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TRAVELING FRONT SOLUTIONS FOR PERTURBED

REACTION-DIFFUSION EQUATIONS

Wah Wah and Masaharu Taniguchi

Abstract. Traveling front solutions have been studied for reaction-
diffusion equations with various kinds of nonlinear terms. One of the
interesting subjects is the existence and non-existence of them. In this
paper, we prove that, if a traveling front solution exists for a reaction-
diffusion equation with a nonlinear term, it also exists for a reaction-
diffusion equation with a perturbed nonlinear term. In other words, a
traveling front is robust under perturbation on a nonlinear term.

1. Introduction

In this paper we study a reaction-diffusion equation

∂u

∂t
=

∂2u

∂x2
+ f(u), x ∈ R, t > 0,(1)

u(x, 0) = u0(x), x ∈ R,(2)

where u0 is a given bounded and uniformly continuous function from R to
R. Now f is of class C1 in an open interval including [0, 1] and satisfies
f(0) = 0, f(1) = 0 and

(3) f ′(1) < 0.

Equation (1) with such a nonlinear term f appears in many models, and
it has often a traveling front solution. See [1, 2, 7, 8, 21, 16, 20] for a
general theory of traveling front solutions. Equation (1) is called bistable or
multistable if we assume f ′(0) < 0 in addition. If f(u) = −u(u−a)(u−1) for
a ∈ (0, 1), (1) is called the Nagumo equation or the Allen–Cahn equation.
See [15, 1, 2, 5, 7, 19, 6, 18, 20] for traveling fronts of (1) for bistable or
multistable nonlinear terms. Traveling fronts of (1) for the Fisher–KPP
equations have been studied. A typical nonlinear term is f(u) = u(1 − u).
See [9, 12, 14, 4, 21] for traveling fronts of (1) for the Fisher–KPP equations.
For traveling fronts of (1) for combustion models, see [10, 11, 3, 17] for
instance. For traveling fronts of (1) for degenerate monostable nonlinear
terms, see [13, 22, 23].
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If U ∈ C2(R) and c ∈ R satisfy

(4)

{
U ′′(y) + cU ′(y) + f(U(y)) = 0, y ∈ R,
U(−∞) = 1, U(∞) = 0,

u(x, t) = U(x− ct) becomes a traveling front solution to (1). We call (4) the
profile equation of (c, U), if it exists. In this case we necessarily have

U ′(y) < 0, y ∈ R

by using [7, Lemma 2.1]. Assume that f0 is of class C1 in an open interval
including [0, 1] with f0(0) = 0, f0(1) = 0 and

(5) f ′
0(1) < 0,

and assume that there exist U0 ∈ C2(R) and c0 ∈ R that satisfy

(6)

{
U ′′
0 (y) + c0U

′
0(y) + f0(U0(y)) = 0, y ∈ R,

U0(−∞) = 1, U0(∞) = 0.

Then we necessarily have

(7) U ′
0(y) < 0, y ∈ R.

Assume that f − f0 ∈ C1
0 (0, 1]. Here C1

0 (0, 1] is the set of functions in
C1(0, 1] whose supports lie in (0, 1] . The following is the main assertion in
this paper.

Theorem 1. Assume that there exists (c0, U0) that satisfies (6). Assume
that f − f0 ∈ C1

0 (0, 1] and let ∥f − f0∥C1[0,1] be small enough. Then there
exists (c, U) that satisfies (4). If ∥f − f0∥C1[0,1] goes to zero, c converges to
c0 and ∥U − U0∥C2(R) goes to zero.

We write the proof of Theorem 1 in Section 2. See Figure 1 in Section 2 for
an idea of the proof. Theorem 1 asserts that a traveling front is robust under
perturbation on a nonlinear term by assuming (5). If we assume f ′

0(0) < 0
in addition, Theorem 1 shows that traveling fronts for bistable or multi-
stable nonlinear terms are robust under perturbations. See Corollary 10 in
Section 3 for this argument.

