論文

査読有り 筆頭著者 責任著者 国際誌
2021年6月

Synthesis of near-infrared absorbing triangular Au nanoplates using biomineralisation peptides

Acta Biomaterialia
  • Masayoshi Tanaka
  • Mirei Hayashi
  • Lucien Roach
  • Yuka Kiriki
  • Tetsuya Kadonosono
  • Takahiro Nomoto
  • Nobuhiro Nishiyama
  • Jonghoon Choi
  • Kevin Critchley
  • Stephen D. Evans
  • Mina Okochi
  • 全て表示

131
開始ページ
519
終了ページ
531
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.actbio.2021.06.010

Triangular Au nanoplates (TrAuNPls) possessing strong plasmonic properties can be used as photothermal agents in cancer therapy. However, the preparation of such controlled morphologies typically requires harsh synthetic conditions. Biomolecules offer an alternative route to developing biocompatible synthetic protocols. In particular, peptides offer a novel route for inorganic synthesis under ambient conditions. Herein, using the previously isolated peptide, ASHQWAWKWE, for Au nanoparticle (AuNP) synthesis, the conditions for preparing TrAuNPls via a one-pot synthetic process of mixing HAuCl4 and peptides at room temperature were investigated to effectively obtain particles possessing near-infrared absorbance for non-invasive optical diagnosis and phototherapy. By adjusting the peptide concentration, the size and property of TrAuNPls were controlled under neutral pH conditions. The synthesised particles showed potential as photothermal therapeutic agents in vitro. In addition, peptide characterisation using B3 derivatives revealed the importance of the third amino acid histidine in morphological regulation and potential circular Au nanoplates (AuNPl) synthesis with ASEQWAWKWE and ASAQWAWKWE peptides. These findings provide not only an easy and green synthetic method for TrAuNPls and circular AuNPls, but also some insight to help elucidate the regulation of peptide-based nanoparticle synthesis for use in cancer therapy. STATEMENT OF SIGNIFICANCE: : Biological molecules have received increasing attention as a vehicle to synthesise inorganic materials with specific properties under ambient conditions; particularly, short peptides have the potential to control the synthesis of nanoscale materials with tailored functions. Here, the application of a previously isolated peptide was assessed in synthesising Au nanoparticles containing decahedral and triangular nanoplates with near-infrared absorbance. The size and absorbance peaks of the triangular nanoplates observed were peptide concentration-dependent. In addition, these fine-tuned triangular nanoplates exhibited potential as a phototherapeutic agent. Moreover, the peptide derivatives indicated the possibility of synthesising circular nanoplates. These findings may offer insight into development of new techniques for synthesising functional nanoparticles having biological applications using non-toxic molecules under mild conditions. stituted in the original B3 peptide is underlined.

リンク情報
DOI
https://doi.org/10.1016/j.actbio.2021.06.010
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/34144213
ID情報
  • DOI : 10.1016/j.actbio.2021.06.010
  • ORCIDのPut Code : 95546108
  • PubMed ID : 34144213

エクスポート
BibTeX RIS