Math. J. Okayama Univ. 65 (2023), 125-143

TRAVELING FRONT SOLUTIONS FOR PERTURBED REACTION-DIFFUSION EQUATIONS

Wah Wah and Masaharu Taniguchi

Abstract

Traveling front solutions have been studied for reactiondiffusion equations with various kinds of nonlinear terms. One of the interesting subjects is the existence and non-existence of them. In this paper, we prove that, if a traveling front solution exists for a reactiondiffusion equation with a nonlinear term, it also exists for a reactiondiffusion equation with a perturbed nonlinear term. In other words, a traveling front is robust under perturbation on a nonlinear term.

1. Introduction

In this paper we study a reaction-diffusion equation

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+f(u), \quad x \in \mathbb{R}, t>0 \tag{1}\\
\quad u(x, 0)=u_{0}(x), \quad x \in \mathbb{R} \tag{2}
\end{gather*}
$$

where u_{0} is a given bounded and uniformly continuous function from \mathbb{R} to \mathbb{R}. Now f is of class C^{1} in an open interval including $[0,1]$ and satisfies $f(0)=0, f(1)=0$ and

$$
\begin{equation*}
f^{\prime}(1)<0 . \tag{3}
\end{equation*}
$$

Equation (1) with such a nonlinear term f appears in many models, and it has often a traveling front solution. See $[1,2,7,8,21,16,20]$ for a general theory of traveling front solutions. Equation (1) is called bistable or multistable if we assume $f^{\prime}(0)<0$ in addition. If $f(u)=-u(u-a)(u-1)$ for $a \in(0,1),(1)$ is called the Nagumo equation or the Allen-Cahn equation. See $[15,1,2,5,7,19,6,18,20]$ for traveling fronts of (1) for bistable or multistable nonlinear terms. Traveling fronts of (1) for the Fisher-KPP equations have been studied. A typical nonlinear term is $f(u)=u(1-u)$. See $[9,12,14,4,21]$ for traveling fronts of (1) for the Fisher-KPP equations. For traveling fronts of (1) for combustion models, see [10, 11, 3, 17] for instance. For traveling fronts of (1) for degenerate monostable nonlinear terms, see [13, 22, 23].

Mathematics Subject Classification. Primary 35C07; Secondary 35B20, 35K57.
Key words and phrases. traveling front, existence, perturbation, reaction-diffusion equation.

If $U \in C^{2}(\mathbb{R})$ and $c \in \mathbb{R}$ satisfy

$$
\left\{\begin{array}{l}
U^{\prime \prime}(y)+c U^{\prime}(y)+f(U(y))=0, \quad y \in \mathbb{R} \tag{4}\\
U(-\infty)=1, \quad U(\infty)=0
\end{array}\right.
$$

$u(x, t)=U(x-c t)$ becomes a traveling front solution to (1). We call (4) the profile equation of (c, U), if it exists. In this case we necessarily have

$$
U^{\prime}(y)<0, \quad y \in \mathbb{R}
$$

by using [7, Lemma 2.1]. Assume that f_{0} is of class C^{1} in an open interval including $[0,1]$ with $f_{0}(0)=0, f_{0}(1)=0$ and

$$
\begin{equation*}
f_{0}^{\prime}(1)<0 \tag{5}
\end{equation*}
$$

and assume that there exist $U_{0} \in C^{2}(\mathbb{R})$ and $c_{0} \in \mathbb{R}$ that satisfy

$$
\left\{\begin{array}{l}
U_{0}^{\prime \prime}(y)+c_{0} U_{0}^{\prime}(y)+f_{0}\left(U_{0}(y)\right)=0, \quad y \in \mathbb{R} \tag{6}\\
U_{0}(-\infty)=1, \quad U_{0}(\infty)=0
\end{array}\right.
$$

Then we necessarily have

$$
\begin{equation*}
U_{0}^{\prime}(y)<0, \quad y \in \mathbb{R} \tag{7}
\end{equation*}
$$

Assume that $f-f_{0} \in C_{0}^{1}(0,1]$. Here $C_{0}^{1}(0,1]$ is the set of functions in $C^{1}(0,1]$ whose supports lie in $(0,1]$. The following is the main assertion in this paper.

Theorem 1. Assume that there exists $\left(c_{0}, U_{0}\right)$ that satisfies (6). Assume that $f-f_{0} \in C_{0}^{1}(0,1]$ and let $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ be small enough. Then there exists (c, U) that satisfies (4). If $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero, c converges to c_{0} and $\left\|U-U_{0}\right\|_{C^{2}(\mathbb{R})}$ goes to zero.

We write the proof of Theorem 1 in Section 2. See Figure 1 in Section 2 for an idea of the proof. Theorem 1 asserts that a traveling front is robust under perturbation on a nonlinear term by assuming (5). If we assume $f_{0}^{\prime}(0)<0$ in addition, Theorem 1 shows that traveling fronts for bistable or multistable nonlinear terms are robust under perturbations. See Corollary 10 in Section 3 for this argument.

For the robustness of traveling fronts, one can see $[7,8,1,2,19]$ for instance. However, the existence of (c, U) to (4) is an open problem as far as the authors know if one assumes the existence of $\left(c_{0}, U_{0}\right)$ to (6) without assuming (5) and just assumes that $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ is small enough. Theorem 1 might be a new step to attack this general robustness problem of traveling fronts.

2. Proof of Theorem 1

In view of (4), we search (c, U) that satisfies

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} y}\binom{U}{U^{\prime}}=\binom{U^{\prime}}{-c U^{\prime}-f(U)}, \quad y \in \mathbb{R} \\
U^{\prime}(y)<0, \quad y \in \mathbb{R} \tag{8}\\
U(-\infty)=1, \quad U(\infty)=0
\end{gather*}
$$

Equations (4) and (8) are equivalent. Using (6), we have $\left(c_{0}, U_{0}\right)$ that satisfies

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} y}\binom{U_{0}}{U_{0}^{\prime}}=\binom{U_{0}^{\prime}}{-c_{0} U_{0}^{\prime}-f_{0}\left(U_{0}\right)}, \quad y \in \mathbb{R}, \tag{9}\\
U_{0}^{\prime}(y)<0, \quad y \in \mathbb{R} \\
U_{0}(-\infty)=1, \quad U_{0}(\infty)=0
\end{gather*}
$$

We study the following ordinary differential equation

$$
\left\{\begin{array}{l}
p^{\prime}(z)=-c-\frac{f(z)}{p(z)}, \quad 0<z<1 \tag{10}\\
p(z)<0, \quad 0<z<1 \\
p(0)=0, \quad p(1)=0
\end{array}\right.
$$