For the robustness of traveling fronts, one can see [7, 8, 1, 2, 19] for in-
stance. However, the existence of (c, U) to (4) is an open problem as far as
the authors know if one assumes the existence of (c0, U0) to (6) without as-
suming (5) and just assumes that ∥f−f0∥C1[0,1] is small enough. Theorem 1
might be a new step to attack this general robustness problem of traveling
fronts.
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2. Proof of Theorem 1

In view of (4), we search (c, U) that satisfies

(8)

d

dy

(
U
U ′

)
=

(
U ′

−cU ′ − f(U)

)
, y ∈ R,

U ′(y) < 0, y ∈ R,
U(−∞) = 1, U(∞) = 0.

Equations (4) and (8) are equivalent. Using (6), we have (c0, U0) that sat-
isfies

(9)

d

dy

(
U0

U ′
0

)
=

(
U ′
0

−c0U
′
0 − f0(U0)

)
, y ∈ R,

U ′
0(y) < 0, y ∈ R,

U0(−∞) = 1, U0(∞) = 0.

We study the following ordinary differential equation

(10)


p′(z) = −c− f(z)

p(z)
, 0 < z < 1,

p(z) < 0, 0 < z < 1,
p(0) = 0, p(1) = 0.

We write the solution of (10) as p(z; c, f) if it exists. There exists a solution
(c, U) to (8) if and only if p(z; c, f) exists. Indeed, if (c, U) satisfies (8), we
define p by p(U(y)) = U ′(y) for y ∈ R, and have (10). If p(z; c, f) satisfies
(10), we define

(11) y =

∫ U

a

dz

p(z)
, 0 < z < 1,

and have (8). Here a is an arbitrarily given number. Similarly, there exists
a solution (c0, U0) to (9) if and only if p(z; c0, f0) exists. By the standing
assumption, we have p(z; c0, f0) that satisfies

(12)


pz(z; c0, f0) = −c0 −

f0(z)

p(z; c0, f0)
, 0 < z < 1,

p(z; c0, f0) < 0, 0 < z < 1,
p(0; c0, f0) = 0, p(1; c0, f0) = 0.

Now we choose α0 ∈ (0, 1) such that we have

f0(u) > 0 if u ∈ [α0, 1).

Also we choose α ∈ (0, 1) such that we have

f(u) > 0 if u ∈ [α, 1).



128 WAH WAH AND M. TANIGUCHI

Now we can have |α− α0| → 0 as ∥f − f0∥C1[0,1] → 0. We set

(13) α∗ =
1 + α0

2
.

It suffices to assume that ∥f −f0∥C1[0,1] is small enough and we always have

α < α∗.

Now we use the following assertion.

Lemma 2 ([20]). For every s ∈ R there exists p+(z; s, f) defined for z ∈
[α, 1], such that one has

(p+)z (z; s, f) = −s− f(z)

p+(z; s, f)
, z ∈ (α, 1),(14)

p+(z; s, f) < 0, z ∈ [α, 1),(15)

p+(1; s, f) = 0,(16)

(p+)z (1; s, f) =
−s+

√
s2 − 4f ′(1)

2
> 0.(17)

If s1 < s2, one has

p+(z; s1, f) < p+(z; s2, f), z ∈ [α, 1).

Proof. This assertion follows from [20, Theorem 1.1] and its proof. □

Since f − f0 ∈ C1
0 (0, 1], we can choose z∗ ∈ (0, 1) with

(18) f(z) = f0(z) if 0 ≤ z ≤ z∗.

Let s ∈ R be arbitrarily given and let p+(z; s, f) be given by Lemma 2.
We choose M ≥ 1 large enough such that we have

(19) |s|+
∥f∥C[0,1]

M
≤ M.

In Lemma 2, p+(z; s, f) is defined only on [α, 1]. We extend p+(z; s, f)
for all possible z, say z ∈ (ζ0(s, f), 1). Then we have

ζ0(s, f) ≤ α < α∗.
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Since f is defined in an open interval including [0, 1], ζ0(s, f) can be a
negative value. Now we have

(p+)z (z; s, f) = −s− f(z)

p+(z; s, f)
, z ∈ (ζ0(s, f), 1),(20)

p+(z; s, f) < 0, z ∈ (ζ0(s, f), 1),

p+(1; s, f) = 0,

(p+)z (1; s, f) =
−s+

√
s2 − 4f ′(1)

2
> 0.

