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Abstract

A review of algal (including cyanobacterial) symbionts associated with lichen-forming fungi is presented. General aspects of their biology
relevant to lichen symbioses are summarized. The genera of algae currently believed to include lichen symbionts are outlined; approximately
50 can be recognized at present. References reporting algal taxa in lichen symbiosis are tabulated, with emphasis on those published since
the 1988 review by Tschermak-Woess, and particularly those providing molecular evidence for their identifications. This review is dedicated
in honour of Austrian phycologist Elisabeth Tschermak-Woess (1917-2001), for her numerous and significant contributions to our knowl-

edge of lichen algae (some published under the names Elisabeth Tschermak and Liesl Tschermak).
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Introduction

The principal components of the lichen symbiosis are fungus and
alga. Their intimate trophic relationship remains central to the
lichen concept, despite our growing appreciation that other micro-
organisms harboured within the thallus might also play significant
roles (Lakatos et al. 2004; Grube & Berg 2009; Bates et al. 2011;
Grube et al. 2015; Spribille et al. 2016; Muggia & Grube 2018;
Mark et al. 2020; Smith et al. 2020; Tzovaras et al. 2020). The lichen-
forming fungi typically build distinctive vegetative tissues and char-
acteristic sexual structures, providing numerous biological features
for study and significant clues about phylogenetic relationships,
which are now relatively well delimited at broader taxonomic levels
(Jaklitsch et al. 2016; Liicking et al. 2017a). Lichen algae, by con-
trast, have proved much more elusive. Most are unicells or simple
filaments, with sexual structures unknown or seldom reported.
The paucity of phenotypic characters is often aggravated by their
plasticity. Lichen algae may look and behave quite differently in
symbiosis with different lichen-forming fungi, in the free-living
condition in nature and in aposymbiotic laboratory culture
(Fig. 1; Ahmadjian 1967; Bubrick 1988). All this has hindered pro-
gress in clarifying their identities, phylogenies and life histories.
Schwendener (1869) was the first to survey lichen ‘gonidia’ in a
phycological context, recognizing them as organisms distinct
from the surrounding fungus that correspond to known taxa of free-
living algae. In the last half-century, the diversity of lichen-forming
algae has been reviewed by various authors (Ahmadjian 1967;
Létrouit-Galinou 1968; Henssen & Jahns 1974; Friedl & Budel
2008), with a particularly thorough literature summary compiled
and annotated by Tschermak-Woess (1988a).
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In recent decades, our understanding of algal diversity and biosys-
tematics has advanced substantially with the accumulation, analysis
and integration of DNA sequence data. Systematic schemes for the
eukaryotic algae have changed considerably, as the broad contours
of consensus emerge concerning phylogenies and their reconstruc-
tion. Recent works have reviewed the current status of some principal
algal groups with lichen-forming taxa, such as the genus Trebouxia
(Muggia et al. 2017), the class Trebouxiophyceae (Muggia et al.
2018), the Coccomyxa-Elliptochloris clade (Gustavs et al. 2017), the
Trentepohliaceae (Grube et al. 2017a), and the cyanobacteria
(Rikkinen 2017). Yet most taxa remain insufficiently understood.
Even the most intensively studied genera, such as Trebouxia, are still
unresolved with respect to species delimitation, and much new diver-
sity continues to be uncovered (Muggia et al. 2020). A great many algal
symbionts, identified phenotypically (often without isolation into cul-
ture) or recorded merely as ‘trebouxioid’ or ‘chlorococcalean’, have yet
to be revisited with DNA sequence analyses. Identities and relation-
ships remain especially problematic among the cyanobacteria (blue-
green algae), where sexual reproduction is absent, diversification is
ancient (Garcia-Pichel 2009) and horizontal gene transfer events
may obscure the vertical components of phylogenies (Zhaxybayeva
et al. 2006). The aposymbiotic lives of lichen algae also remain largely
unknown, despite their potential importance in active genetic mix-
ing. Here an attempt is made to focus more attention on the algal
side of the lichen partnership, still relatively neglected compared to
that of the fungus. We include a synopsis of the relevant genera
and list citations of algal taxa in lichen symbiosis (Table 1), empha-
sizing those published since Tschermak-Woess’s (1988a) landmark
review, and particularly those accompanied by genetic sequence data.