We write the solution of (10) as $p(z ; c, f)$ if it exists. There exists a solution (c, U) to (8) if and only if $p(z ; c, f)$ exists. Indeed, if (c, U) satisfies (8), we define p by $p(U(y))=U^{\prime}(y)$ for $y \in \mathbb{R}$, and have (10). If $p(z ; c, f)$ satisfies (10), we define

$$
\begin{equation*}
y=\int_{a}^{U} \frac{\mathrm{~d} z}{p(z)}, \quad 0<z<1 \tag{11}
\end{equation*}
$$

and have (8). Here a is an arbitrarily given number. Similarly, there exists a solution $\left(c_{0}, U_{0}\right)$ to (9) if and only if $p\left(z ; c_{0}, f_{0}\right)$ exists. By the standing assumption, we have $p\left(z ; c_{0}, f_{0}\right)$ that satisfies

$$
\left\{\begin{array}{l}
p_{z}\left(z ; c_{0}, f_{0}\right)=-c_{0}-\frac{f_{0}(z)}{p\left(z ; c_{0}, f_{0}\right)}, \quad 0<z<1, \tag{12}\\
p\left(z ; c_{0}, f_{0}\right)<0, \quad 0<z<1, \\
p\left(0 ; c_{0}, f_{0}\right)=0, \quad p\left(1 ; c_{0}, f_{0}\right)=0
\end{array}\right.
$$

Now we choose $\alpha_{0} \in(0,1)$ such that we have

$$
f_{0}(u)>0 \quad \text { if } \quad u \in\left[\alpha_{0}, 1\right)
$$

Also we choose $\alpha \in(0,1)$ such that we have

$$
f(u)>0 \quad \text { if } \quad u \in[\alpha, 1)
$$

Now we can have $\left|\alpha-\alpha_{0}\right| \rightarrow 0$ as $\left\|f-f_{0}\right\|_{C^{1}[0,1]} \rightarrow 0$. We set

$$
\begin{equation*}
\alpha_{*}=\frac{1+\alpha_{0}}{2} \tag{13}
\end{equation*}
$$

It suffices to assume that $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ is small enough and we always have

$$
\alpha<\alpha_{*} .
$$

Now we use the following assertion.
Lemma 2 ([20]). For every $s \in \mathbb{R}$ there exists $p_{+}(z ; s, f)$ defined for $z \in$ $[\alpha, 1]$, such that one has

$$
\begin{align*}
& \left(p_{+}\right)_{z}(z ; s, f)=-s-\frac{f(z)}{p_{+}(z ; s, f)}, \quad z \in(\alpha, 1), \tag{14}\\
& p_{+}(z ; s, f)<0, \quad z \in[\alpha, 1), \tag{15}\\
& p_{+}(1 ; s, f)=0, \tag{16}\\
& \left(p_{+}\right)_{z}(1 ; s, f)=\frac{-s+\sqrt{s^{2}-4 f^{\prime}(1)}}{2}>0 . \tag{17}
\end{align*}
$$

If $s_{1}<s_{2}$, one has

$$
p_{+}\left(z ; s_{1}, f\right)<p_{+}\left(z ; s_{2}, f\right), \quad z \in[\alpha, 1)
$$

Proof. This assertion follows from [20, Theorem 1.1] and its proof.

Since $f-f_{0} \in C_{0}^{1}(0,1]$, we can choose $z_{*} \in(0,1)$ with

$$
\begin{equation*}
f(z)=f_{0}(z) \quad \text { if } \quad 0 \leq z \leq z_{*} \tag{18}
\end{equation*}
$$

Let $s \in \mathbb{R}$ be arbitrarily given and let $p_{+}(z ; s, f)$ be given by Lemma 2 . We choose $M \geq 1$ large enough such that we have

$$
\begin{equation*}
|s|+\frac{\|f\|_{C[0,1]}}{M} \leq M \tag{19}
\end{equation*}
$$

In Lemma $2, p_{+}(z ; s, f)$ is defined only on $[\alpha, 1]$. We extend $p_{+}(z ; s, f)$ for all possible z, say $z \in\left(\zeta_{0}(s, f), 1\right)$. Then we have

$$
\zeta_{0}(s, f) \leq \alpha<\alpha_{*}
$$

Since f is defined in an open interval including $[0,1], \zeta_{0}(s, f)$ can be a negative value. Now we have

$$
\begin{align*}
& \left(p_{+}\right)_{z}(z ; s, f)=-s-\frac{f(z)}{p_{+}(z ; s, f)}, \quad z \in\left(\zeta_{0}(s, f), 1\right), \tag{20}\\
& p_{+}(z ; s, f)<0, \quad z \in\left(\zeta_{0}(s, f), 1\right) \\
& p_{+}(1 ; s, f)=0, \\
& \left(p_{+}\right)_{z}(1 ; s, f)=\frac{-s+\sqrt{s^{2}-4 f^{\prime}(1)}}{2}>0 .
\end{align*}
$$

Now we assert the following lemma.
Lemma 3. Let $s \in \mathbb{R}$ be arbitrarily given and let $M \geq 1$ satisfy (19). Let $p_{+}(z ; s, f)$ be given by Lemma 2 and one extends $p_{+}(z ; s, f)$ for all possible z, say $z \in\left(\zeta_{0}(s, f), 1\right)$. Then one has

$$
\begin{equation*}
0<-p_{+}(z ; s, f)<2 M, \quad \zeta_{0}(s, f)<z<1 \tag{21}
\end{equation*}
$$

One has

$$
p_{+}(0 ; s, f)<0, \quad \zeta_{0}(s, f)<0
$$

or one has

$$
\begin{equation*}
\zeta_{0}(s, f) \in[0, \alpha), \quad p_{+}\left(\zeta_{0}(s, f) ; s, f\right)=0 . \tag{22}
\end{equation*}
$$

Proof. Assume that there exists $\eta_{0} \in(0,1)$ with

$$
-p_{+}\left(\eta_{0} ; s, f\right) \geq 2 M
$$

Then we can define $\eta_{1} \in\left(\eta_{0}, 1\right]$ by

$$
\eta_{1}=\sup \left\{\eta \in\left(\eta_{0}, 1\right) \mid-p_{+}(z ; s, f) \geq M \quad \text { for all } z \in\left[\eta_{0}, \eta\right]\right\}
$$

Using $p_{+}(1 ; s, f)=0$, we have $0<\eta_{0}<\eta_{1}<1$. Using (19) and (20), we obtain

$$
\begin{aligned}
& -p_{+}\left(\eta_{1} ; s, f\right) \\
= & -p_{+}\left(\eta_{0} ; s, f\right)-\int_{0}^{1}\left(p_{+}\right)_{z}\left(\theta \eta_{1}+(1-\theta) \eta_{0} ; s, f\right) \mathrm{d} \theta\left(\eta_{1}-\eta_{0}\right) \\
\geq & 2 M-M\left(\eta_{1}-\eta_{0}\right)>M .
\end{aligned}
$$