Now we assert the following lemma.

Lemma 3. Let s ∈ R be arbitrarily given and let M ≥ 1 satisfy (19). Let
p+(z; s, f) be given by Lemma 2 and one extends p+(z; s, f) for all possible
z, say z ∈ (ζ0(s, f), 1). Then one has

(21) 0 < −p+(z; s, f) < 2M, ζ0(s, f) < z < 1.

One has
p+(0; s, f) < 0, ζ0(s, f) < 0,

or one has

(22) ζ0(s, f) ∈ [0, α), p+(ζ0(s, f); s, f) = 0.

Proof. Assume that there exists η0 ∈ (0, 1) with

−p+(η0; s, f) ≥ 2M.

Then we can define η1 ∈ (η0, 1] by

η1 = sup{η ∈ (η0, 1) | − p+(z; s, f) ≥ M for all z ∈ [η0, η]}.
Using p+(1; s, f) = 0, we have 0 < η0 < η1 < 1. Using (19) and (20), we
obtain

− p+(η1; s, f)

=− p+(η0; s, f)−
∫ 1

0
(p+)z (θη1 + (1− θ)η0; s, f) dθ (η1 − η0)

≥2M −M(η1 − η0) > M.

This contradicts the definition of η1. Now we obtain (21).
If ζ0(s, f) < 0, we have p+(0; s, f) < 0. It suffices to prove (22) by

assuming ζ0(s, f) ≥ 0. Then necessarily we have ζ0(s, f) ∈ [0, α). Assume
that (22) does not hold true. Then we have

β = lim sup
z→ζ0(s,f)

(−p+(z; s, f)) ∈ (0, 2M ].
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Using (20), we obtain

(p+)z (ζ0(s, f); s, f) = −s+
f(0)

β
.

Since the right-hand side is bounded, it is bounded on a neighborhood of
(ζ0(s, f),−β) and we can extend p+(z; s, f) for z ∈ (ζ0(s, f) − δ, ζ0(s, f))
with some δ > 0 that is small enough. This contradicts the definition of
ζ0(s, f). Thus we obtain (22) and complete the proof. □

Now we have

ζ0(c0, f0) = 0,

p+(z; c0, f0) = p(z; c0, f0), 0 < z < 1.(23)

Now we assert the following proposition.

Proposition 4. Let s ∈ R be arbitrarily given. Then one has

p+(z; s, f)− p+(z; c0, f0)

=

∫ 1

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < 1.

Proof. We put

w(z) = p+(z; s, f)− p+(z; c0, f0)

and have

w′(z) = −s+ c0 −
f(z)

p+(z; s, f)
+

f0(z)

p+(z; c0, f0)

for ζ0(s, f) < z < 1. Now we have

− f(z)

p+(z; s, f)
+

f0(z)

p+(z; c0, f0)
=

−f(z)p+(z; c0, f0) + f0(z)p+(z; s, f)

p+(z; s, f)p+(z; c0, f0)

and

− f(z)p+(z; c0, f0) + f0(z)p+(z; s, f)

=− f(z) (p+(z; c0, f0)− p+(z; s, f))− f(z)p+(z; s, f) + f0(z)p+(z; s, f)

=f(z)w(z)− (f(z)− f0(z)) p+(z; s, f).

Then we obtain

w′(z)− f(z)

p+(z; s, f)p+(z; c0, f0)
w(z) = −s+ c0 −

f(z)− f0(z)

p+(z; c0, f0)
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for ζ0(s, f) < z < 1. Then we have

d

dz

(
w(z) exp

(∫ 1

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

))
=

(
w′(z)− f(z)

p+(z; s, f)p+(z; c0, f0)
w(z)

)
× exp

(∫ 1

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
=

(
−s+ c0 −

f(z)− f0(z)

p+(z; c0, f0)

)
exp

(∫ 1

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
.

