2011). 
However, PAs alone are unlikely to be sufficient to prevent 
ongoing tidal flat loss, as tidal flats within PAs are also be-
ing lost (Hill et al. 2021). Mud shrimps that inhabit tidal 
flats are also distributed in the neritic zone (e.g., Golubin-
skaya & Korn 2020, Seike et al. 2020), but the decrease in 
the tidal flats leads to a reduction in their distribution.

Creating alternative tidal flats is an effective means of 
conserving benthic communities on tidal flats. The tsu-
nami and subsidence caused by the 2011 earthquake cre-
ated new intertidal habitats for benthic animals including 
mud shrimps (Kinoshita & Matsumasa 2016, Matsumasa 
& Kinoshita 2016, Yuhara et al. 2019) but these new habi-
tats have been reduced or lost by the reconstruction of 
seawalls. A tidal flat restoration project (Environmental 
Restoration Project on Enclosed Coastal Seas) using fal-
low fields was demonstrated in Ago Bay, Mie Prefecture, 
central Japan (Matsuda 2010, Kokubu & Yamada 2011). To 
achieve complementary tidal flat regeneration, knowledge 
of the current state of tidal flat ecosystems is necessary be-
fore the effects of climate change become serious.

This review showed that changes in seawater tempera-
ture affect the life history of shrimp and that physical dis-
turbances can make it difficult to maintain the shrimp pop-
ulation. I hope that this report will help predict how global 
climate change will affect shrimp in the future.
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