This contradicts the definition of η_{1}. Now we obtain (21).
If $\zeta_{0}(s, f)<0$, we have $p_{+}(0 ; s, f)<0$. It suffices to prove (22) by assuming $\zeta_{0}(s, f) \geq 0$. Then necessarily we have $\zeta_{0}(s, f) \in[0, \alpha)$. Assume that (22) does not hold true. Then we have

$$
\beta=\limsup _{z \rightarrow \zeta_{0}(s, f)}\left(-p_{+}(z ; s, f)\right) \in(0,2 M] .
$$

Using (20), we obtain

$$
\left(p_{+}\right)_{z}\left(\zeta_{0}(s, f) ; s, f\right)=-s+\frac{f(0)}{\beta}
$$

Since the right-hand side is bounded, it is bounded on a neighborhood of $\left(\zeta_{0}(s, f),-\beta\right)$ and we can extend $p_{+}(z ; s, f)$ for $z \in\left(\zeta_{0}(s, f)-\delta, \zeta_{0}(s, f)\right)$ with some $\delta>0$ that is small enough. This contradicts the definition of $\zeta_{0}(s, f)$. Thus we obtain (22) and complete the proof.

Now we have

$$
\begin{align*}
& \zeta_{0}\left(c_{0}, f_{0}\right)=0 \\
& p_{+}\left(z ; c_{0}, f_{0}\right)=p\left(z ; c_{0}, f_{0}\right), \quad 0<z<1 \tag{23}
\end{align*}
$$

Now we assert the following proposition.
Proposition 4. Let $s \in \mathbb{R}$ be arbitrarily given. Then one has

$$
\begin{aligned}
& p_{+}(z ; s, f)-p_{+}\left(z ; c_{0}, f_{0}\right) \\
&= \int_{z}^{1}\left(s-c_{0}+\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right) \exp \left(-\int_{z}^{z^{\prime}} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \mathrm{d} z^{\prime} \\
& \text { for } \zeta_{0}(s, f)<z<1
\end{aligned}
$$

Proof. We put

$$
w(z)=p_{+}(z ; s, f)-p_{+}\left(z ; c_{0}, f_{0}\right)
$$

and have

$$
w^{\prime}(z)=-s+c_{0}-\frac{f(z)}{p_{+}(z ; s, f)}+\frac{f_{0}(z)}{p_{+}\left(z ; c_{0}, f_{0}\right)}
$$

for $\zeta_{0}(s, f)<z<1$. Now we have

$$
-\frac{f(z)}{p_{+}(z ; s, f)}+\frac{f_{0}(z)}{p_{+}\left(z ; c_{0}, f_{0}\right)}=\frac{-f(z) p_{+}\left(z ; c_{0}, f_{0}\right)+f_{0}(z) p_{+}(z ; s, f)}{p_{+}(z ; s, f) p_{+}\left(z ; c_{0}, f_{0}\right)}
$$

and

$$
\begin{aligned}
& -f(z) p_{+}\left(z ; c_{0}, f_{0}\right)+f_{0}(z) p_{+}(z ; s, f) \\
= & -f(z)\left(p_{+}\left(z ; c_{0}, f_{0}\right)-p_{+}(z ; s, f)\right)-f(z) p_{+}(z ; s, f)+f_{0}(z) p_{+}(z ; s, f) \\
= & f(z) w(z)-\left(f(z)-f_{0}(z)\right) p_{+}(z ; s, f)
\end{aligned}
$$

Then we obtain

$$
w^{\prime}(z)-\frac{f(z)}{p_{+}(z ; s, f) p_{+}\left(z ; c_{0}, f_{0}\right)} w(z)=-s+c_{0}-\frac{f(z)-f_{0}(z)}{p_{+}\left(z ; c_{0}, f_{0}\right)}
$$

for $\zeta_{0}(s, f)<z<1$. Then we have

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} z}\left(w(z) \exp \left(\int_{z}^{1} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right)\right) \\
&=\left(w^{\prime}(z)-\frac{f(z)}{p_{+}(z ; s, f) p_{+}\left(z ; c_{0}, f_{0}\right)} w(z)\right) \\
& \quad \times \exp \left(\int_{z}^{1} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \\
&=\left(-s+c_{0}-\frac{f(z)-f_{0}(z)}{p_{+}\left(z ; c_{0}, f_{0}\right)}\right) \exp \left(\int_{z}^{1} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) .
\end{aligned}
$$

Let $\theta^{\prime} \in(z, 1)$ be arbitrarily given. Integrating the both sides of the equality stated above over $\left(z, \theta^{\prime}\right)$, we have

$$
\begin{aligned}
& -w(z) \exp \left(\int_{z}^{1} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \\
& +w\left(\theta^{\prime}\right) \exp \left(\int_{\theta^{\prime}}^{1} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \\
= & -\int_{z}^{\theta^{\prime}}\left(s-c_{0}+\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right) \exp \left(\int_{z^{\prime}}^{1} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \mathrm{d} z^{\prime}
\end{aligned}
$$

for $\zeta_{0}(s, f)<z<\theta^{\prime}$. Now we find

$$
\begin{align*}
& w(z)=w\left(\theta^{\prime}\right) \exp (\left.-\int_{z}^{\theta^{\prime}} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \tag{24}\\
&+\int_{z}^{\theta^{\prime}}\left(s-c_{0}+\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right) \\
& \times \exp \left(-\int_{z}^{z^{\prime}} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \mathrm{d} z^{\prime}
\end{align*}
$$

for $\zeta_{0}(s, f)<z<\theta^{\prime}$. Using

$$
\begin{aligned}
& f(\zeta)>0 \quad \text { if } \quad \zeta \in\left(\alpha_{*}, 1\right) \\
& p_{+}(\zeta ; s, f)<0, \quad p_{+}\left(\zeta ; c_{0}, f_{0}\right)<0, \quad \zeta_{0}(s, f)<\zeta<1
\end{aligned}
$$

we have

$$
\lim _{\theta^{\prime} \rightarrow 1} w\left(\theta^{\prime}\right) \exp \left(-\int_{z}^{\theta^{\prime}} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right)=0
$$

and

$$
\begin{aligned}
& \lim _{\theta^{\prime} \rightarrow 1} \int_{z}^{\theta^{\prime}}\left(s-c_{0}+\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right) \\
& \quad \times \exp \left(-\int_{z}^{z^{\prime}} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \mathrm{d} z^{\prime} \\
& =\int_{z}^{1}\left(s-c_{0}+\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right) \\
& \quad \times \exp \left(-\int_{z}^{z^{\prime}} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \mathrm{d} z^{\prime}
\end{aligned}
$$

for $\zeta_{0}(s, f)<z<1$. Passing to the limit of $\theta^{\prime} \rightarrow 1$ in (24), we obtain

$$
\begin{aligned}
& w(z)= \\
& \int_{z}^{1}\left(s-c_{0}+\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right) \exp \left(-\int_{z}^{z^{\prime}} \frac{f(\zeta)}{p_{+}(\zeta ; s, f) p_{+}\left(\zeta ; c_{0}, f_{0}\right)} \mathrm{d} \zeta\right) \mathrm{d} z^{\prime}
\end{aligned}
$$

for $\zeta_{0}(s, f)<z<1$. This completes the proof.
Now we take $\varepsilon_{0} \in\left(0,1-\alpha_{*}\right)$ small enough such that we have

$$
\begin{equation*}
\left(p_{+}\right)_{z}\left(z ; c_{0}, f_{0}\right)>\frac{1}{2}\left(p_{+}\right)_{z}\left(1 ; c_{0}, f_{0}\right)>0 \quad \text { if } \quad z \in\left(1-\varepsilon_{0}, 1\right) \tag{25}
\end{equation*}
$$

