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Abstract 

Background: Texture features reflecting tumour heterogeneity enable us to investi-
gate prognostic factors. The R package ComBat can harmonize the quantitative texture 
features among several positron emission tomography (PET) scanners. We aimed to 
identify prognostic factors among harmonized PET radiomic features and clinical infor-
mation from pancreatic cancer patients who underwent curative surgery.

Methods: Fifty-eight patients underwent preoperative enhanced dynamic computed 
tomography (CT) scanning and fluorodeoxyglucose PET/CT using four PET scanners. 
Using LIFEx software, we measured PET radiomic parameters including texture fea-
tures with higher order and harmonized these PET parameters. For progression-free 
survival (PFS) and overall survival (OS), we evaluated clinical information, including 
age, TNM stage, and neural invasion, and the harmonized PET radiomic features based 
on univariate Cox proportional hazard regression. Next, we analysed the prognostic 
indices by multivariate Cox proportional hazard regression (1) by using either signifi-
cant (p < 0.05) or borderline significant (p = 0.05–0.10) indices in the univariate analysis 
(first multivariate analysis) or (2) by using the selected features with random forest 
algorithms (second multivariate analysis). Finally, we checked these multivariate results 
by log-rank test.

Results: Regarding the first multivariate analysis for PFS after univariate analysis, age 
was the significant prognostic factor (p = 0.020), and MTV and GLCM contrast were 
borderline significant (p = 0.051 and 0.075, respectively). Regarding the first multivari-
ate analysis of OS, neural invasion, Shape sphericity and GLZLM LZLGE were significant 
(p = 0.019, 0.042 and 0.0076). In the second multivariate analysis, only MTV was signifi-
cant (p = 0.046) for PFS, whereas GLZLM LZLGE was significant (p = 0.047), and Shape 
sphericity was borderline significant (p = 0.088) for OS. In the log-rank test, age, MTV 
and GLCM contrast were borderline significant for PFS (p = 0.08, 0.06 and 0.07, respec-
tively), whereas neural invasion and Shape sphericity were significant (p = 0.03 and 
0.04, respectively), and GLZLM LZLGE was borderline significant for OS (p = 0.08).

Conclusions: Other than the clinical factors, MTV and GLCM contrast for PFS and 
Shape sphericity and GLZLM LZLGE for OS may be prognostic PET parameters. A pro-
spective multicentre study with a larger sample size may be warranted.
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Background
Patients with pancreatic cancer have a low survival rate (Siegel et al. 2022). In 2022, pancre-
atic cancer was estimated to occur in 62,210 patients in the USA with an estimated 49,830 
deaths (Siegel et al. 2022). In fewer than half of the cases, patients can undergo curative R0 
complete surgery, which is essential for prolonged survival (Strobel et al. 2019). However, 
the recurrence rate even after curative surgery is relatively high. Thus, the classification 
of patients with curative surgery into groups with prolonged survival and short survival is 
essential in precision medicine for choosing the best treatment option. It might be possible 
to classify patients according to the recurrence probability to select close monitoring after 
surgery or the completion of adjuvant chemotherapy.

Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/
CT) is an essential imaging modality for diagnosing the tumour stage to estimate the prob-
ability of recurrence and to evaluate tumour remission after chemotherapy (Ha et al. 2017; 
Beukinga et  al. 2017). In addition to conventional quantitative indices, including stand-
ardized uptake value (SUV), metabolic tumour volume (MTV), and total lesion glycolysis 
(TLG), textural features are valuable tools for assessing tumour heterogeneity and predict-
ing patient outcomes (Ha et al. 2017; Beukinga et al. 2017).

However, textural features are sensitive to differences between PET scanners, PET algo-
rithms, parameters of acquisition and reconstruction, as well as the voxel size, i.e. the “batch 
effect” (Orlhac et al. 2018; Goh et al. 2017). Mitigation of the batch effect is critical, mainly 
when multiple PET scanners are used (Orlhac et al. 2018). Orlhac et al. successfully miti-
gated the batch effect and normalized textural features with the R package ComBat using 
empirical Bayes methods, as well as the LIFEx freeware for radiomic feature calculation 
(Orlhac et al. 2018; Nioche et al. 2018; Johnson et al. 2007; Fortin et al. 2017, 2018). ComBat 
is robust even for small sample sizes (Johnson et al. 2007) on the condition that each group 
difference is not substantial and that the group design is not unbalanced (Goh et al. 2017; 
Nygaard et al. 2016). ComBat has been successfully applied in several studies of FDG PET/
CT texture analysis (Dissaux et al. 2020; Nakajo et al. 2021).

In textural analyses of FDG PET/CT images, several studies demonstrated the prognostic 
utility of textural features of pancreatic cancer (Cui et al. 2016; Belli et al. 2018; Yoo et al. 
2020; Kim and Kim 2021; Wei et al. 2021; Xing et al. 2021; Toyama et al. 2020). Among 
them, however, reports are rare that comprised only patients with pancreatic cancer who 
underwent complete curative surgery and used a harmonization method for radiomic 
features.

This study aimed to identify factors including harmonized PET radiomic features and 
clinical information significantly associated with the prognosis of pancreatic cancer patients 
who underwent curative surgery.