Let θ′ ∈ (z, 1) be arbitrarily given. Integrating the both sides of the equality
stated above over (z, θ′), we have

− w(z) exp

(∫ 1

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
+ w(θ′) exp

(∫ 1

θ′

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
=−

∫ θ′

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
exp

(∫ 1

z′

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < θ′. Now we find

w(z) = w(θ′) exp

(
−
∫ θ′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
(24)

+

∫ θ′

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
× exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < θ′. Using

f(ζ) > 0 if ζ ∈ (α∗, 1),

p+(ζ; s, f) < 0, p+(ζ; c0, f0) < 0, ζ0(s, f) < ζ < 1,

we have

lim
θ′→1

w(θ′) exp

(
−
∫ θ′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
= 0
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and

lim
θ′→1

∫ θ′

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
× exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

=

∫ 1

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
× exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < 1. Passing to the limit of θ′ → 1 in (24), we obtain

w(z) =∫ 1

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < 1. This completes the proof. □

Now we take ε0 ∈ (0, 1− α∗) small enough such that we have

(25) (p+)z (z; c0, f0) >
1

2
(p+)z (1; c0, f0) > 0 if z ∈ (1− ε0, 1).

We show that |p+(α∗; s, f)− p+(α∗; c0, f0)| converges to 0 as |s − c0| +
∥f − f0∥C1[0,1] goes to 0 in the following lemma.

Lemma 5. Let α∗ ∈ (0, 1) be as in (13) and let ε0 ∈ (0, 1−α∗) satisfy (25).
Then one has

sup
z∈[α∗,1]

|p+(z; s, f)− p+(z; c0, f0)|

≤(1− α∗)|s− c0|+
(1− ε0 − α∗)∥f − f0∥C[0,1]

minz′∈[α∗,1−ε0] (−p+(z′; c0, f0))

+
ε0∥f − f0∥C1[0,1]

minζ′∈[1−ε0,1] |(p+)z(ζ ′; c0, f0)|
.

Proof. We have

f(z) > 0 if z ∈ [α∗, 1),

p+(z; s, f) < 0 if z ∈ [α∗, 1),

p+(z; c0, f0) < 0 if z ∈ (0, 1).
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Then, using Proposition 4, we have

max
z∈[α∗,1]

|p+(z; s, f)− p+(z; c0, f0)| ≤
∫ 1

α∗

(
|s− c0|+

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣) dz′.

Now we find ∫ 1

α∗

(
|s− c0|+

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣) dz′(26)

≤ (1− α∗) |s− c0|+
∫ 1

α∗

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ dz′.
If z′ ∈ (α∗, 1− ε0], we have∣∣∣∣f(z′)− f0(z

′)

p+(z′; c0, f0)

∣∣∣∣ ≤ ∥f − f0∥C[0,1]

minz′∈[α∗,1−ε0] (−p+(z′; c0, f0))

and thus∫ 1−ε0

α∗

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ dz′ ≤ (1− ε0 − α∗)∥f − f0∥C[0,1]

minz′∈[α∗,1−ε0] (−p+(z′; c0, f0))
.

If z′ ∈ (1− ε0, 1), we have

f(z′)− f0(z
′)

p+(z′; c0, f0)
=

f ′(ζ ′)− f ′
0(ζ

′)

(p+)z(ζ ′; c0, f0)

for some ζ ′ ∈ (z′, 1). Thus, if z′ ∈ (1− ε0, 1), we find∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ ≤ ∥f − f0∥C1[0,1]

minζ′∈[1−ε0,1] |(p+)z(ζ ′; c0, f0)|
and ∫ 1

1−ε0

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ dz′ ≤ ε0∥f − f0∥C1[0,1]

minζ′∈[1−ε0,1] |(p+)z(ζ ′; c0, f0)|
.