The Major Algal Groups Involved

Lichen algae are diverse. This may contribute to the distinct dis-
tributions and climatic preferences of the symbiotic thalli that
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Fig. 1. Three filamentous lichen photobiont genera in aposymbiotic and symbiotic states. A-C, Trentepohlia. A, branching filament free-living on bark. B, lichenized
by Coenogonium hyphae (arrows) growing over morphologically unchanged algal filament and its new branches (horizontal arrow). C, lichenized by Arthonia rubro-
cincta; the alga is largely broken up into individual cells or short segments. D-F, Rhizonema. D, cultured isolate from Dictyonema; note false branching (arrowhead).
E, trichome ensheathed by cells of mycobiont Dictyonema. F, contorted or broken filaments (arrow) within thallus of Coccocarpia palmicola. G-J. Nostoc. G, free-
living thallus-like macrocolony on soil. H, cultured strain. I, more or less intact filaments (arrows) within thallus of Collema furfuraceum. J, contorted or broken up
into cell groups (arrows) within cyanomorph of Sticta canariensis. Scales: A-F, H-J=10um; G=1cm.

enclose them (Marini et al. 2011). Most are green algae, a para-
phyletic grouping of two major clades: the charophytes
(Streptophyta), from which embryophytes descend, and the
Chlorophyta s. str. (Leliaert et al. 2012). The latter includes nearly
all green algae reported as lichen symbionts. Within the
Chlorophyta, lichen symbionts are found principally in the classes
Trebouxiophyceae and Ulvophyceae. A third class, the
Chlorophyceae, is known or suspected to include the partners of
several lichens. The prokaryotic blue-green algae (cyanobacteria)
encompass most of the remainder, occurring in c¢. 10% of the
nearly 20 000 known lichen associations (Rikkinen 2017).
Additionally, two stramenopile algae (a xanthophyte and a phaeo-
phyte) are known to enter into lichen symbioses. The full range of
phylogenetic disparity among lichen-forming algae is therefore
much wider than that found among the lichen-forming fungi,
which all fall within the kingdom’s Dikarya crown group (mostly
Ascomycota, with several genera of Basidiomycota). Just what
common features might permit those disparate algal lineages to
form comparable symbioses with lichen-forming fungi remain
enigmatic. As colonizers of exposed, subaerial substrata, poten-
tially suitable algae may be pre-adapted to coping with hydric
stresses and high radiation loads (Lange et al. 1990; Gustavs
et al. 2010; Candotto Carniel et al. 2015). It is striking that
most lineages of basidiomycete fungi that independently adopted
the lichen lifestyle did not domesticate novel algal genera; instead
they chose taxa that associate with ascolichens, such as
Coccomyxa, Elliptochloris and Rhizonema (Oberwinkler 2012;
Dal Forno et al. 2020; Masumoto 2020; but see Hodkinson
et al. (2014) concerning Lepidostromatales). It is also noteworthy
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that quite a number of lichen algae belong to genera (e.g. Chlorella
s. str., Coccomyxa, Elliptochloris and Nostoc) that include species
occurring in symbiosis (often endosymbioses) with diverse pro-
tists, plants and animals (Adams et al. 2012; Grube ef al. 2017b).
Algal partners in lichen symbioses were termed phycobionts by
Scott (1957). Subsequently, Ahmadjian (1982) proposed that photo-
biont replace phycobiont where cyanobacteria are meant to be
included, because they ‘are not algae per se but actually bacteria’. No
further argumentation was provided; it was presumed self-evident
that algae and bacteria must denote mutually exclusive concepts.
Some contemporary treatments distinguish cyanobacteria from
algae (e.g. Friedl & Biidel 2008; Grube et al. 2017b), while others con-
sider them as algae (e.g. Graham et al. 2009; Biidel & Kauff 2012; Lee
2018). Clearly, there are significant differences between prokaryotes
and eukaryotes. At issue, however, is whether those differences are
relevant to the concept of algae. This term has no biosystematic status
and cannot attain any by exclusion of the blue-greens. The emblematic
algal trait, oxygen-generating photosynthesis, is ultimately derived
from cyanobacteria. It was subsequently acquired in multiple events
involving primary, secondary and tertiary endosymbioses (Keeling
2004, 2013), and now characterizes diverse lineages included within
most of the major eukaryote clades (Archaeplastida, Alveolata,
Excavata, Rhizaria, Stramenopila, Cryptista and Haptista). The one
and only unifying thread in this polyphyletic algal tapestry (Delwiche
1999) is the common photosynthetic apparatus, originating in
cyanobacteria and passed on vertically as well as horizontally. The
present work therefore uses the term algae to encompass all
non-embryophyte lineages that inherited oxygenic photosynthesis.
Phycobiont and photobiont are considered synonymous terms.
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The Algal Role in Lichen Symbiosis