Materials and methods
Patients

We retrospectively searched the PET database of our institution and identified 134 
consecutive patients who underwent pathologically complete curative surgery (R0) 
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with sufficient clinical information and pathological assessment of the surgical speci-
men between July 2011 and March 2020. Among them, we excluded five patients with 
neuroendocrine tumours of the pancreas. Considering the guidelines of the European 
Association of Nuclear Medicine (EANM) 2015 (Boellaard et al. 2015), we also excluded 
26 patients because their blood glucose level was equal to or greater than 150  mg/dl, 
although one of the main symptoms of patients with pancreatic cancer is hyperglycae-
mia. The FDG accumulation of the primary lesions in six patients was not high enough 
to secure a reproducible region of interest in the PET workstation. We also excluded 29 
patients whose lesion voxel number in FDG PET/CT was less than 64 voxels, the thresh-
old to extract textural features of FDG PET/CT (Kirienko et al. 2018; Orlhac et al. 2014). 
Then, we excluded eight patients with tumour (T) stage T1 (n = 7) or T4 (n = 1) to mini-
mize covariance (Orlhac et al. 2022). Finally, we excluded two patients who underwent 
preoperative neoadjuvant chemotherapy. In total, we excluded 76 patients and enrolled 
58 patients in our study (Fig. 1).

All enrolled patients (n = 58, 31 men and 27 women) preoperatively underwent 
dynamic contrast-enhanced CT and FDG PET/CT. The age of the enrolled patients was 
69.2 ± 10.9  years (mean ± SD). The patient characteristics are summarized in Table  1. 
TNM staging was based on the Union for International Cancer Control (UICC) eighth 
edition. The pathological TNM staging of each patient was based on the surgical speci-
mens. The differentiation of the adenocarcinomas (n = 55), i.e. from well-differentiated 
to poor-differentiated, was heterogeneous even in each primary pancreatic lesion; thus, 
the classification of these subtypes into one of three types of differentiation, i.e. well, 
moderate, and poor, was quite difficult. Among the 55 patients whose primary lesion 
histology was adenocarcinoma, there was one patient each with intraductal papillary 
mucinous adenocarcinoma, and adenocarcinoma with a small focal component of squa-
mous differentiation.

Fig. 1 Schematic diagram of patient enrolment
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Concerning the patients with a past history of malignancies before surgery for pancre-
atic cancer (n = 19), chemotherapy or surgery for past malignancies was recorded in two, 
six, four, two, and four patients treated for lymphoma, breast cancer, malignancies of the 
digestive system (gastric cancer, gastrointestinal stromal tumour, and ampullary cancer), 
gynaecological cancers (uterine corpus cancer and uterine cervical cancer), and cancers 
of the urinary tract (renal cell carcinoma, urothelial cancer, and prostate cancer), respec-
tively. The remaining patient had both gastric cancer and prostate cancer previously.

This retrospective study was approved by the institutional review board at Kobe City 
Medical Center General Hospital (registration number zn200707). The requirement for 
informed consent was waived, and the document that provided the patients with the 
opportunity to refuse to be enrolled in this study was uploaded onto our institute’s web-
site. This study was based on the Strengthening the Report of Observational Studies in 
Epidemiology (STROBE) guidelines for cohort studies.

Preoperative enhanced CT and FDG PET/CT scanning

All patients underwent preoperative enhanced dynamic CT scanning from chest to pel-
vis to confirm that each tumour lesion could be completely surgically resected. Four PET 
scanners were used in our study; that is, Discovery IQ (n = 11; GE Healthcare, Waukesha, 
WI, USA), Discovery 600 (n = 26; GE Healthcare), Discovery ST (n = 12; GE Healthcare), 
and Gemini TF (n = 9, Philips Healthcare, Amsterdam, Netherlands). Among them, the 
primary scanner, Discovery 600, was used in accordance with our institutional protocol 
(Shimizu et al. 2016). The specifications of these scanners are described in Table 2.

All patients fasted for at least 4  h. The injection dose of FDG in all patients was 
225.8 ± 62.0 MBq (mean ± SD). The duration from injection to FDG PET/CT scan was 
57.2 ± 4.1 min (mean ± SD). The mean interval of the two preoperative scans between 
the enhanced dynamic CT scan and FDG PET/CT scan was 11.4 days. The blood glu-
cose levels of all enrolled patients were less than 150 mg/dl in accordance with the 2015 
EANM guidelines (Boellaard et al. 2015) and with the results of a previous study that 

Table 1 Patient characteristics (n = 58)

DP distal pancreatectomy, GEM gemcitabine, S-1 TS-1 (Tegafur, Gimeracil, Oteracil Potassium), SSPPD subtotal stomach-
preserving pancreaticoduodenectomy, TP total pancreatectomy, UICC Union for International Cancer Control

Age, mean ± SD (range), year 69.2 ± 10.9 (34–86)

Tumour location, n

 Head/body/tail 39/4/15

Pathological stage (UICC 8th edition), n

 T2/T3 42/16

 N0/N1/N2 17/19/22

 Stage IB/IIA/IIB/III 12/5/19/22

Histology, n

 Adenocarcinoma/adenosquamous/anaplastic 55/2/1

Surgery, n

 SSPPD/DP/TP 38/17/3

 Neural invasion (pos/neg) 49/9

Adjuvant chemotherapy, n

 TS-1/GEM/incomplete 19/4/35
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investigated the influence of glucose levels on the FDG accumulation of tumours (Eskian 
et al. 2019).