Then we obtain∫ 1

α∗

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ dz′
≤

(1− ε0 − α∗)∥f − f0∥C[0,1]

minz′∈[α∗,1−ε0] (−p+(z′; c0, f0))
+

ε0∥f − f0∥C1[0,1]

minζ′∈[1−ε0,1] |(p+)z(ζ ′; c0, f0)|
.

Combining this inequality and (26), we complete the proof. □

Lemma 5 asserts that |p+(z; s, f)− p+(z; c0, f0)| converges to 0 on an
interval [α∗, 1] as |s− c0|+ ∥f − f0∥C1[0,1] goes to 0. Does this convergence
hold true for every compact interval in (0, 1]? To answer this question, we
assert the following lemma.
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Lemma 6. Let s ∈ R. Let z∗ ∈ (0, 1) satisfy (18) and let z1 ∈ (0, z∗) be
arbitrarily given. As |s− c0|+ ∥f − f0∥C1[0,1] goes to zero, ζ0(s, f) converges
to zero and

sup
z∈[z1,1]

|p+(z; s, f)− p+(z; c0, f0)|

converges to zero.

Proof. We will prove ζ0(s, f) < z1 if |s−c0|+∥f−f0∥C1[0,1] is small enough.
Let (c0, U0) satisfy (9). There exists −∞ < y0 < y1 < ∞ such that we have

U0(y0) = α∗, U0(y1) =
z1
2
.

For s ∈ R, let V = V (y) satisfy

(27)
d

dy

(
V
V ′

)
=

(
V ′

−sV ′ − f(V )

)
, y ∈ R

with
V (y0) = α∗, V ′(y0) = p+(α∗; s, f).

Now we define

w(y) =

(
w1(y)
w2(y)

)
=

(
V (y)− U0(y)
V ′(y)− U ′

0(y)

)
, y ∈ R.

Then we have

d

dy

(
w1

w2

)
=

(
w2

−sV ′ + c0U
′
0 − f(V ) + f0(U0)

)
, y ∈ R.

Now we have

f(V )−f(U0) = [f (θV + (1− θ)U0)]
θ=1
θ=0 =

∫ 1

0
f ′(θV +(1−θ)U0) dθ (V −U0)

for y ∈ R. Now we define

h(y) =

∫ 1

0
f ′(θV (y) + (1− θ)U0(y)) dθ, y ∈ R,

A(y) =

(
0 −1

h(y) s

)
, y ∈ R,

g(y) = −
(

0
(s− c0)U

′
0(y) + f(U0(y))− f0(U0(y))

)
, y ∈ R.

Now we have

sup
y∈R

|A(y)| ≤
√
1 + s2 + ∥f∥2

C1[0,1]
.

Here

|A| = sup
x2
1+x2

2=1

∣∣∣∣A(x1x2
)∣∣∣∣
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for a 2× 2 real matrix A. Then, we obtain

w′(y) +A(y)w(y) = g(y), y ∈ R
and

w(y) = w(y0) exp

(
−
∫ y

y0

A(y′)dy′
)
+

∫ y

y0

exp

(
−
∫ y

y′
A(y′′) dy′′

)
g(y′) dy′

for y ∈ R. Now we have

sup
y∈R

|g(y)| ≤ |s− c0|max
η∈R

∣∣U ′
0(η)

∣∣+ ∥f − f0∥C[0,1].

Thus, as |s− c0|+ ∥f − f0∥C[0,1] goes to zero,

max
y∈[y0,y1]

|w(y)|

converges to zero. Taking |s− c0|+ ∥f − f0∥C[0,1] small enough, we have

|w(y1)| <
z1
4
,

max
y∈[y0,y1]

|w(y)| < 1

2
min

y∈[y0,y1]

(
−U ′

0(y)
)
.

We define p( · ; s, f) by
p(V (y); s, f) = V ′(y), y0 ≤ y < y1.

Then we have

V (y1) <
z1
2

+
z1
4

=
3

4
z1

and

pz(z; s, f) = −s− f(z)

p(z; s, f)
,

3

4
z1 < z ≤ α∗,

p(z; s, f) < 0,
3

4
z1 < z ≤ α∗,

p(α∗; s, f) = p+(α∗; s, f) < 0.