The algal partner is the primary producer, sustaining the lichen
association by supplying the fungal partner with carbohydrate
products of photosynthesis (Smith 1974). Those with pyrenoids
(Fig. 2) possess CO,-concentrating mechanisms that improve
the efficiency of carbon fixation (Smith & Griffiths 1996).
Green algal symbionts (chlorobionts) transfer their photosynthate
as polyol sugar alcohols such as ribitol (Richardson et al. 1968).
Significantly, these compounds also confer desiccation tolerance
by providing osmolarity and protecting cell membranes from
damage as water is lost (Smith 2019). Polyols are likewise pro-
duced by non-symbiotic, aeroterrestrial green algae, particularly
under osmotic stress conditions (Darienko et al. 2010; Gustavs
et al. 2010, 2011). Blue-green symbionts (cyanobionts) transfer
glucose, or glucan, which their fungal partners take up and imme-
diately convert into the sugar alcohol mannitol (Smith & Drew
1965; Hill 1972). When lichenized, the algal symbionts are some-
how induced to leak large amounts of carbohydrate to the sur-
rounding fungal cells, a process that quickly ceases when the
algae are isolated into culture (Drew & Smith 1967). Fungal pene-
tration of photobionts may occur to varying degrees (Geitler 1934;
Tschermak 1941a; Plessl 1963; Galun et al. 1970, 1971; Honegger
1986; Matthews et al. 1989), but these so-called haustoria do not
appear to be principal conduits of carbohydrate transfer in asco-
lichens (Jacobs & Ahmadjian 1971; Collins & Farrar 1978; Hessler
& Peveling 1978). The intrusive hyphae of certain basidiolichens
that deeply penetrate longitudinally through the centre of their
cyanobiont trichomes (Roskin 1970; Oberwinkler 1980, 2012)
have not yet been examined with respect to substance transfer.
In most foliose and fruticose lichens examined, haustorial pene-
trations are either absent altogether or do not fully traverse the
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algal cell wall. To facilitate transfer, the mycobiont secretes a
hydrophobic sealant that envelops the cell surfaces of both sym-
bionts at their contact zones, thereby funnelling carbohydrate
released by the alga to the fungus (Honegger 1991; Trembley
et al. 2002a). At least that is the case in the selection of taxa exam-
ined so far. Where cyanobacterial symbionts are involved, they
provide the lichen fungus with fixed nitrogen as well as carbon
(Millbank & Kershaw 1974). In those lichens (chiefly
Peltigerales) where a chlorobiont constitutes the main algal layer
and cyanobionts are localized within nodules known as cephalo-
dia, the cyanobacteria become highly specialized for nitrogen fix-
ation, with an elevated percentage of cells differentiating as
heterocytes (Hitch & Millbank 1975). In lichens with only cyano-
bacterial photobionts, heterocyte frequency can be much lower at
the growing margins of the thallus (Bergman & Hallbom 1981),
where photosynthate may be in higher demand.

Whether any substance is transferred from fungus to alga in
exchange has yet to be demonstrated. At least some genes rele-
vant to such metabolic transfers appear to be differentially
expressed in symbiosis (Kono et al. 2020). Certainly, there has
been speculation that the fungal partner might apportion carbo-
hydrate, nitrogen, or other substances back to the algal symbiont
to regulate its growth (Ahmadjian 1995) in coordination with
that of the mycobiont (Greenhalgh & Anglesea 1979; Hill
1985, 1989; Honegger 1987). The heterotrophic tendencies
shown by many lichen algae (Trebouxia, Asterochloris,
Elliptochloris, Coccomyxa, Apatococcus) when cultured in the
laboratory (Ahmadjian 1993; Gustavs et al. 2016, 2017) suggest
the possibility that they could be susceptible to such control.
Indeed, Ahmadjian (2001) proposed that Trebouxia is fully
dependent upon its mycobiont for nutrition and is therefore
unable to survive in the free-living state (Ahmadjian 1988).