Preoperative, surgical, and postoperative treatment

Thirty-eight patients with tumours in the pancreatic head underwent subtotal stom-
ach-preserving pancreaticoduodenectomy. Seventeen patients with tumours in the 
pancreatic body (n = 3) or pancreatic tail (n = 14) underwent distal pancreatectomy. 
One patient who underwent distal pancreatectomy also underwent curative partial gas-
trectomy at the same time because of concurrent gastric cancer. The remaining three 
patients (pancreatic head, n = 1; pancreatic body, n = 1; and pancreatic tail, n = 1) under-
went total pancreatectomy (TP). One patient with pancreatic tail cancer underwent TP 
because he had received subtotal stomach-preserving pancreaticoduodenectomy for 
ampullary cancer of the duodenum 4 years before TP. Another reason for TP was a path-
ologically positive margin of the on-site surgical specimen. In terms of neural invasion of 
primary pancreatic lesions, there were 49 positive and 9 negative patients.

Regarding postoperative chemotherapy, 19 patients completed four cycles of adjuvant 
S-1 therapy, and 4 patients completed approximately six cycles of adjuvant gemcitabine 
therapy. The remaining 35 patients failed to complete adjuvant chemotherapy treatment 
because of health conditions and adverse effects. Among the four PET scanners, there 
were no significant differences using chi-square test in terms of the patient characteris-
tics listed in Table 1.

Follow‑up survey using imaging modalities

After completing surgery, all patients underwent postoperative surveys using labo-
ratory data for carcinoembryonic antigen (CEA) and cancer antigen (CA)19-9 and 
imaging modalities, which mainly included enhanced CT scans, additional magnetic 
resonance imaging (MRI), and FDG PET/CT scans. In almost all cases, the postopera-
tive laboratory survey was performed with intervals of 1–3 months which was, due to 
the retrospective nature of our study, partially irregular according to the patient’s health 
condition, and the postoperative imaging survey by CT scan was performed with an 

Table 2 Specifications of the four PET scanners used in this study

BLOB-OS-TF blob ordered-subsets time-of-flight, FOV field of view, FWHM full width at half maximum, PET positron emission 
tomography, QCHD Q. Clear HD (a type of Bayesian penalized likelihood, GE Healthcare), VPHD VUE-point HD, VPHDS VPHD 
with point spread function
a The definition of the number of subsets and its iteration does not exist in Bayesian penalized likelihood reconstruction 
because of its regularization algorithm
b The median acquisition time of the scanner is described in parentheses

Discovery IQ Discovery 600 Discovery ST Gemini TF

Matrix size 192 × 192 192 × 192 128 × 128 144 × 144

Slice thickness 3.26 mm 3.27 mm 3.27 mm 4 mm

Pixel size 2.6 mm 2.6 mm 4.7 mm 4 mm

FOV 500 mm 500 mm 600 mm 576 mm

Reconstruction QCHD VPHDS VPHD BLOB-OS-TF

Subset/iteration Not  availablea 16/3 21/2 33/3

Acquisition time (min/bed) 2–2.5 (2.5)b 1.5–3 (2.5)b 2 (2)b 2 (2)b

Postfiltering FWHM (mm) Not available 3 4.29 Not available
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interval of approximately 3  months. Primarily, when the enhanced CT or laboratory 
data indicated recurrent lesions without certainty, the patients additionally underwent 
gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA; Bayer, 
Leverkusen, Germany) MRI scans (n = 1) or FDG PET/CT scans (n = 6) to detect the 
recurrent lesion with confidence. All relapses of the enrolled patients were determined 
only by these imaging modalities because they are readily available at our institute.

For this retrospective study, a board-certified radiologist and nuclear medicine physi-
cian (M.W.; 13 years of experience) and an expert abdominal radiologist (S.A.; 21 years 
of experience) thoroughly checked all images (CT, MRI, and FDG PET/CT) again and 
finally determined the recurrence date.

Data analysis including textural feature extraction

We used LIFEx version 6.30 (Nioche et al. 2018) to extract quantitative values, includ-
ing SUVmax, SUVmean, MTV, TLG, and textural features. When determining the vol-
ume of interest of a primary pancreatic lesion, many primary pancreatic tumours did 
not have significant and sharply delineated FDG accumulation. Furthermore, the lesions 
were adjacent to pancreatic and duodenal vessels and the duodenal tract. To ensure the 
reproducibility of the volume of interest by semi-automatic segmentation (Belli et  al. 
2018), we applied Nestle’s method (β = 0.3), which is available in the LIFEx software 
(Orlhac et al. 2014; Maisonobe et al. 2013; Ha et al. 2019).

In addition to the conventional PET parameters (SUVmax, SUVmean, MTV, and 
TLG), sphericity, compacity, and other first-order histogram texture features, we 
extracted 31 textural features with higher order, including grey-level co-occurrence 
matrices (GLCM), grey-level run length matrix (GLRLM), neighbouring grey-level dif-
ferent matrix (NGLDM), and grey-level zone length matrix (GLZLM; Table 3).