We show that $\left|p_{+}\left(\alpha_{*} ; s, f\right)-p_{+}\left(\alpha_{*} ; c_{0}, f_{0}\right)\right|$ converges to 0 as $\left|s-c_{0}\right|+$ $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to 0 in the following lemma.
Lemma 5. Let $\alpha_{*} \in(0,1)$ be as in (13) and let $\varepsilon_{0} \in\left(0,1-\alpha_{*}\right)$ satisfy (25). Then one has

$$
\begin{aligned}
& \sup _{z \in\left[\alpha_{*}, 1\right]}\left|p_{+}(z ; s, f)-p_{+}\left(z ; c_{0}, f_{0}\right)\right| \\
& \leq\left(1-\alpha_{*}\right)\left|s-c_{0}\right|+\frac{\left(1-\varepsilon_{0}-\alpha_{*}\right)\left\|f-f_{0}\right\|_{C[0,1]}}{\min _{z^{\prime} \in\left[\alpha_{*}, 1-\varepsilon_{0}\right]}\left(-p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)\right)} \\
& \quad+\frac{\varepsilon_{0}\left\|f-f_{0}\right\|_{C^{1}[0,1]}}{\min _{\zeta^{\prime} \in\left[1-\varepsilon_{0}, 1\right]}\left|\left(p_{+}\right) z\left(\zeta^{\prime} ; c_{0}, f_{0}\right)\right|}
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& f(z)>0 \quad \text { if } \quad z \in\left[\alpha_{*}, 1\right) \\
& p_{+}(z ; s, f)<0 \quad \text { if } \quad z \in\left[\alpha_{*}, 1\right) \\
& p_{+}\left(z ; c_{0}, f_{0}\right)<0 \quad \text { if } \quad z \in(0,1) .
\end{aligned}
$$

Then, using Proposition 4, we have

$$
\max _{z \in\left[\alpha_{*}, 1\right]}\left|p_{+}(z ; s, f)-p_{+}\left(z ; c_{0}, f_{0}\right)\right| \leq \int_{\alpha_{*}}^{1}\left(\left|s-c_{0}\right|+\left|\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right|\right) \mathrm{d} z^{\prime}
$$

Now we find

$$
\begin{align*}
& \int_{\alpha_{*}}^{1}\left(\left|s-c_{0}\right|+\left|\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right|\right) \mathrm{d} z^{\prime} \tag{26}\\
& \leq\left(1-\alpha_{*}\right)\left|s-c_{0}\right|+\int_{\alpha_{*}}^{1}\left|\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right| \mathrm{d} z^{\prime}
\end{align*}
$$

If $z^{\prime} \in\left(\alpha_{*}, 1-\varepsilon_{0}\right.$], we have

$$
\left|\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right| \leq \frac{\left\|f-f_{0}\right\|_{C[0,1]}}{\min _{z^{\prime} \in\left[\alpha_{*}, 1-\varepsilon_{0}\right]}\left(-p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)\right)}
$$

and thus

$$
\int_{\alpha_{*}}^{1-\varepsilon_{0}}\left|\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right| \mathrm{d} z^{\prime} \leq \frac{\left(1-\varepsilon_{0}-\alpha_{*}\right)\left\|f-f_{0}\right\|_{C[0,1]}}{\min _{z^{\prime} \in\left[\alpha_{*}, 1-\varepsilon_{0}\right]}\left(-p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)\right)}
$$

If $z^{\prime} \in\left(1-\varepsilon_{0}, 1\right)$, we have

$$
\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}=\frac{f^{\prime}\left(\zeta^{\prime}\right)-f_{0}^{\prime}\left(\zeta^{\prime}\right)}{\left(p_{+}\right)_{z}\left(\zeta^{\prime} ; c_{0}, f_{0}\right)}
$$

for some $\zeta^{\prime} \in\left(z^{\prime}, 1\right)$. Thus, if $z^{\prime} \in\left(1-\varepsilon_{0}, 1\right)$, we find

$$
\left|\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right| \leq \frac{\left\|f-f_{0}\right\|_{C^{1}[0,1]}}{\min _{\zeta^{\prime} \in\left[1-\varepsilon_{0}, 1\right]}\left|\left(p_{+}\right)_{z}\left(\zeta^{\prime} ; c_{0}, f_{0}\right)\right|}
$$

and

$$
\int_{1-\varepsilon_{0}}^{1}\left|\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right| \mathrm{d} z^{\prime} \leq \frac{\varepsilon_{0}\left\|f-f_{0}\right\|_{C^{1}[0,1]}}{\min _{\zeta^{\prime} \in\left[1-\varepsilon_{0}, 1\right]}\left|\left(p_{+}\right)_{z}\left(\zeta^{\prime} ; c_{0}, f_{0}\right)\right|}
$$

Then we obtain

$$
\begin{aligned}
& \int_{\alpha_{*}}^{1}\left|\frac{f\left(z^{\prime}\right)-f_{0}\left(z^{\prime}\right)}{p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)}\right| \mathrm{d} z^{\prime} \\
& \leq \frac{\left(1-\varepsilon_{0}-\alpha_{*}\right)\left\|f-f_{0}\right\|_{C[0,1]}}{\min _{z^{\prime} \in\left[\alpha_{*}, 1-\varepsilon_{0}\right]}\left(-p_{+}\left(z^{\prime} ; c_{0}, f_{0}\right)\right)}+\frac{\varepsilon_{0}\left\|f-f_{0}\right\|_{C^{1}[0,1]}}{\min _{\zeta^{\prime} \in\left[1-\varepsilon_{0}, 1\right]}\left|\left(p_{+}\right)_{z}\left(\zeta^{\prime} ; c_{0}, f_{0}\right)\right|}
\end{aligned}
$$

Combining this inequality and (26), we complete the proof.

Lemma 5 asserts that $\left|p_{+}(z ; s, f)-p_{+}\left(z ; c_{0}, f_{0}\right)\right|$ converges to 0 on an interval $\left[\alpha_{*}, 1\right]$ as $\left|s-c_{0}\right|+\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to 0 . Does this convergence hold true for every compact interval in $(0,1]$? To answer this question, we assert the following lemma.