Fig. 2. TEM micrographs of some photobiont pyrenoids, with plastoglobuli (round black dots) and penetrating membranes in various positions and orientations. A,
Trebouxia, within thallus of Lasallia pustulata. Note pyrenoid structure here more closely resembles that of distantly related Heveochlorella (B) than that of another
species (C) of Trebouxia. B, Heveochlorella, within thallus of Calopadia. C, Trebouxia, within thallus of Ramalina usnea. D, bulging exserted pyrenoid of Petroderma
maculiforme. E, Diplosphaera, within thallus of Endocarpon pusillum. S = starch grain or plates. Scales: A=1um; B=200 nm; C-E =500 nm.
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However, he also promoted the seemingly contradictory view-
point that Trebouxia is a victim of fungal parasitism rather
than a mutualist partner (Ahmadjian 1993, 1995, 2002). This
would make Trebouxia a host that cannot survive without its
parasite.

In any event, proof of fungus-to-alga nutrient transfer is not
required to make the case that lichen symbiosis offers advantages
to the algal partner. There is considerable evidence that the sur-
rounding fungal tissues and their secondary metabolites may
help protect the lichenized alga from desiccation, photoinhibition,
temperature extremes and herbivory (e.g. Solhaug & Gauslaa
1996; Kranner et al. 2008; Kosugi et al. 2009; Asplund &
Wardle 2013; Gauslaa et al. 2017; Miguez et al. 2017; Sadowsky &
Ott 2016; Beckett et al. 2019; Fernandez-Marin et al. 2019).
Symbiosis may significantly improve the alga’s ability to avoid cel-
lular damage caused by highly reactive forms of oxygen (ROS)
generated under stress conditions (Kranner et al. 2005). With
these protections, and the facilitated display for light capture
afforded by a supportive mycobiont structure, lichen algae may
greatly expand their ecological range and abundance via symbiosis
(Honegger 2012). On the other hand, lichen symbioses are diverse
and it is likely that the parameters of the relationship vary among
taxa, along environmental gradients, and perhaps also during the
course of a single lichen’s development. The long history of
attempts to maintain or resynthesize lichens in the laboratory
has provided a key insight into the nature of this seemingly well-
integrated association: it is very much a relationship of contin-
gency. That the partners can often be cultured separately on
appropriate  media in the laboratory (Ahmadjian 1993;
Crittenden et al. 1995; Stocker-Worgétter & Hager 2008) shows
there is no strict physiological impediment to growth without
symbiosis. To initiate and support lichen formation, a fluctuating
balance of conditions suboptimal for separate fungal or algal
growth appears to be necessary. Any combination of culture con-
ditions (light, moisture, nutrient availability) that continuously
favours either fungal or algal growth results in the breakdown
of symbiotic structures, and the dissociated proliferation of the
micro-organisms  separately (Thomas 1939; Scott 1960;
Ahmadjian 1962; Stocker-Worgdtter 2001; but see Marton &
Galun 1976). It therefore seems logical to view the lichen symbi-
osis as a more or less mutualistic response to conditions that per-
mit neither partner to thrive independently.

Although both partners may derive benefits, the lichen symbi-
osis is clearly not symmetrical (Hill 2009). The heterotrophic myco-
bionts, with their elaborate structural adaptations for algal
cultivation, are more fully committed to symbiosis than their tro-
phically autonomous photobionts. The mycobiont frees itself of
symbiosis only in spore dispersal, seeking algal partners again
immediately upon germination. To carry out sexual reproduction,
it must be in symbiosis, whereas its photobiont appears to need
aposymbiotic freedom to do so. From the alga’s point of view, when-
ever unfavourable conditions reduce its possibilities of aposymbio-
tic success, the benefits of lichenization may begin to outweigh any
disadvantages. Photobionts may rely on lichen symbioses for long-
term persistence in habitats periodically subject to adverse condi-
tions, while needing intervals of independence under favourable
conditions to complete their life cycles. Thus, mycobiont and
photobiont life histories do not fully coincide, but produce a lichen
where they intersect compatibly. To varying degrees, natural selec-
tion has optimized the mycobiont principally for symbiosis, the
photobiont for autonomy as well as symbiosis. The trade-off is
that greater adaptation to symbiotic compatibility is likely to
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constrain the possibilities for competitive success in the aposymbio-
tic state. However, the lingering notion that certain photobionts
may not ever occur free-living is probably attributable to insuffi-
cient sampling, and the conflation of invisibility with absence.
Unsurprisingly, those photobionts that are macroscopically visible
(Nostoc, ~ Cephaleuros,  Phycopeltis, Trentepohlia, Prasiola,
Petroderma) have not had their aposymbiotic occurrence disputed.