The main settings of the textural analysis were as follows: number of bins, 64; bin 
size, 0.3; and minimum and maximum bounds of the resampling, 0–20 SUV. The voxel 
size was resampled to 3.0 × 3.0 × 3.0  mm (Nakajo et  al. 2021; Reuzé et  al. 2018). We 
referred to the reporting guidelines of the Image Biomarker Standardization Initiative 
(ISBI, version v11, revised on 17 Dec 2019) (Zwanenburg et  al. 2016). Regarding the 
harmonization using ComBat (neuroCombat_Rpackage version 1.0.11, https:// github. 
com/ Jfort in1/ ComBa tHarm oniza tion) (Johnson et al. 2007; Fortin et al. 2017, 2018), we 
performed the free online application for harmonization (https:// forlh ac. shiny apps. io/ 
Shiny_ ComBat/) (Orlhac et al. 2022, 2021). Before the harmonization among four PET 
scanners (batches), we confirmed that there were no significant differences in terms of 
MTV, TLG, Shape sphericity and Shape compacity among these four groups of patients 
using the Kruskal–Wallis test. This is because these PET features depend mainly on the 
definition of the volume of interest and not on the intensity of FDG accumulation in the 
primary tumour, which is little impacted by the batch effect.

Statistical analysis

We used R Statistical Software version 4.1.3 for the analysis (Foundation for Statistical 
Computing, Vienna, Austria). Progression-free survival (PFS) was defined as the dura-
tion from the date of surgery to the date of relapse of pancreatic cancer. Overall survival 
(OS) was defined as the duration from the date of surgery to the date of death, in which 

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
https://forlhac.shinyapps.io/Shiny_ComBat/
https://forlhac.shinyapps.io/Shiny_ComBat/
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living patients were censored at the last follow-up date. Optimal cut-off values of PET 
parameters were determined with Classification and Regression Tree (CART) analysis 
using the R package rpart (version 4.1.16) with a PFS cut-off of 300 days and with OS 
cut-off of 1275 days (42 months) (Strobel et al. 2019; Groot et al. 2018). We classified 

Table 3 List of radiomic features extracted from FDG PET/CT

FDG PET/CT fluorodeoxyglucose positron emission tomography/computed tomography, SUV standardized uptake value

Matrix Index

First-order features SUVmax

SUVmean

Metabolic tumour volume (MTV)

Total lesion glycolysis (TLG)

Shape sphericity

Shape compacity

Discretized Histo Skewness

Discretized Histo Kurtosis

Discretized Histo Entropy Log10

Discretized Histo Energy

Second-order features

Grey-level co-occurrence matrix (GLCM) Homogeneity

Energy

Contrast

Correlation

Entropy Log10

Dissimilarity

Higher-order features

Grey-level run length matrix (GLRLM) Short-run emphasis (SRE)

Long-run emphasis (LRE)

Low grey-level run emphasis (LGRE)

High grey-level run emphasis (HGRE)

Short-run low grey-level emphasis (SRLGE)

Short-run high grey-level emphasis (SRHGE)

Long-run low grey-level emphasis (LRLGE)

Long-run high grey-level emphasis (LRHGE)

Grey-level nonuniformity for run (GLNU)

Run length nonuniformity (RLNU)

Run percentage (RP)

Neighbourhood grey-level different matrix (NGLDM) Coarseness

Contrast

Busyness

Grey-level zone length matrix (GLZLM) Short-zone emphasis (SZE)

Long-zone emphasis (LZE)

Low grey-level zone emphasis (LGZE)

High grey-level zone emphasis (HGZE)

Short-zone low grey-level emphasis (SZLGE)

Short-zone high grey-level emphasis (SZHGE)

Long-zone low grey-level emphasis (LZLGE)

Long-zone high grey-level emphasis (LZHGE)

Grey-level nonuniformity for zone (GLNU)

Zone length nonuniformity (ZLNU)

Zone percentage (ZP)
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patients also according to their age (age > 70 vs. age ≤ 70), tumour location (head vs. 
body-tail), T stage (T2 vs. T3), N stage (N0 vs. N1-3), and presence of neural invasion 
(positive vs. negative) into two groups.

For univariate analysis using Cox proportional hazard regression model for PFS and 
OS, we evaluated the clinical information in terms of age, sex, T stage, N stage, tumour 
location, presence of neural invasion, as well as the PET quantitative radiomic param-
eters stated above, by referring to the previous literature (Yamamoto et al. 2015). We did 
not evaluate CA19-9 in this study because CA19-9 can be elevated in patients with bil-
iary obstruction, which can be caused by pancreatic cancer irrespective of tumour pro-
gression (Mizrahi et al. 2020; Hidalgo 2010).