This p(z; s, f) is an extension of p+(z; s, f) given by Lemma 2. Thus we
obtain ζ0(s, f) < z1. Combining Lemma 5 and the argument stated above,
we have

sup
z∈[z1,1]

|p+(z; s, f)− p+(z; c0, f0)| → 0

as |s− c0|+ ∥f − f0∥C1[0,1] goes to zero. This completes the proof. □

Lemma 2 asserts that p+(z; s, f) is strictly monotone increasing in s on
[α∗, 1). In the following lemma, we assert that p+(z; s, f) is strictly monotone
increasing in s on the whole interval (0, 1).
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Lemma 7. Let −∞ < s1 < s2 < ∞ be arbitrarily given. Let zinit ∈ (0, 1)
be arbitrarily given. Assume that p+(zinit; s1, f) and p+(zinit; s2, f) exist and
satisfy

p+(zinit; s1, f) < p+(zinit; s2, f) < 0.

Then one has

ζ0(s1, f) ≤ ζ0(s2, f) < zinit

and

p+(z; s1, f) < p+(z; s2, f) < 0 for all z ∈ (ζ0(s2, f), zinit].

Proof. We put

q(z) = p+(z; s2, f)− p+(z; s1, f), max{ζ0(s2, f), ζ0(s1, f)} ≤ z ≤ zinit.

Then we have

q′(z) = −(s2 − s1)−
f(z)

p+(z; s2, f)
+

f(z)

p+(z; s1, f)
,

max{ζ0(s2, f), ζ0(s1, f)} < z < zinit,

q(zinit) > 0.

Consequently we get

d

dz

(
q(z) exp

(
−
∫ zinit

z

f(ζ)

p+(ζ; s1, f)p+(ζ; s2, f)
dζ

))
=− (s2 − s1) exp

(
−
∫ zinit

z

f(ζ)

p+(ζ; s1, f)p+(ζ; s2, f)
dζ

)
< 0

for

max{ζ0(s2, f), ζ0(s1, f)} < z < zinit.

Then we find

q(z) exp

(
−
∫ zinit

z

f(ζ)

p+(ζ; s1, f)p+(ζ; s2, f)
dζ

)
> 0,

max{ζ0(s2, f), ζ0(s1, f)} < z < zinit.

Thus we obtain

q(z) > 0, max{ζ0(s2, f), ζ0(s1, f)} < z < zinit.

Then, using q(zinit) > 0, we obtain

q(z) = p+(z; s2, f)− p+(z; s1, f) > 0, max{ζ0(s2, f), ζ0(s1, f)} < z < zinit.

Now we obtain ζ0(s1, f) ≤ ζ0(s2, f). This completes the proof. □
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Let δ0 ∈ (0, 1) be arbitrarily given. We have ζ0(c0 + δ0, f0) ∈ [0, 1) with

p+(ζ0(c0 + δ0, f0); c0 + δ0, f0) = 0,

p+(z; c0 − δ0, f0) < p+(z; c0, f0) < p+(z; c0 + δ0, f0) < 0,

z ∈ (ζ0(c0 + δ0, f0), 1),

p+(z; c0 − δ0, f0) < 0, z ∈ (0, 1).

Taking δ0 ∈ (0, 1) small enough and applying Lemma 6, we have

0 ≤ ζ0(c0 + δ0, f0) < z∗.

Taking δ0 ∈ (0, 1) smaller if necessary and taking ∥f − f0∥C1[0,1] small
enough, we also have

(28) 0 ≤ ζ0(c0 + δ0, f) < z∗

by Lemma 6.

Now we have

p+(z∗; c0 − δ0, f0) < p+(z∗; c0, f0) < p+(z∗; c0 + δ0, f0) < 0.

Taking ∥f − f0∥C1[0,1] small enough and applying Lemma 6, we have

p+(z∗; c0 − δ0, f) < p+(z∗; c0, f0) < p+(z∗; c0 + δ0, f) < 0.