Both fungus and alga must adapt, at least to some extent, to be
compatible symbionts. For some authors, such mutual adaptation
constitutes coevolution (Ahmadjian 1987; Saini et al. 2019); for
others, coevolution supposes parallel cladogenesis in partners’
phylogenies, a criterion not generally met by lichen symbioses
analyzed in this regard (Piercey-Normore & DePriest 2001;
Stenroos et al. 2006). However, it has been argued that focusing
exclusively on this fine scale ignores broader patterns of
co-adaptation, whereby ‘guilds’ of different mycobionts share
common pools of photobionts to mutual advantage (Rikkinen
2003, 2013). According to Hill (2009), photobionts cannot
coevolve with their mycobionts because they lack sexual repro-
duction in the thallus, are not subject to natural selection from
one lichen to the next, and are not perpetuated when a lichen
thallus dies. Yet photobionts are continually escaping from lichen
thalli by means of soredia, isidia, thallus fragments, co-dispersed
hymenial, epithecial or conidiomal algae (Fig. 3), and the excreta
of lichenivorous invertebrates (Froberg et al. 2001; Meier et al.
2002; Boch et al. 2011). Such diaspores afford many chances of
finding microconditions where independent algal growth is
favoured; aposymbiotic, potentially sexual populations may then
develop, be they brief or enduring. Selection among genotypes
for compatibility (or resistance) will occur when the opportunity
for relichenization next presents itself. Compatible genotypes
incorporated into a developing lichen may then be subject to fur-
ther winnowing selection in the course of thallus growth.

Patterns of Symbiont Pairing

The asymmetrical needs of the lichen symbionts are reflected in the
non-reciprocal patterns of pairing that have evolved between myco-
bionts and photobionts. Photobiont genera frequently associate
with multiple, phylogenetically disparate lineages of lichen-forming
fungi. The converse, however, is much less common; mycobiont
genera, and often families and even orders, generally tend to
lichenize a single algal genus (Rambold et al. 1998; Persoh et al.
2004). There are a number of notable exceptions. Lichen-forming
fungi of the family Verrucariaceae partner with an extremely
diverse array of eukaryotic algae, including the only reported
cases of stramenopile phycobionts (This et al. 2011). The pin-
lichen genus Chaenotheca (Coniocybomycetes) includes species
associating with Trebouxia, Trentepohlia, Symbiochloris or
Tritostichococcus (Tibell 2001; Skaloud et al. 2016; Proschold &
Darienko 2020). The fruticose lichen genus Stereocaulon may
harbour  thallus  photobionts of either  Asterochloris,
Vulcanochloris or Chloroidium (Vancurova et al. 2018). Species
of Sticta may partner with chlorobionts of Symbiochloris,
Coccomyxa,  Elliptochloris, Heveochlorella or  Chloroidium
(Lindgren et al. 2020). Squamulose Psora decipiens is reported to
partner with either Asterochloris, Trebouxia, Chloroidium
(Ruprecht et al. 2014) or Myrmecia photobionts (Williams et al.
2017; Moya et al. 2018). In addition, it is well known that many
individual mycobionts, particularly in the Peltigerales, may associ-
ate with both green and blue-green algae simultaneously, giving
rise to cyanobacterial cephalodia within or upon a chlorophyte-
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Fig. 3. Liberation and potential co-dispersal of photobionts from the spore-producing structures of certain mycobionts. A, Diplosphaera photobiont (arrows) within
perithecium of Endocarpon pusillum; note much smaller size compared to photobiont cells within thalline tissue (t); s=ascospore. B, apothecial surface of folii-
colous lichen colonizing plastic cover slip; note epithecial algal cells (arrows) among emerging ascospores (s). C, Heveochlorella photobionts (vertical arrow) within
conidiogenous tissue of campylidia and intermixed among filiform macroconidia (oblique arrow). D, hyphophore of Gyalectidium paolae showing diahyphal pro-
pagules (bundles of conidial chains dispersed as a unit) with adhering or intermixed Heveochlorella photobionts (arrows). E, campylidial macroconidia, with
co-dispersed Heveochlorella photobionts loosely encircled, germinating (arrowheads) on a plastic cover slip. F, diahyphal propagules of Gyalectidium germinating
(arrowheads) on a plastic cover slip, with co-dispersed Heveochlorella photobionts. Scales: A, C & D=20um; B=50 um; E & F=10um.
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Fig. 4. Dichotomously lobed chloromorphs of Sticta canariensis emerging from lower
surfaces of cyanomorph thalli (arrows). Scale =5 mm.