The significant and borderline significant prognostic indices in the univariate analysis 
entered the multivariate analysis using Cox proportional hazard regression model for 
PFS and OS (first multivariate analysis) (Nakajo et al. 2021; Antunovic et al. 2019). Con-
sidering a large number of prognostic indices for the statistical analysis, we determined 
the rank of Gini importance calculated from the decrease in Gini impurity for feature 
selection by using the algorithm of random forest with tenfold cross-validation provided 
by the R package caret (version 6.0–93) by referring to the previous literature (Toyama 
et al. 2020; Menze et al. 2009). Then, by checking the graph of the rank regarding Gini 
importance of prognostic factors (clinical indices and PET parameters) exported from 
the R package as in the previous literature (Toyama et al. 2020), the high-rank prognostic 
indices were evaluated by another multivariate analysis for PFS and OS (second multi-
variate analysis) to confirm the results (Nakajo et al. 2022). The significant and border-
line significant prognostic indices in either the first or second multivariate analysis were 
confirmed using Kaplan–Meier survival curves and log-rank tests. Indices with p val-
ues < 0.05 and with p values ≥ 0.05 but < 0.1 were considered statistically significant and 
borderline significant, respectively.

Results
All prognostic statuses of the enrolled patients were followed up until the end of July 
2021. The mean follow-up period from surgery was 29.2  months. Regarding PFS, 37 
(63.8%) patients relapsed. Of all the patients, 21 (36.2%) patients survived, 25 (43.1%) 
patients died, and 12 (20.7%) patients were lost to follow-up. Among 19 patients who 
had other previous malignancies, 16 patients were without recurrence, 2 patients had 
stable disease, and the remaining patient had progressive disease at the end of the fol-
low-up. All 19 patients did not die of these previous malignancies.

The results of the univariate and the first multivariate Cox proportional hazard 
regression analyses for PFS and OS are summarized in Tables 4 and 5. For the univari-
ate analysis for PFS, NGLDM busyness and GLZLM LZLGE were significant prog-
nostic factors (p = 0.036 and 0.019, respectively), and age, MTV, GLCM contrast and 
GLZLM LZE were borderline significant prognostic factors (p = 0.080, 0.072, 0.076 
and 0.055, respectively). For the univariate analysis for OS, neural invasion, SUVmax, 
Shape sphericity, Histogram kurtosis, GLCM contrast, GLCM dissimilarity, GLZLM 
HGZE, GLZLM SZHGE were significant prognostic factors (p = 0.043, 0.047, 0.049, 
0.034, 0.048, 0.048, 0.043 and 0.043, respectively), and TLG, GLCM homogene-
ity, GLRLM HGRE, GLRLM SRHGE, GLRLM GLNU, GLZLM LZLGE and GLZLM 



Page 9 of 18Watanabe et al. European Journal of Hybrid Imaging             (2023) 7:5  

GLNU were borderline significant prognostic factors (p = 0.095, 0.078, 0.076, 0.076, 
0.082, 0.085 and 0.054). Other clinical indices and PET radiomic features were not 
significant or borderline significant prognostic indices in the univariate analysis. 
Regarding the first multivariate analysis of PFS using the results of univariate analy-
sis, age was the significant prognostic factor (p = 0.020), and MTV and GLCM con-
trast were borderline significant prognostic factors (p = 0.051 and 0.075, respectively). 
Regarding the first multivariate analysis of OS using the results of univariate analy-
sis, neural invasion, Shape sphericity and GLZLM LZLGE were significant prognostic 
factors (p = 0.019, 0.042 and 0.0076).

Table 4 Univariate and multivariate analyses of progression-free survival

CI confidence interval, MTV metabolic tumour volume, GLCM grey-level co-occurrence matrix, NGLDM neighbourhood 
grey-level different matrix, GLZLM grey-level zone length matrix, LZE long-zone emphasis, LZLGE long-zone low grey-level 
emphasis

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age 0.93–3.59 0.080 1.15–4.74 0.020

MTV 0.10–1.10 0.072 0.08–1.01 0.051

GLCM contrast 0.25–1.07 0.076 0.18–1.09 0.075

NGLDM busyness 0.18–0.94 0.036 0.17–3.93 0.81

GLZLM LZE 0.25–1.01 0.055 0.26–3.01 0.85

GLZLM LZLGE 0.19–0.86 0.019 0.14–4.14 0.75

Table 5 Univariate and multivariate analyses of overall survival

CI confidence interval, SUVmax maximum standardized uptake value, TLG total lesion glycolysis, GLCM grey-level 
co-occurrence matrix, GLRLM grey-level run length matrix, HGRE high grey-level run emphasis, SRHGE short-run high grey-
level emphasis, (GLRLM) GLNU grey-level nonuniformity for run, LZLGE long-zone low grey-level emphasis, GLZLM grey-level 
zone length matrix, HGZE high grey-level zone emphasis, SZHGE short-zone high grey-level emphasis, LZLGE long-zone low 
grey-level emphasis, (GLZLM) GLNU grey-level nonuniformity for zone, NA* not available due to multicollinearity between 
(1) GLCM contrast and GLCM dissimilarity (Pearson correlation coefficient r = 0.95 in pre-harmonization and 0.97 in post-
harmonization), (2) GLRLM HGRE and GLRLM SRHGE (r = 0.9996 in pre-harmonization and 0.9993 in post-harmonization), 
and (3) GLZLM HGZE and GLZLM SZHGE (r = 0.99 in pre-harmonization and 0.99 in post-harmonization)