Lemma 6. Let $s \in \mathbb{R}$. Let $z_{*} \in(0,1)$ satisfy (18) and let $z_{1} \in\left(0, z_{*}\right)$ be arbitrarily given. $A s\left|s-c_{0}\right|+\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero, $\zeta_{0}(s, f)$ converges to zero and

$$
\sup _{z \in\left[z_{1}, 1\right]}\left|p_{+}(z ; s, f)-p_{+}\left(z ; c_{0}, f_{0}\right)\right|
$$

converges to zero.
Proof. We will prove $\zeta_{0}(s, f)<z_{1}$ if $\left|s-c_{0}\right|+\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ is small enough. Let $\left(c_{0}, U_{0}\right)$ satisfy (9). There exists $-\infty<y_{0}<y_{1}<\infty$ such that we have

$$
U_{0}\left(y_{0}\right)=\alpha_{*}, \quad U_{0}\left(y_{1}\right)=\frac{z_{1}}{2}
$$

For $s \in \mathbb{R}$, let $V=V(y)$ satisfy

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} y}\binom{V}{V^{\prime}}=\binom{V^{\prime}}{-s V^{\prime}-f(V)}, \quad y \in \mathbb{R} \tag{27}
\end{equation*}
$$

with

$$
V\left(y_{0}\right)=\alpha_{*}, \quad V^{\prime}\left(y_{0}\right)=p_{+}\left(\alpha_{*} ; s, f\right) .
$$

Now we define

$$
w(y)=\binom{w_{1}(y)}{w_{2}(y)}=\binom{V(y)-U_{0}(y)}{V^{\prime}(y)-U_{0}^{\prime}(y)}, \quad y \in \mathbb{R}
$$

Then we have

$$
\frac{\mathrm{d}}{\mathrm{~d} y}\binom{w_{1}}{w_{2}}=\binom{w_{2}}{-s V^{\prime}+c_{0} U_{0}^{\prime}-f(V)+f_{0}\left(U_{0}\right)}, \quad y \in \mathbb{R}
$$

Now we have
$f(V)-f\left(U_{0}\right)=\left[f\left(\theta V+(1-\theta) U_{0}\right)\right]_{\theta=0}^{\theta=1}=\int_{0}^{1} f^{\prime}\left(\theta V+(1-\theta) U_{0}\right) \mathrm{d} \theta\left(V-U_{0}\right)$ for $y \in \mathbb{R}$. Now we define

$$
\begin{aligned}
& h(y)=\int_{0}^{1} f^{\prime}\left(\theta V(y)+(1-\theta) U_{0}(y)\right) \mathrm{d} \theta, \quad y \in \mathbb{R}, \\
& A(y)=\left(\begin{array}{cc}
0 & -1 \\
h(y) & s
\end{array}\right), \quad y \in \mathbb{R}, \\
& g(y)=-\binom{0}{\left(s-c_{0}\right) U_{0}^{\prime}(y)+f\left(U_{0}(y)\right)-f_{0}\left(U_{0}(y)\right)}, \quad y \in \mathbb{R} .
\end{aligned}
$$

Now we have

$$
\sup _{y \in \mathbb{R}}|A(y)| \leq \sqrt{1+s^{2}+\|f\|_{C^{1}[0,1]}^{2}}
$$

Here

$$
|A|=\sup _{x_{1}^{2}+x_{2}^{2}=1}\left|A\binom{x_{1}}{x_{2}}\right|
$$

for a 2×2 real matrix A. Then, we obtain

$$
w^{\prime}(y)+A(y) w(y)=g(y), \quad y \in \mathbb{R}
$$

and

$$
w(y)=w\left(y_{0}\right) \exp \left(-\int_{y_{0}}^{y} A\left(y^{\prime}\right) \mathrm{d} y^{\prime}\right)+\int_{y_{0}}^{y} \exp \left(-\int_{y^{\prime}}^{y} A\left(y^{\prime \prime}\right) \mathrm{d} y^{\prime \prime}\right) g\left(y^{\prime}\right) \mathrm{d} y^{\prime}
$$

for $y \in \mathbb{R}$. Now we have

$$
\sup _{y \in \mathbb{R}}|g(y)| \leq\left|s-c_{0}\right| \max _{\eta \in \mathbb{R}}\left|U_{0}^{\prime}(\eta)\right|+\left\|f-f_{0}\right\|_{C[0,1]}
$$

Thus, as $\left|s-c_{0}\right|+\left\|f-f_{0}\right\|_{C[0,1]}$ goes to zero,

$$
\max _{y \in\left[y_{0}, y_{1}\right]}|w(y)|
$$

converges to zero. Taking $\left|s-c_{0}\right|+\left\|f-f_{0}\right\|_{C[0,1]}$ small enough, we have

$$
\begin{aligned}
& \left|w\left(y_{1}\right)\right|<\frac{z_{1}}{4} \\
& \max _{y \in\left[y_{0}, y_{1}\right]}|w(y)|<\frac{1}{2} \min _{y \in\left[y_{0}, y_{1}\right]}\left(-U_{0}^{\prime}(y)\right) .
\end{aligned}
$$

We define $p(\cdot ; s, f)$ by

$$
p(V(y) ; s, f)=V^{\prime}(y), \quad y_{0} \leq y<y_{1}
$$

Then we have

$$
V\left(y_{1}\right)<\frac{z_{1}}{2}+\frac{z_{1}}{4}=\frac{3}{4} z_{1}
$$

and

$$
\begin{aligned}
& p_{z}(z ; s, f)=-s-\frac{f(z)}{p(z ; s, f)}, \quad \frac{3}{4} z_{1}<z \leq \alpha_{*}, \\
& p(z ; s, f)<0, \quad \frac{3}{4} z_{1}<z \leq \alpha_{*} \\
& p\left(\alpha_{*} ; s, f\right)=p_{+}\left(\alpha_{*} ; s, f\right)<0 .
\end{aligned}
$$

This $p(z ; s, f)$ is an extension of $p_{+}(z ; s, f)$ given by Lemma 2. Thus we obtain $\zeta_{0}(s, f)<z_{1}$. Combining Lemma 5 and the argument stated above, we have

$$
\sup _{z \in\left[z_{1}, 1\right]}\left|p_{+}(z ; s, f)-p_{+}\left(z ; c_{0}, f_{0}\right)\right| \rightarrow 0
$$

as $\left|s-c_{0}\right|+\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero. This completes the proof.

Lemma 2 asserts that $p_{+}(z ; s, f)$ is strictly monotone increasing in s on $\left[\alpha_{*}, 1\right)$. In the following lemma, we assert that $p_{+}(z ; s, f)$ is strictly monotone increasing in s on the whole interval $(0,1)$.