containing thallus, or distinct cyanomorph and chloromorph thalli
separately or conjoined (Fig. 4) via a common fungal individual
(e.g. James & Henssen 1976). Association with both a chlorobiont
and a cyanobiont in separate thallus components has also been
reported for certain basidiolichen species in Cyphellostereum
(Oberwinkler 2012) and Lichenomphalia (Gasulla et al. 2020). In
a small number of lichens, green and blue-green photobionts are
known to occur intermixed within the same thallus structure
(Biidel & Henssen 1987; Henskens et al. 2012). There are distinct
physiological advantages to each of these two kinds of photobionts.
Cyanobionts can fix nitrogen as well as carbon but require liquid
water to rehydrate and resume physiological activity, whereas
chlorobionts can rehydrate from vapour, although their CO,
fixation rates may be more adversely affected by high thallus
water contents (Lange et al. 1986, 1993; Green et al. 1993, 2002).
Less obvious are the implications of choosing Trentepohlia
(Ulvophyceae) versus Trebouxia (Trebouxiophyceae) photo-
bionts; neither fix nitrogen, although they may differ in their
tolerance of freezing temperatures (Nash et al. 1987).
Interestingly, mycobiont genera Ionaspis and Hymenelia
(Lecanoromycetes) include trentepohliophilic and trebouxio-
philic taxa, and the single species H. epulotica can apparently
associate with photobionts of either of these two very different
genera (Lutzoni & Brodo 1995; McCune et al. 2018). Recently,
Ertz et al. (2018) demonstrated that the lichen fungus
Lecanographa amylacea can form morphologically distinct sex-
ual and asexual thalli with Trentepohlia and Trebouxia photo-
bionts, respectively. While the above examples show that
significant divergences in photobiont selection have arisen in
a number of mycobiont lineages, far more conservative tenden-
cies appear to predominate in the majority of lichen-forming
fungal groups.

Photobiont choice and the range of compatible pairings for a
given mycobiont were first explored experimentally in classic
laboratory resynthesis studies using Cladonia cristatella and
Lecanora chrysoleuca (Ahmadjian et al. 1980; Ahmadjian &
Jacobs 1981). Varying degrees of compatibility were observed,
with thallus formation reaching different developmental stages
depending on the photobiont strain introduced. Nonetheless, over-
all results generally reflected patterns observable in natural lichens:
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Cladonia successfully lichenized strains of Asterochloris but not
those of Trebouxia (as currently defined), while Lecanora did just
the opposite. In the last two decades, genetic markers have been
used to characterize the range of photobiont diversity chosen by
individual lichen-forming fungal species in nature, and to assess
the parameters that might affect their choices. This complex
topic has attracted much attention and merits a review of its
own, but some general findings can be summarized here. Most
mycobiont species appear to be fairly selective; they tend to partner
with a limited range of strains or species within a single photobiont
genus, but to differing degrees. Some mycobionts accept a substan-
tially broader range of taxa within the photobiont partner genus;
this relative liberality is often characteristic of lichen-forming
fungi that have attained wider, more cosmopolitan distributions
(Blaha et al. 2006; Guzow-Krzeminiska 2006; Leavitt et al. 2013;
Muggia et al. 2014; Magain et al. 2017; Vancurova et al. 2018),
or those capable of colonizing extreme environments with probably
fewer photobiont options available (Romeike et al. 2002; Wirtz
et al. 2003; Engelen et al. 2010; Pérez-Ortega et al. 2012; Osyczka
et al. 2021; Rola et al. 2021). Such mycobionts may be closely
related to species that accept a much narrower range of photobiont
partners (Piercey-Normore 2004; Yahr et al. 2004; Otélora et al.
2010; Onut-Brannstrém et al. 2017). Some studies have correlated
symbiont selection patterns with environmental parameters, such
as latitude (Singh et al. 2017), climate (Ridk4 et al. 2014) and eco-
logical conditions that influence the distribution and availability of
photobionts (Yahr et al. 2006; Fernandez-Mendoza et al. 2011;
Peksa & Skaloud 2011; Vargas Castillo & Beck 2012; Werth &
Sork 2014). Photobiont tolerance of heavy metals appears to influ-
ence their selection by mycobionts in some lichen communities
colonizing metal-rich substrata (Vancurova et al. 2018; Rola et al.
2021) but not others (Beck 2002; Hauck et al. 2007; Backor et al.
2010). Many studies stress the intrinsic compatibility requirements
of individual fungal taxa as primary determinants of pairing pat-
terns (Yahr et al. 2004; Stenroos et al. 2006; Myllys et al. 2007;
Leavitt et al. 2015; Joneson & O’Brien 2017), often in conjunction
with ecological factors (Elvebakk et al. 2008; O’Brien et al. 2013;
Dal Grande et al. 2018; Juriado et al. 2019; Pino-Bodas &
Stenroos 2020). In some communities, mycobionts may have
adapted to utilize a common pool or pools of photobionts,
whose local availability might thereby be sustained for all users
(Beck et al. 2002; Rikkinen et al. 2002; Rikkinen 2003; Sanders
et al. 2016; Onut-Brannstrom et al. 2018; Cardds et al. 2019).
Thallus growth form may also affect photobiont selection
patterns. Some authors have suggested that crustose lichens
may associate with a broader range of photobionts than do related
foliose and fruticose taxa (Helms et al. 2001), perhaps because
their more extensive and intimate contact with the substratum
offers more opportunity to take up additional algae in the course
of development. Lichen reproductive mode can also be superim-
posed upon these factors. Some studies have found that lichens
reproducing primarily by vegetative propagules, such as soredia
or isidia, associate with a narrower range of photobiont genotypes,
presumably due to chiefly vertical transmission of both symbionts
together (Dal Grande et al. 2012; Werth & Scheidegger 2012;
Otalora et al. 2013; Cao et al. 2015 Hestmark et al. 2016;
Steinova et al. 2019). However, other vegetatively reproducing
lichens accept a much broader range of photobionts, suggesting
that the fungus does not necessarily maintain partnership with
its co-dispersed photobiont throughout development (Ohmura
et al. 2006, 2019; Nelsen & Gargas 2008, 2009; Wornik & Grube
2010).
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Acquisition of New Algal Symbionts