Univariate analysis Multivariate analysis

Hazard ratio (95% 
CI)

p value Hazard ratio (95% CI) p value

Neural invasion 0.05–0.95 0.043 0.03–0.73 0.019

SUVmax 0.08–0.98 0.047 0.08–7.06 0.81

TLG 0.23–1.13 0.095 0.15–3.11 0.63

Shape sphericity 0.09–0.99 0.049 0.03–0.94 0.042

Histogram kurtosis 0.12–0.92 0.034 0.08–3.54 0.50

GLCM contrast 0.16–0.99 0.048 0.01–5.93 0.35

GLCM homogeneity 0.16–1.10 0.078 0.07–21.16 0.89

GLCM dissimilarity 0.16–0.99 0.048 NA* NA*

GLRLM HGRE 0.15–1.10 0.076 0.05–79.60 0.74

GLRLM SRHGE 0.15–1.10 0.076 NA* NA*

GLRLM GLNU 0.22–1.10 0.082 0.62–7.51 0.23

GLZLM HGZE 0.12–0.97 0.043 0.02–30.49 0.91

GLZLM SZHGE 0.12–0.97 0.043 NA* NA*

GLZLM LZLGE 0.23–1.10 0.085 0.05–0.63 0.0076

GLZLM GLNU 0.20–1.01 0.054 0.09–2.07 0.29
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Concerning that there are a large number of clinical indices and PET radiomic 
features, we also evaluated Gini importance calculated from the decrease in Gini 
impurity for PFS and OS using the algorithm of random forest with tenfold cross-
validation (Figs. 2, 3). We performed the second multivariate analysis for PFS and OS 
using the top six indices in Figs. 2 and 3. In the second multivariate analysis for PFS, 
only MTV was significant (p = 0.046) (Table 6). For OS, GLZLM LZLGE was signifi-
cant (p = 0.047), and Shape sphericity was borderline significant (p = 0.088) (Table 7).

We validated these findings using Kaplan–Meier survival curves with log-rank 
tests for PFS (Figs. 4, 5, 6) and for OS (Figs. 7, 8, 9). In the log-rank test for PFS, age, 
MTV and GLCM contrast were borderline significant (p = 0.08, 0.06 and 0.07, respec-
tively). In the log-rank test for OS, neural invasion and Shape sphericity were signifi-
cant (p = 0.03 and 0.04, respectively), and GLZLM LZLGE was borderline significant 
(p = 0.08).

Fig. 2 High-ranking clinical and radiomic features for PFS in terms of Gini importance. PFS progression-free 
survival

Fig. 3 High-ranking clinical and radiomic features for OS in terms of Gini importance. OS overall survival
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Discussion
We investigated the clinical utility of PET radiomic features in patients with pancre-
atic cancer. For PFS, age was a significant prognostic factor, and MTV and GLCM 
contrast were borderline significant prognostic factors in the first multivariate analy-
sis, whereas only MTV was significant in the second multivariate analysis. For OS, 
neural invasion, Shape sphericity and GLZLM LZLGE were significant in the first 
multivariate analysis, whereas GLZLM LZLGE was significant, and Shape spheric-
ity was borderline significant in the second multivariate analysis. GLCM dissimilar-
ity, GLRLM SRHGE and GLZLM SZHGE were not available in the first multivariate 
analysis for OS due to the multicollinearity between (1) GLCM contrast and GLCM 
dissimilarity, (2) GLRLM HGRE and GLRLM SRHGE, and (3) GLZLM HGZE and 
GLZLM SZHGE.

Table 6 Multivariate analyses of progression-free survival using random forest algorithms

CI confidence interval, MTV metabolic tumour volume, GLCM grey-level co-occurrence matrix, GLZLM grey-level zone length 
matrix, Inf* with no upper limit

Hazard ratio (95% CI) p value

MTV 0.08–0.98 0.046

Shape compacity 0.18–1.20 0.11

GLCM energy 0.00–Inf* 0.997

GLCM entropy Log10 0.00–Inf* 0.997

GLZLM LZE 0.24–2.93 0.78

GLZLM LZLGE 0.13–1.99 0.34

Table 7 Multivariate analyses of overall survival using random forest algorithms

CI confidence interval, TLG total lesion glycolysis, GLCM grey-level co-occurrence matrix, GLRLM GLNU grey-level run length 
matrix grey-level nonuniformity for run, GLZLM grey-level zone length matrix, LZLGE long-zone low grey-level emphasis, 
(GLZLM) GLNU grey-level nonuniformity for zone

Hazard ratio (95% CI) p value

TLG 0.22–3.18 0.80

Shape sphericity 0.08–1.19 0.088

GLCM energy 0.11–1.56 0.19

GLRLM GLNU 0.44–5.17 0.51

GLZLM LZLGE 0.15–0.99 0.047

GLZLM GLNU 0.13–2.09 0.37

Fig. 4 Kaplan–Meier survival curve analysis for PFS in terms of age. In the log-rank test, p value was 0.080. PFS 
progression-free survival
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For feature selection of the prognostic indices for the multivariate analysis, we used 
the rank of Gini importance calculated from the decrease in Gini impurity by using ran-
dom forest with tenfold cross-validation other than using results of the univariate analy-
sis in accordance with the previous literature (Toyama et al. 2020; Menze et al. 2009). 
Random forest is an ensemble learner based on randomized decision trees, and the Gini 
impurity is a computationally efficient approximation to the entropy (Menze et al. 2009). 
The decrease in Gini impurity indicates how much the overall discriminative value of 
each feature contributed to the classification task (Menze et  al. 2009). Random forest 

