Extending toric chiral－factorization algebra theory

Makoto Sakurai（桜井 真）
Ph．D．in Science（the University of Tokyo 2008）
Kaichi Gaukuen

Introduction

The chiral \＆factorization algebra theory of Beilinson \＆Drinfeld is yet to be understood in physical applications．It also lacks some dimen－ sion and singularity analysis．Let＇s try such a thing in dimension 2 －where geometric Lang－ lands program does not have a quick application by Arinkin．＂Toric＂examples were done by the author at the year 2008，but not the cases of non－toric del Pezzo surfaces and so on．

What＇s chiral－factorization algebra？

The physical origin was in the conformal field theory and Vertex（Operator）Alge－ bra．But Belavin－Pokyakov－Zamolodchikov and Knizhnik－Zamolochikov equation are not minifest in this approach．We do not like the level matching condition and z, \bar{z} dependence of string theory－we are doing almost the same compuatation twice for left and right movers of（anti－）holomorphic coordinates，and Polchin－ ski does not have a good complex－analytic interpretation of modular transformation of 1－loop of（complex）torus amplitude after mod－ uli dependence．

Chern－Simons anomaly＇s 2－form（S．，2007） The holomorphic closed 2－form（chiral de Rham complex＇s canonical form）has the form of ＂quantum anomaly＂in the following form

$$
c h_{2}(X)=\frac{3(1-n)}{2}(n=0,1,2, \cdots, 6)
$$

for n－point generic blow－up of complex projec－ tive plane $\mathbb{C P}^{2}$

In more general，a quantum BV complex or Beilinson－Drinfeld algebra is
a differential graded－commutative algebra A （whose differential we denote by \triangle ）over the ring $\mathbf{R}[[\hbar]]$ of formal power series over the real numbers in a formal constant \hbar ，equipped with a Poisson bracket $\{-,-\}$ of the same degree as the differential such that the following equation holds for all elements $a, b \in A$ of homogeneous degree $|a|,|b| \in \mathbb{Z}$
$\triangle(a \cdot b)=(\triangle a) \cdot b+(-1)^{|a|} a \triangle b+\hbar\{a, b\}$

Setup－toric data and Cox rings of total coordinate rings

Vertices $e_{i} \in \mathbb{Z}^{2}$ ，and vectors v_{i} from the origin to the vertices．$(i=1,2, \cdots, N \bmod N)$ The dual basis w_{i}^{1}, w_{i}^{2} for affine neighbourhood U_{i} spanned by the 2 vectors v_{i}, v_{i+1} is as follows：

$$
\left(v_{i}, w_{i}^{1}\right)=1, \quad\left(v_{i}, w_{i}^{2}\right)=0
$$

$\left(v_{i+1}, w_{i}^{1}\right)=0, \quad\left(v_{i+1}, w_{i}^{2}\right)=1$.
The affine neighbourhood $U_{i}(i=1,2, \cdots, N$ $\bmod N)$ is described by
$\operatorname{Spec} \mathbb{C}\left[x^{\left(w_{i}^{1}, E_{1}\right)} y^{\left(w_{i}^{1}, E_{2}\right)}, x^{\left(w_{i}^{2}, E_{1}\right)} y^{\left(w_{i}^{2}, E_{2}\right)}\right]$, where $E_{1}=(1,0)$ ，and $E_{2}=(0,1)$ are the standard bases of \mathbb{Z}^{2} ．

Coordinate transformation and transition function［gerbes］

Via the Jacobian transformation functions $g, g^{\prime}, g^{\prime \prime}$ ，the anomaly with respct to $U_{0} \rightarrow$ $U_{1} \rightarrow U_{2} \rightarrow U_{0}$ is

$$
\begin{array}{r}
d \mu=\operatorname{tr}\left(g d g^{-1}\right)^{3}, d \mu^{\prime}=\operatorname{tr}\left(g^{\prime} d g^{\prime-1}\right)^{3} \\
d \mu^{\prime \prime}=\operatorname{tr}\left(g^{\prime \prime} d g^{\prime \prime-1}\right)^{3}
\end{array}
$$

The total＂anomaly＂is

$$
\psi=\mu+\mu^{\prime}+\mu^{\prime \prime}+\operatorname{tr}\left(g^{\prime \prime} d g \wedge d g^{\prime}\right)
$$

The dimension 2 is preferable to eliminate the undetermined freedom $\mu, \mu^{\prime}, \mu^{\prime \prime}$
Remark The μ－term was originally from the anti－ symmetric part of B－field of curved $\beta \gamma$ CFT by the following Ansatz of Nekrasov．

$$
\tilde{\beta}_{a}:=\beta_{i} g_{a}^{i}+B_{a i} \partial \gamma^{i}
$$

where $B_{a} \in \Omega_{U}^{1}, g_{a} \in T_{U}$ are summed by the Einstein summation of indices．In this model of $\beta \gamma$ CFT，γ is identified with the target space coordinate，and β is identified with the vector field of generalized complex manifold of Hitchin school．The OPE（Operator Product Expan－ sion）is preserved

$$
\beta_{i}(z) \gamma^{j}(w) \sim+\frac{\delta_{i}^{j}}{z-w}+(\text { regular })
$$

w．r．t．the Kronecker delta $\delta_{j}^{i}=\left\{\begin{array}{l}1(i=j) \\ 0(i \neq j)\end{array}\right.$