Acquisition of new and different photobionts, ‘photobiont switch-
ing’, has clearly been significant in the evolution of lichen rela-
tionships. However, this phrase may refer variably to events
occurring at different levels of organization. A single mycobiont
individual might acquire new photobionts at different times in
the course of its development (Friedl 1987; Wedin et al. 2016),
or at separate places along its somatic extension (Létrouit-
Galinou & Asta 1994). The degree to which the newly lichenized
alga may differ genetically from algal strain(s) already in posses-
sion will be limited by the innate compatibility range of that
mycobiont individual. In contrast, a new fungal individual devel-
oping from a meiospore may encounter and select a photobiont
strain different from the one its parental genotypes associated
with. In this case, a generational change in photobiont partner
could be enabled by a generational change in mycobiont geno-
type. At a phylogenetic level, a cladogram may provide evidence
that a fungal lineage has changed its association from one photo-
biont to another in the course of evolution. But at a finer scale, a
great many photobiont switches, perhaps back and forth, might
have taken place over many generations; comparing taxa will
indicate only the overall result.

New photobionts may be acquired in multiple ways. Contact
and capture of free-living photobionts in nature by hyphae
emerging from germinated spores (Fig. 5), once thought to be
unlikely (Lamb 1959), has been documented in a number of stud-
ies (Ward 1884; Werner 1931; Bubrick et al. 1984; Garty &
Delarea 1988; Scheidegger 1995; Sanders & Liicking 2002;
Sanders 2014). In theory, a single compatible algal individual
might be sufficient to generate the entire population within a
developing thallus. However, there appear to be many opportun-
ities for additional photobionts to be incorporated from exterior
sources. Particularly in early developmental stages, prothallic
hyphae extending outward along the substratum from the