Lemma 7. Let $-\infty<s_{1}<s_{2}<\infty$ be arbitrarily given. Let $z_{\text {init }} \in(0,1)$ be arbitrarily given. Assume that $p_{+}\left(z_{\text {init }} ; s_{1}, f\right)$ and $p_{+}\left(z_{\mathrm{init}} ; s_{2}, f\right)$ exist and satisfy

$$
p_{+}\left(z_{\mathrm{init}} ; s_{1}, f\right)<p_{+}\left(z_{\mathrm{init}} ; s_{2}, f\right)<0 .
$$

Then one has

$$
\zeta_{0}\left(s_{1}, f\right) \leq \zeta_{0}\left(s_{2}, f\right)<z_{\text {init }}
$$

and

$$
p_{+}\left(z ; s_{1}, f\right)<p_{+}\left(z ; s_{2}, f\right)<0 \quad \text { for all } \quad z \in\left(\zeta_{0}\left(s_{2}, f\right), z_{\mathrm{init}}\right] .
$$

Proof. We put

$$
q(z)=p_{+}\left(z ; s_{2}, f\right)-p_{+}\left(z ; s_{1}, f\right), \quad \max \left\{\zeta_{0}\left(s_{2}, f\right), \zeta_{0}\left(s_{1}, f\right)\right\} \leq z \leq z_{\text {init }}
$$

Then we have

$$
\begin{aligned}
& q^{\prime}(z)=-\left(s_{2}-s_{1}\right)-\frac{f(z)}{p_{+}\left(z ; s_{2}, f\right)}+\frac{f(z)}{p_{+}\left(z ; s_{1}, f\right)}, \\
& \quad \max \left\{\zeta_{0}\left(s_{2}, f\right), \zeta_{0}\left(s_{1}, f\right)\right\}<z<z_{\text {init }}, \\
& q\left(z_{\text {init }}\right)>0 .
\end{aligned}
$$

Consequently we get

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} z}\left(q(z) \exp \left(-\int_{z}^{z_{\text {init }}} \frac{f(\zeta)}{p_{+}\left(\zeta ; s_{1}, f\right) p_{+}\left(\zeta ; s_{2}, f\right)} \mathrm{d} \zeta\right)\right) \\
= & -\left(s_{2}-s_{1}\right) \exp \left(-\int_{z}^{z_{\text {init }}} \frac{f(\zeta)}{p_{+}\left(\zeta ; s_{1}, f\right) p_{+}\left(\zeta ; s_{2}, f\right)} \mathrm{d} \zeta\right)<0
\end{aligned}
$$

for

$$
\max \left\{\zeta_{0}\left(s_{2}, f\right), \zeta_{0}\left(s_{1}, f\right)\right\}<z<z_{\text {init }}
$$

Then we find

$$
\begin{aligned}
& q(z) \exp \left(-\int_{z}^{z_{\text {init }}} \frac{f(\zeta)}{p_{+}\left(\zeta ; s_{1}, f\right) p_{+}\left(\zeta ; s_{2}, f\right)} \mathrm{d} \zeta\right)>0 \\
& \max \left\{\zeta_{0}\left(s_{2}, f\right), \zeta_{0}\left(s_{1}, f\right)\right\}<z<z_{\text {init }}
\end{aligned}
$$

Thus we obtain

$$
q(z)>0, \quad \max \left\{\zeta_{0}\left(s_{2}, f\right), \zeta_{0}\left(s_{1}, f\right)\right\}<z<z_{\text {init }} .
$$

Then, using $q\left(z_{\text {init }}\right)>0$, we obtain
$q(z)=p_{+}\left(z ; s_{2}, f\right)-p_{+}\left(z ; s_{1}, f\right)>0, \quad \max \left\{\zeta_{0}\left(s_{2}, f\right), \zeta_{0}\left(s_{1}, f\right)\right\}<z<z_{\text {init }}$.
Now we obtain $\zeta_{0}\left(s_{1}, f\right) \leq \zeta_{0}\left(s_{2}, f\right)$. This completes the proof.

Let $\delta_{0} \in(0,1)$ be arbitrarily given. We have $\zeta_{0}\left(c_{0}+\delta_{0}, f_{0}\right) \in[0,1)$ with

$$
\begin{aligned}
& p_{+}\left(\zeta_{0}\left(c_{0}+\delta_{0}, f_{0}\right) ; c_{0}+\delta_{0}, f_{0}\right)=0, \\
& p_{+}\left(z ; c_{0}-\delta_{0}, f_{0}\right)<p_{+}\left(z ; c_{0}, f_{0}\right)<p_{+}\left(z ; c_{0}+\delta_{0}, f_{0}\right)<0, \\
& p_{+}\left(z ; c_{0}-\delta_{0}, f_{0}\right)<0, \quad z \in(0,1) .
\end{aligned}
$$

Taking $\delta_{0} \in(0,1)$ small enough and applying Lemma 6 , we have

$$
0 \leq \zeta_{0}\left(c_{0}+\delta_{0}, f_{0}\right)<z_{*}
$$

Taking $\delta_{0} \in(0,1)$ smaller if necessary and taking $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ small enough, we also have

$$
\begin{equation*}
0 \leq \zeta_{0}\left(c_{0}+\delta_{0}, f\right)<z_{*} \tag{28}
\end{equation*}
$$

by Lemma 6 .
Now we have

$$
p_{+}\left(z_{*} ; c_{0}-\delta_{0}, f_{0}\right)<p_{+}\left(z_{*} ; c_{0}, f_{0}\right)<p_{+}\left(z_{*} ; c_{0}+\delta_{0}, f_{0}\right)<0
$$

Taking $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ small enough and applying Lemma 6 , we have

$$
p_{+}\left(z_{*} ; c_{0}-\delta_{0}, f\right)<p_{+}\left(z_{*} ; c_{0}, f_{0}\right)<p_{+}\left(z_{*} ; c_{0}+\delta_{0}, f\right)<0 .
$$

Recalling (18) and applying Lemma 7, we obtain

$$
\begin{align*}
& p_{+}\left(z ; c_{0}-\delta_{0}, f\right)<p_{+}\left(z ; c_{0}, f_{0}\right), \quad z \in\left(0, z_{*}\right] \tag{29}\\
& p_{+}\left(z ; c_{0}-\delta_{0}, f\right)<p_{+}\left(z ; c_{0}, f_{0}\right)<p_{+}\left(z ; c_{0}+\delta_{0}, f\right)<0 \\
& \quad z \in\left(\zeta_{0}\left(c_{0}+\delta_{0}, f\right), z_{*}\right]
\end{align*}
$$

and

$$
\begin{aligned}
p_{+}\left(\zeta_{0}\left(c_{0}+\delta_{0}, f\right) ; c_{0}-\delta_{0}, f\right)<p_{+}\left(\zeta_{0}(\right. & \left.\left.c_{0}+\delta_{0}, f\right) ; c_{0}, f_{0}\right) \\
& <p_{+}\left(\zeta_{0}\left(c_{0}+\delta_{0}, f\right) ; c_{0}+\delta_{0}, f\right)=0 .
\end{aligned}
$$

Using (29) and $p_{+}\left(0 ; c_{0}, f_{0}\right)=0$, we have

$$
\zeta_{0}\left(c_{0}-\delta_{0}\right) \leq 0
$$

and
(31) $p_{+}\left(z ; c_{0}-\delta_{0}, f\right)<0, \quad 0<z<1$,
(32) $p_{+}\left(1 ; c_{0}-\delta_{0}, f\right)=0$.