Mathematica Program

Mathematica doesn＇t have an official package of differential forms．A third－party package of differential forms is already obsolete．We can manually write a code like the following
$g 0\left[n_{-}\right]:=\{D[u[n], x], D[u[n], y]\} ;$
$g\left[m_{-}, n_{-}\right]:=$Inverse $[g 0[m]] . g 0[n]$ ；
$d g d \bar{g}\left[m_{-}, k_{-}, n_{-}\right]:=D[g[m, k], x] . D[g[k, n], y]-$ $D[g[m . k], y] . D[g[k, m], x]$ ；
$\operatorname{anom}\left[m_{-}, k_{-}, n_{-}\right]:=x y \operatorname{Tr}[g[m, k] \cdot d g d g[k, n, m]]$ ； $t o t\left[i_{-}, j_{-}, k_{-}\right]:=$
$-\operatorname{anom}[i, j, k]+m[i, j]-m[i, k]+m[j, k] ;$
The total Chern－Simons anomaly is in good agreement with the prediction of Hirzebruch－ Riemann－Roch theorem via the intersection the－ ory．［summation over triangle decompostions］

Scope of computational algebraic geometry－smooth and toric？

The＂smooth＂condition was thought to be important－especially because of differential form－like compuatation．However，Malikov－ Schechtman（2014）proposed an analogue of ＂derived de Rham complex＂［Bhatt2012］after the cotangent complex of Illusie $(1971,1972)$ and the homotopical algebra of Beilinson－ Drinfeld．It works for singular varieties．In ad－ dition，the＂toric＂condition can be relaxed by introducing the Cox ring for Mori dream space ［Hu，Keel 2000］and quasitorus actions，which includes the non－toric Fano cases．My computa－ tion was by the topological deformation of non－ toric del Pezzo surfaces to nef toric surfaces．

Derived algebraic geometry and deformation theory

The Beilinson－Drinfeld chiral algebra was some－ thing like the factorization algebra of observ－ ables（later studied by Costello－Gwilliam）plus the sheaves on ind－scheme of＂Ziv Ran space＂ $R(X)$ ．The Ran space geometry was first studied in the context of contractivity for smooth pro－ jective curve X ．But the dimension of X can be higher by Francis－Gaitsgory，like the higher－ dimensional sigma model of physicists．
We now would like to construct some duality theory of topological field theory and topological conformal field theory－like the so－called AGT correspondence of $2 \mathrm{~d} / 4 \mathrm{~d}$ spaces．The＂class S＂chiral algebra theory of Beem，Rastelli et al． is in this direction of physics of Gaiotto curve．
I still would like to understand the higher Kodaira－Spencer classes of Esnault－Vieweg ［1994］as an application of such recent results on Ran space and conformal blocks．

Dirac monopole and Brylinski＇s text

The non－trivial topology and electro－ magnetic duality were started from Dirac＇s monopole and its quantization condition．It can reproduce the level 1 Wess－Zumino－Witten term of Lagrangian

$$
\begin{aligned}
L_{W Z W}(g) & =\frac{1}{4 \pi} \operatorname{tr}\left(g^{-1} \partial g g^{-1} \bar{\partial} g\right) \\
& +\frac{1}{12 \pi} d^{-1} \operatorname{tr}\left[\left(g^{-1} d g\right)^{3}\right]
\end{aligned}
$$

for the Nekrasov＇s Ansatz

$$
\frac{1}{2 \pi} \tilde{\beta} \bar{\partial} \tilde{\gamma}=\frac{1}{2 \pi} \beta \bar{\partial} \gamma+L_{W Z W}(g)
$$

Unlike the Dirac monopole（and＇t Hooft－ Polyakov monopole of QFT），we do not have a fibre bundle formalism．Rather，we have （co）sheave formalisms with the K－theory or al－ gebraic topology with a relation to the algebro－ geometric reformulation of Vertex algebroids and geometric qunatization．

References

1．Alexander Beilinson，Vladimir Drinfeld，＂Chiral algebras＂，AMS 2004
2．Kevin Costello，Owen Gwilliam，＂Factorization Algebras in Quantum Field Theory：Volume 1＂， Cambridge 2016
3．John Francis，Dennis Gaitsgory，＂Chiral Koszul duality＂，Selecta Math．（N．S．） 18 （2012），no．1， 27－87
4．Lacob Lurie，＂Higher algebra＂，http： ／／www．math．harvard．edu／～lurie／ 2017 Edition
5．Makoto Sakurai，＂Mixed anomalies of chiral algebras compactified to smooth quasi－projective surfaces＂，arXiv：0712．2318［math．AG］／［hep－th］