Fig. 5 Kaplan–Meier survival curve analysis for PFS in terms of MTV. In the log-rank test, p value was 0.060. 
PFS progression-free survival, MTV metabolic tumour volume

Fig. 6 Kaplan–Meier survival curve analysis for PFS in terms of GLCM Contrast. In the log-rank test, p value 
was 0.070. PFS progression-free survival, GLCM grey-level co-occurrence matrix

Fig. 7 Kaplan–Meier survival curve analysis for OS in terms of neural invasion. In the log-rank test, p value 
was 0.030. OS overall survival
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can be more useful and robust for feature selection than univariate analysis when the 
features are highly correlated with each other (Menze et al. 2009). In our PET radiomic 
study, PET radiomic features are classified into several texture categories, i.e. GLCM, 
GLRLM, NGLDM, and GLZLM, and there are a large number of PET features to be 
analysed for the prognostic statistics. In consideration of the α errors caused by the mul-
tiple univariate analyses, we performed a second multivariate analysis using the features 
selected by random forest algorithms.

For harmonization of the PET radiomic features among several PET scanners using 
ComBat, Johnson et al. proposed a method that robustly adjusts even batches with small 
sample sizes (Johnson et  al. 2007). The utility of this harmonization algorithm in the 
FDG texture analysis was demonstrated in several studies (Orlhac et al. 2018; Dissaux 
et al. 2020; Nakajo et al. 2021). Interestingly, Nygaard et al. claimed that harmonization 
will reduce group statistical power, especially when the design of each group is unbal-
anced (Goh et  al. 2017; Nygaard et  al. 2016; Da-Ano et  al. 2020). Dissaux et  al. used 
ComBat for PET image harmonization, in which the numbers of lung cancer patients in 
batches of different PET scanner types were 27, 29, and 8 (Dissaux et al. 2020). Therefore, 
the patient number in each batch of our study (26, 12, 11, and 9 patients per PET scan-
ner type) seemed to be acceptable. However, Orlhac et al. demonstrated it is desirable 
to secure a patient number of more than 20 in each batch for the harmonization using 
ComBat considering the variability of PET parameters (Orlhac et  al. 2022). Although 

Fig. 8 Kaplan–Meier survival curve analysis for OS in terms of Shape sphericity. In the log-rank test, p value 
was 0.040. OS overall survival

Fig. 9 Kaplan–Meier survival curve analysis for OS in terms of GLZLM LZLGE. In the log-rank test, p value was 
0.080. OS overall survival, GLZLM grey-level zone length matrix, LZLGE long-zone low grey-level emphasis



Page 14 of 18Watanabe et al. European Journal of Hybrid Imaging             (2023) 7:5 

we enrolled only patients with tumour stages T2 (n = 42) or T3 (n = 16) to reduce the 
effect of this covariate (Orlhac et al. 2022), the number of patients in each batch might 
not have been enough in our study for the PET harmonization in a study of pancreatic 
cancer.

In PET radiomic studies, Toyama et al. and Kim et al. demonstrated that a TLG > 34.6 
and a TLG > 63.95, respectively, allowed the prognostic stratification of patients with 
pancreatic cancer and implied poor overall survival (Kim and Kim 2021; Toyama et al. 
2020). However, Toyama et al. included patients with distant metastasis (Toyama et al. 
2020), and these two studies did not perform PET harmonization (Kim and Kim 2021; 
Toyama et al. 2020). Toyama et al. also emphasized that GLZLM GLNU is a significant 
prognostic factor in the multivariate analysis for OS (Toyama et al. 2020), which is not 
consistent with our study. However, in our study, GLZLM LZLGE was a significant prog-
nostic factor in both the first and second multivariate analyses for OS. GLZLM counts 
the number of groups (so-called zones) of interconnected neighbouring voxels with the 
same grey level (Ha et al. 2019; Mayerhoefer et al. 2020). For this reason, GLZLM GLNU 
increases if the tumour heterogeneity of pancreatic cancer increases (Zwanenburg et al. 
2016). Then, GLZLM LZLGE is defined as the distribution of the long homogeneous 
zones with low grey levels (Ha et al. 2019), and this may be related to the tumour hetero-
geneity. Besides, GLCM contrast was borderline significant only in the first multivari-
ate analyses for PFS in our study. GLCM captures spatial relationships of pair of voxels 
in different directions, and GLCM contrast emphasizes grey-level differences between 
voxels belonging to a voxel pair (Mayerhoefer et al. 2020), which can also be an indicator 
of tumour heterogeneity. Generally, pancreatic cancer can be classified into several sub-
types, including classical, immunological, basal-like, and exocrine-like types (Martens 
et  al. 2019). Basal-like pancreatic tumours, which are highly glycolytic, have acellular 
stroma, contain poorly differentiated tumours, and are associated with metastatic spread 
leading to poorer prognosis compared to classical tumours (Martens et al. 2019). Inter-
estingly, heterogeneity exists even within the same patient with pancreatic cancer (Mar-
tens et  al. 2019). Unfortunately, we could not demonstrate the prognostic significance 
of GLZLM GLNU, possibly because the number of patients in each batch was less than 
20, which might have decreased the statistical power, as stated in previous publications 
(Goh et al. 2017; Nygaard et al. 2016; Orlhac et al. 2022; Da-Ano et al. 2020), as well as 
our small total sample size. For this reason, a multicentre study with larger sample sizes 
is warranted to investigate whether tumour heterogeneity of pancreatic cancer is corre-
lated to poor prognosis.