To prove Theorem 1 we have $\zeta=p_{+}\left(z ; c_{0}+\delta_{0}, f\right)$ in the (z, ζ) plane in Figure 1. We study $\zeta=p_{+}\left(z ; c_{0}-\delta_{0}, f\right)$ in the following lemma and
will show the existence of $\zeta=p_{+}(z ; c, f)$ with $p_{+}(0 ; c, f)=0$ for some $c \in\left[c_{0}-\delta_{0}, c_{0}+\delta_{0}\right]$.

Lemma 8. Assume $\left|s-c_{0}\right| \leq 1$ and

$$
\begin{equation*}
\left\|f-f_{0}\right\|_{C^{1}[0,1]} \leq 1 \tag{33}
\end{equation*}
$$

Take $M \geq 1$ large enough such that one has (19) for all $s \in\left[c_{0}-1, c_{0}+1\right]$ and for all f with (33). Assume that $\left|s-c_{0}\right|+\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ is small enough such that one has (28). Then there exists $\gamma \in[0,2 M]$ such that one has

$$
\gamma=\lim _{z \rightarrow 0}\left(-p_{+}\left(z ; c_{0}-\delta_{0}, f\right)\right)
$$

Proof. We define $W=W(y)$ by

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} y}\binom{W}{W^{\prime}}=\binom{W^{\prime}}{-\left(c_{0}-\delta_{0}\right) W^{\prime}-f(W)}, \quad y \in \mathbb{R}, \\
& W(0)=\alpha_{*}, \quad W^{\prime}(0)=p_{+}\left(\alpha_{*} ; c_{0}-\delta_{0}, f\right)<0 .
\end{aligned}
$$

Now we have

$$
W^{\prime}(y)=p_{+}\left(W(y) ; c_{0}-\delta_{0}, f\right), \quad 0 \leq y<\infty
$$

Using (29), $p_{+}\left(0 ; c_{0}, f_{0}\right)=0$ and Lemma 3, we have one of the following (i) or (ii).
(i) One has

$$
W^{\prime}(y)<0, \quad y \in[0, \infty)
$$

and

$$
\lim _{y \rightarrow \infty}\binom{W(y)}{W^{\prime}(y)}=\binom{0}{0}
$$

(ii) There exists $y_{0} \in(0, \infty)$ such that one has

$$
W\left(y_{0}\right)=0, \quad W^{\prime}\left(y_{0}\right)<0
$$

In Case (i), we can extend $p_{+}\left(z ; c_{0}-\delta_{0}, f\right)$ by

$$
p_{+}\left(W(y) ; c_{0}-\delta_{0}, f\right)=W^{\prime}(y), \quad y \in[0, \infty)
$$

and obtain

$$
\gamma=\lim _{z \rightarrow 0}\left(-p_{+}\left(z ; c_{0}-\delta_{0}, f\right)\right)=0
$$

In Case (ii), we can extend $p_{+}\left(z ; c_{0}-\delta_{0}, f\right)$ by

$$
p_{+}\left(W(y) ; c_{0}-\delta_{0}, f\right)=W^{\prime}(y), \quad y \in\left[0, y_{0}\right)
$$

and obtain

$$
\gamma=\lim _{z \rightarrow 0}\left(-p_{+}\left(z ; c_{0}-\delta_{0}, f\right)\right)=-W^{\prime}\left(y_{0}\right) \in(0,2 M] .
$$

This completes the proof.

Figure 1. Search $c \in\left[c_{0}-\delta_{0}, c_{0}+\delta_{0}\right]$ with $p_{+}(0 ; c, f)=0$.
Now we are ready to prove the main theorem.
Proof of Theorem 1. By the assumption we have (28). By the definition of $\zeta_{0}\left(c_{0}+\delta_{0}, f\right) \in\left[0, z_{*}\right)$, we have

$$
\begin{aligned}
& p_{+}\left(\zeta_{0}\left(c_{0}+\delta_{0}, f\right) ; c_{0}+\delta_{0}, f\right)=0 \\
& p_{+}\left(z ; c_{0}+\delta_{0}, f\right)<0, \quad \zeta_{0}\left(c_{0}+\delta_{0}, f\right)<z<1
\end{aligned}
$$

By Lemma 8, we have

$$
\lim _{z \rightarrow 0} p_{+}\left(z ; c_{0}-\delta_{0}, f\right)=-\gamma \in(-\infty, 0]
$$

Recalling (18) and applying Lemma 7 , we obtain $c \in\left[c_{0}-\delta_{0}, c_{0}+\delta_{0}\right]$ with

$$
\begin{aligned}
& \lim _{z \rightarrow 0} p_{+}(z ; c, f)=0 \\
& p_{+}(z ; c, f)<0, \quad 0<z<1
\end{aligned}
$$

See Figure 1. Thus $p_{+}(z ; c, f)$ satisfies (10). Defining U by (11), we find that (c, U) satisfies the profile equation (4). As $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero, we can take $\delta_{0} \in(0,1)$ arbitrarily small. Then c converges to c_{0}. From (11) and Lemma $6,\left\|U-U_{0}\right\|_{C(\mathbb{R})}$ converges to zero as $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero. By

$$
U^{\prime}(y)=p_{+}(U(y) ; s, f), \quad y \in \mathbb{R}
$$

and Lemma $6,\left\|U-U_{0}\right\|_{C^{1}(\mathbb{R})}$ converges to zero. Then $\left\|U-U_{0}\right\|_{C^{2}(\mathbb{R})}$ converges to zero as $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero. This completes the proof.