Recalling (18) and applying Lemma 7, we obtain

p+(z; c0 − δ0, f) < p+(z; c0, f0), z ∈ (0, z∗],(29)

p+(z; c0 − δ0, f) < p+(z; c0, f0) < p+(z; c0 + δ0, f) < 0,

z ∈ (ζ0(c0 + δ0, f), z∗]

and

p+(ζ0(c0 + δ0, f); c0 − δ0, f) < p+(ζ0(c0 + δ0, f); c0, f0)

< p+(ζ0(c0 + δ0, f); c0 + δ0, f) = 0.

Using (29) and p+(0; c0, f0) = 0, we have

ζ0(c0 − δ0) ≤ 0

and

(p+)z (z; c0 − δ0, f) = −(c0 − δ0)−
f(z)

p+(z; c0 − δ0, f)
, 0 < z < 1,(30)

p+(z; c0 − δ0, f) < 0, 0 < z < 1,(31)

p+(1; c0 − δ0, f) = 0.(32)

To prove Theorem 1 we have ζ = p+(z; c0 + δ0, f) in the (z, ζ) plane
in Figure 1. We study ζ = p+(z; c0 − δ0, f) in the following lemma and
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will show the existence of ζ = p+(z; c, f) with p+(0; c, f) = 0 for some
c ∈ [c0 − δ0, c0 + δ0].

Lemma 8. Assume |s− c0| ≤ 1 and

(33) ∥f − f0∥C1[0,1] ≤ 1.

Take M ≥ 1 large enough such that one has (19) for all s ∈ [c0 − 1, c0 + 1]
and for all f with (33). Assume that |s−c0|+∥f−f0∥C1[0,1] is small enough
such that one has (28). Then there exists γ ∈ [0, 2M ] such that one has

γ = lim
z→0

(−p+(z; c0 − δ0, f)) .

Proof. We define W = W (y) by

d

dy

(
W
W ′

)
=

(
W ′

−(c0 − δ0)W
′ − f(W )

)
, y ∈ R,

W (0) = α∗, W ′(0) = p+(α∗; c0 − δ0, f) < 0.

Now we have

W ′(y) = p+(W (y); c0 − δ0, f), 0 ≤ y < ∞.

Using (29), p+(0; c0, f0) = 0 and Lemma 3, we have one of the following
(i) or (ii).

(i) One has
W ′(y) < 0, y ∈ [0,∞)

and

lim
y→∞

(
W (y)
W ′(y)

)
=

(
0
0

)
.

(ii) There exists y0 ∈ (0,∞) such that one has

W (y0) = 0, W ′(y0) < 0.

In Case (i), we can extend p+(z; c0 − δ0, f) by

p+(W (y); c0 − δ0, f) = W ′(y), y ∈ [0,∞)

and obtain
γ = lim

z→0
(−p+(z; c0 − δ0, f)) = 0.

In Case (ii), we can extend p+(z; c0 − δ0, f) by

p+(W (y); c0 − δ0, f) = W ′(y), y ∈ [0, y0)

and obtain

γ = lim
z→0

(−p+(z; c0 − δ0, f)) = −W ′(y0) ∈ (0, 2M ].

This completes the proof. □
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z

ζ

ζ=p(z;c ,f )

ζ=p (z;c +δ  , f)

0 0

0 0+

ζ=p (z;c -δ  , f)0 0+

0 1
ζ  (c +δ  ,f)00

-γ

increasesspeed:

0

Figure 1. Search c ∈ [c0 − δ0, c0 + δ0] with p+(0; c, f) = 0.

Now we are ready to prove the main theorem.

Proof of Theorem 1. By the assumption we have (28). By the definition of
ζ0(c0 + δ0, f) ∈ [0, z∗), we have

p+(ζ0(c0 + δ0, f); c0 + δ0, f) = 0.

p+(z; c0 + δ0, f) < 0, ζ0(c0 + δ0, f) < z < 1.

By Lemma 8, we have

lim
z→0

p+(z; c0 − δ0, f) = −γ ∈ (−∞, 0].