In our study, MTV was the borderline significant and the significant prognostic factor 
in the first and the second multivariate analysis for PFS, respectively. Lee et  al. dem-
onstrated that MTV > 3.0 is a significant indicator of poor PFS (Lee et al. 2014), which 
is not consistent with our result. Of note, our cut-off of MTV determined with CART 
using R package was 20 in the patients with T2 and T3 stage. In our cohort, it means that 
even the patients with MTV ≥ 20 could undergo the curative surgery with no pathologi-
cally residual tumour regardless of their large tumour sizes, which should be taken into 
consideration in terms of tumour invasiveness.

In OS, neural invasion and Shape sphericity were significant in the first multivariate 
analysis, whereas Shape sphericity was borderline significant in the second multivariate 
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analysis. Wei et al. also selected Shape sphericity as one of the optimal radiomic features 
to include into a formula of rad-score by using the least absolute shrinkage and selection 
operator (LASSO) algorithm with tenfold cross-validation (Wei et al. 2021). Shape sphe-
ricity describes how the tumour shape differs from a sphere (Mayerhoefer et al. 2020), 
which may be an indicator of tumour irregularity or invasiveness. Regarding neural inva-
sion, Iwasaki et al. demonstrated that the patients of pancreatic cancer with high neural 
invasion showed statistically significantly shorter OS than the other patients (Iwasaki 
et al. 2019). These findings are consistent with our results.

Some studies investigated the clinical usefulness of FDG PET radiomic features of 
pancreatic cancer using machine learning (Wei et al. 2021; Toyama et al. 2020); however, 
Toyama et al. included patients with distant metastases (Toyama et al. 2020), and Wei 
et al. included patients with microscopically residual tumours after surgery (Wei et al. 
2021). Furthermore, only a few FDG PET radiomic studies using harmonization tech-
niques examined pancreatic cancer patients who underwent R0 curative surgery. Except 
for MTV and GLCM contrast for PFS, and Shape sphericity and GLZLM LZLGE for 
OS, our study could not identify significant prognostic indices among PET parameters. 
However, Buvat et  al. emphasize the importance of publishing negative PET radiomic 
results of methodologically well-designed studies because these findings may be useful 
to avoid unnecessary and costly repetitions of already performed analyses (Buvat and 
Orlhac 2019). Thus, our results might facilitate future FDG PET radiomic prospective 
multicentre research on pancreatic cancer.

Adjuvant chemotherapy significantly improves PFS, as stated in a previous report 
(Uesaka et al. 2016). In particular, adjuvant chemotherapy with S-1 was reported to be 
more advantageous than gemcitabine considering prognosis and adverse effects (Uesaka 
et  al. 2016). In PFS, age was the significant prognostic factor in the first multivariate 
analysis, which is difficult to explain. Interestingly in our study, however, there were 9 
of 33 (27.3%) patients with the age > 70, and 14 of 25 (56.0%) patients with the age ≤ 70, 
who underwent the completion of adjuvant chemotherapy. This might be one of the con-
tributors to this result. The completion of adjuvant chemotherapy is not a preoperative 
prognostic factor precisely, so we did not include it in our prognostic analyses for PFS 
and OS.

We did not generate a prognostic model as provided in other publications (Nakajo 
et al. 2021; Zhang et al. 2020) because of our concern regarding overfitting due to the 
small sample size (Ha et al. 2019). We just used random forest algorithm with the con-
cept of Gini importance for the feature selection of the second multivariate analysis 
to determine useful prognostic factors using clinical information and PET radiomic 
features. Therefore, we did not perform a validation of the model in accordance with 
the TRIPOD statement (Moons et al. 2015), but our study was in accordance with the 
STROBE guidelines. When a prospective multicentre study with a larger sample size 
that enables prognostic model development becomes available, both internal and exter-
nal validation for the prognostic model may be warranted (Nakajo et al. 2021; Moons 
et al. 2015).

As a limitation, the surgical date of the enrolled patients was between 2011 and 2020, 
possibly leading to variability in adjuvant chemotherapy protocols. The sample size was 
small because of the nature of our single-centre analysis.
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Conclusions
We investigated significant prognostic factors for PFS and OS, including harmonized 
PET radiomic features and clinical information, in patients with pancreatic cancer who 
underwent complete curative surgery. In addition to the age for PFS and neural invasion 
for OS, MTV and GLCM contrast for PFS, and Shape sphericity and GLZLM LZLGE for 
OS might be a prognostic indicator of the patients with pancreatic cancer who under-
went curative surgery. A prospective multicentre analysis with a larger sample size may 
be warranted to confirm this result.
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