3. Auxiliary results

In this section, we assume

$$
\begin{equation*}
f_{0}^{\prime}(0)<0 \tag{34}
\end{equation*}
$$

instead of (5). We assume that f_{0} is of class C^{1} in an open interval including $[0,1]$ with $f_{0}(0)=0, f_{0}(1)=0$ and (34), and assume that there exist $U_{0} \in C^{2}(\mathbb{R})$ and $c_{0} \in \mathbb{R}$ that satisfy (6). We define

$$
g_{0}(u)=-f_{0}(1-u)
$$

in an open interval including $[0,1]$. Then we have

$$
g_{0}(0)=0, \quad g_{0}(1)=0, \quad g_{0}^{\prime}(1)<0
$$

Defining

$$
\begin{aligned}
& s_{0}=-c_{0} \\
& V_{0}(y)=1-U_{0}(-y), \quad y \in \mathbb{R}
\end{aligned}
$$

we have

$$
\begin{aligned}
& V_{0}^{\prime \prime}(y)+s_{0} V_{0}^{\prime}(y)+g_{0}\left(V_{0}(y)\right)=0, \quad y \in \mathbb{R} \\
& V_{0}^{\prime}(y)<0, \quad y \in \mathbb{R} \\
& V_{0}(-\infty)=1, \quad V_{0}(\infty)=0
\end{aligned}
$$

Let $C_{0}^{1}[0,1)$ be the set of functions in $C^{1}[0,1)$ whose supports lie in $[0,1)$.
Corollary 9. Let f_{0} be of class C^{1} in an open interval including $[0,1]$ with

$$
f_{0}(0)=0, \quad f_{0}(1)=0, \quad f_{0}^{\prime}(0)<0
$$

Assume that there exists $\left(c_{0}, U_{0}\right)$ that satisfies (6). Assume that $f-f_{0} \in$ $C_{0}^{1}[0,1)$ and let $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ be small enough. Then there exists (c, U) that satisfies (4). If $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero, converges to c_{0} and $\left\|U-U_{0}\right\|_{C^{2}(\mathbb{R})}$ goes to zero.

Proof. Combining Theorem 1 and the argument stated above, we have this corollary.

Now we consider the existence of a traveling front to (1) for a perturbed bistable or multistable nonlinear term f.

Corollary 10. Let f_{0} be of class C^{1} in an open interval including $[0,1]$ with $f_{0}(0)=0, f_{0}(1)=0, f_{0}^{\prime}(0)<0$ and $f_{0}^{\prime}(1)<0$. Assume that there exists $\left(c_{0}, U_{0}\right)$ that satisfies (6). Assume that $f-f_{0} \in C^{1}[0,1]$ and let $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ be small enough. Then there exists (c, U) that satisfies (4). If $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero, c converges to c_{0} and $\left\|U-U_{0}\right\|_{C^{2}(\mathbb{R})}$ goes to zero.

Proof. We have

$$
f(u)-f_{0}(u)=h_{-}(u)+h_{+}(u)
$$

in an open interval including $[0,1]$ with $h_{+} \in C_{0}^{1}(0,1]$ and $h_{-} \in C_{0}^{1}[0,1)$. As $\left\|f-f_{0}\right\|_{C^{1}[0,1]}$ goes to zero, we can take $h_{+} \in C_{0}^{1}(0,1]$ and $h_{-} \in C_{0}^{1}[0,1)$ such that $\left\|h_{+}\right\|_{C^{1}[0,1]}$ and $\left\|h_{-}\right\|_{C^{1}[0,1]}$ go to zero. First we apply Theorem 1 to $f_{0}(u)+h_{+}(u)$ and we obtain a solution to (4) for $f_{0}(u)+h_{+}(u)$. Then, we apply Corollary 9 to $f_{0}(u)+h_{+}(u)+h_{-}(u)$ and we obtain a solution to (4) for $f(u)=f_{0}(u)+h_{+}(u)+h_{-}(u)$. This completes the proof.

Corollary 10 asserts that a traveling front to (1) for a perturbed bistable or multistable nonlinear term is robust under perturbation in $C^{1}[0,1]$.

Acknowledgements

The authors express their sincere gratitude to referees for reading the manuscript carefully and for giving pieces of valuable advice. This work is supported by JSPS Grant-in-Aid for Scientific Research (C) Grant Number 20K03702.

References

[1] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, Partial Differential Equations and Related Topics, ed. J. A. Goldstein, Lecture Notes in Mathematics, 446 (1975), 5-49.
[2] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.
[3] A. Bonnet and F. Hamel, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118.
[4] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), no. 285, iv+190 pp.
[5] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
[6] A. Ducrot, T. Giletti and H. Matano, Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations, Trans. Amer. Math. Soc., $\mathbf{3 6 6}$ (2014), 5541-5566.
[7] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361.
[8] P. C. Fife and J. B. McLeod, A phase plane discussion of convergence to travelling fronts for nonlinear diffusion, Arch. Rational Mech. Anal., 75 (1980/81), 281-314.
[9] R. A. Fisher, The advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369.
[10] Ja. I. Kanel', Certain problems on equations in the theory of burning, Soviet. Math. Dokl., 2 (1961), 48-51.
[11] Ja. I. Kanel', Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, Mat. Sb. (N.S.), 59 (101) (1962), 245-288.
[12] A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, Moscow University Bulletin of Mathematics, 1 (1937), 1-25.
[13] J.A. Leach, D.J. Needham and A.L. Kay, The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates, Physica D, $\mathbf{1 6 7}$ (2002), 153-182.
[14] H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation, SIAM J. Math. Anal., 10 (1979), no. 4, 728-732.
[15] J. Nagumo, S. Yoshizawa and S. Arimoto, Bistable transmission lines, IEEE Trans. Circuit Theory, 12 (1965), 400-412.
[16] H. Ninomiya, "Invasion, Propagation and Diffusion," (in Japanese) Kyoritsu Shuppan Co., Ltd, Tokyo, 2014.
[17] P. Pelcé, "Dynamics of Curved Fronts," Academic Press, Inc, San Diego, 1988.
[18] P. Poláčik, "Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on \mathbb{R}," Mem. Amer. Math. Soc., 264, 1278, (2020).
[19] M. Taniguchi, Traveling fronts in perturbed multistable reaction-diffusion equations, Dynamical Systems and Differential Equations and Applications, Volume II, (Discrete and Continuous Dynamical Systems - Supplement 2011) 1368-1377, (2011), Am. Inst. Math. Sci., USA.
[20] M. Taniguchi, "Traveling Front Solutions in Reaction-Diffusion Equations," MSJ Memoirs, 39, Mathematical Society of Japan, Tokyo, 2021.
[21] A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, RI, 1994.
[22] Y. Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for n-degree Fisher-type equations, Discrete Contin. Dyn. Syst., 16 (2006), 47-66.
[23] Y. Wu and X. Xing, Stability of traveling waves with critical speeds for p-degree Fishertype equations, Discrete Contin. Dyn. Syst., 20 (2008), 1123-1139.

Wah Wah
Mathematics Department, Pathein University Pathein, Ayeyarwady Division, MYANMAR AND
Research Institute for Interdisciplinary Science, Okayama University 3-1-1, Tsushimanaka, Kita-ku, Okayama City, 700-8530, JAPAN

Masaharu Taniguchi
Research Institute for Interdisciplinary Science, Okayama University 3-1-1, Tsushimanaka, Kita-ku, Okayama City, 700-8530, JAPAN
e-mail address: taniguchi-m@okayama-u.ac.jp
(Received February 23, 2022)
(Accepted March 22, 2022)