Recalling (18) and applying Lemma 7, we obtain c ∈ [c0 − δ0, c0 + δ0] with

lim
z→0

p+(z; c, f) = 0,

p+(z; c, f) < 0, 0 < z < 1.

See Figure 1. Thus p+(z; c, f) satisfies (10). Defining U by (11), we find
that (c, U) satisfies the profile equation (4). As ∥f − f0∥C1[0,1] goes to zero,
we can take δ0 ∈ (0, 1) arbitrarily small. Then c converges to c0. From (11)
and Lemma 6, ∥U−U0∥C(R) converges to zero as ∥f−f0∥C1[0,1] goes to zero.
By

U ′(y) = p+(U(y); s, f), y ∈ R
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and Lemma 6, ∥U − U0∥C1(R) converges to zero. Then ∥U − U0∥C2(R) con-
verges to zero as ∥f − f0∥C1[0,1] goes to zero. This completes the proof. □

3. Auxiliary results

In this section, we assume

(34) f ′
0(0) < 0

instead of (5). We assume that f0 is of class C
1 in an open interval including

[0, 1] with f0(0) = 0, f0(1) = 0 and (34), and assume that there exist
U0 ∈ C2(R) and c0 ∈ R that satisfy (6). We define

g0(u) = −f0(1− u)

in an open interval including [0, 1]. Then we have

g0(0) = 0, g0(1) = 0, g′0(1) < 0.

Defining

s0 = −c0,

V0(y) = 1− U0(−y), y ∈ R,

we have

V ′′
0 (y) + s0V

′
0(y) + g0(V0(y)) = 0, y ∈ R,

V ′
0(y) < 0, y ∈ R,

V0(−∞) = 1, V0(∞) = 0.

Let C1
0 [0, 1) be the set of functions in C1[0, 1) whose supports lie in [0, 1).

Corollary 9. Let f0 be of class C1 in an open interval including [0, 1] with

f0(0) = 0, f0(1) = 0, f ′
0(0) < 0.

Assume that there exists (c0, U0) that satisfies (6). Assume that f − f0 ∈
C1
0 [0, 1) and let ∥f − f0∥C1[0,1] be small enough. Then there exists (c, U)

that satisfies (4). If ∥f − f0∥C1[0,1] goes to zero, c converges to c0 and
∥U − U0∥C2(R) goes to zero.

Proof. Combining Theorem 1 and the argument stated above, we have this
corollary. □

Now we consider the existence of a traveling front to (1) for a perturbed
bistable or multistable nonlinear term f .
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Corollary 10. Let f0 be of class C1 in an open interval including [0, 1] with
f0(0) = 0, f0(1) = 0, f ′

0(0) < 0 and f ′
0(1) < 0. Assume that there exists

(c0, U0) that satisfies (6). Assume that f−f0 ∈ C1[0, 1] and let ∥f−f0∥C1[0,1]

be small enough. Then there exists (c, U) that satisfies (4). If ∥f −f0∥C1[0,1]

goes to zero, c converges to c0 and ∥U − U0∥C2(R) goes to zero.

Proof. We have
f(u)− f0(u) = h−(u) + h+(u),

in an open interval including [0, 1] with h+ ∈ C1
0 (0, 1] and h− ∈ C1

0 [0, 1). As
∥f − f0∥C1[0,1] goes to zero, we can take h+ ∈ C1

0 (0, 1] and h− ∈ C1
0 [0, 1)

such that ∥h+∥C1[0,1] and ∥h−∥C1[0,1] go to zero. First we apply Theorem 1
to f0(u) + h+(u) and we obtain a solution to (4) for f0(u) + h+(u). Then,
we apply Corollary 9 to f0(u) + h+(u) + h−(u) and we obtain a solution to
(4) for f(u) = f0(u) + h+(u) + h−(u). This completes the proof. □

Corollary 10 asserts that a traveling front to (1) for a perturbed bistable
or multistable nonlinear term is robust under perturbation in C1[0, 1].
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