Fig. 5. Muriform ascospore (a), probably of Calopadia, germinating on a plastic cover
slip placed in a south-west Florida oak hammock, and lichenizing a group of algal
cells (arrow), most likely Heveochlorella. Scale =20 um.
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lichenized portions of the organizing thallus can incorporate add-
itional algal cells (Sanders & Liicking 2002; Sanders 2014).
Vegetative propagules, such as soredia or isidia, also begin devel-
opment with the emergence and proliferation of such hyphae
(Jahns et al. 1979; Schuster et al. 1985), anchoring the structure
and greatly expanding the available surfaces for potential contact
with other compatible photobionts as the thallus is organized. In
many crustose lichens, a prothallus remains active at the growing
margins of the lichen and may continue to incorporate compat-
ible photobionts falling upon it or encountered on the substratum
(Fig. 6; see also Gallge 1927: p. 40, 1932: p. 78; Letrouit-Galinou &
Asta 1994). The multitude of discrete, lichenized units that com-
prise the thallus of squamulose lichens probably also arise from
repeated algal capture by a network of prothallic hyphae intercon-
necting the squamules. Certain soil- and rock-colonizing squamu-
lose lichens produce hyphal aggregates (cords or rhizomorphs) of
indeterminate growth that penetrate the substratum extensively
(Poelt & Baumgiartner 1964; Sanders et al. 1994), giving rise to
new thallus squamules where compatible algal symbionts are
encountered and lichenized (Wagner & Letrouit-Galinou 1988;
Sanders & Rico 1992; Sanders 1994). The structurally similar rhi-
zinomorphs of certain umbilicate lichens also appear to have this
capability (Schuster 1992). In some foliose and fruticose lichens,
organized thallus surfaces may themselves be capable of incorpor-
ating compatible algal cells that make external contact (Bitter
1904). Lichens that form cephalodia and/or joined chloromorph
and cyanomorph thalli clearly retain this ability (see discussion
under Nostoc below). Additionally, certain lichen-forming fungi
appear capable of obtaining photobionts from other lichens,
upon which their spores may germinate (Hawksworth et al.
1979). The host thallus is eventually destroyed as its photobionts
are taken over by the invading hyphae of the aggressor, giving rise
to a new lichen (Poelt 1958; Friedl 1987; Feige et al. 1993; Licking &
Grube 2002; Wedin et al. 2016). Thus, capture of free-living algae by
spore germlings is clearly not the only opportunity for a mycobiont
to acquire new photobionts. On the other hand, some interesting
transplant experiments with Psora decipiens suggest that lichens
may not always be able to switch to more favourable photobionts
when needed (Williams et al. 2017).

If acquisition of additional photobionts is indeed a common
occurrence in the course of lichen development, lichen thalli
may be expected to contain a heterogeneous photobiont popula-
tion, at least at certain stages. Some authors have observed and
illustrated quite different chlorobionts occurring together within
single thalli (Voytsekhovich et al. 2011). Data from molecular
markers have also addressed this question. Some authors found
no evidence of multiple photobiont genotypes in single thalli
examined (Paulsrud & Lindblad 1998; Beck & Koop 2001;
Singh et al. 2017; Skaloud et al. 2018); others found occasional
occurrences (Guzow-Krzeminska 2006; Backor et al. 2010;
Muggia et al. 2013; Nyati et al. 2013; Ridka et al. 2014;
Onut-Brannstrom et al. 2018; Vancurova et al. 2018; Molins
et al. 2020), or frequent presence (Piercey-Normore 2006;
Muggia et al. 2014; Park et al. 2015; Dal Grande et al. 2018;
Osyczka et al. 2021). Intrathalline populations of Trebouxia can
also vary in simple sequence DNA regions, which may result
from clonal replication errors (Mansournia et al. 2012; Dal
Grande et al. 2014a). Individual thalli of Parmotrema pseudotinc-
torum from the Canary Islands were reported to encompass dis-
tinct lineages of Trebouxia as well as Asterochloris (Molins et al.
2013). According to Casano et al. (2011), two genetically distinct
strains of Trebouxia are always present together in thalli of
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Fig. 6. Phycopeltis free-living and in stages of lichenization. A, free-living. B, edge of developed Phycopeltis thallus (left) lichenized by a network of hyphae (probably
foliicolous Porina sp.) that extend over substratum and capture additional young Phycopeltis germlings (arrows). Scales: A=20 um; B=10um.

Ramalina farinacea, and high-throughput sequencing results sug-
gest that a number of other, minority algae might also be present
in this lichen (Moya et al. 2017). One constant challenge in asses-
sing photobiont identities is that lichen thallus surfaces are colo-
nized by epibiontic algae (including possible photobionts of other
lichens) that are not intimate symbionts of the lichen in question,
yet may figure prominently in cultures established or samples
obtained from thallus fragments (Warén 1920; Muggia et al.
2013). Confidence that sampled algae are indeed the thallus
photobionts can be improved by establishing cultures from
single algal cells extracted from within the thallus using a
micromanipulator (Beck & Koop 2001), although the proced-
ure is time-consuming. Additional evidence may be sought in
TEM micrographs of photobionts within the same thallus
(e.g. Catald et al. 2016; Molins et al. 2018), particularly where
more than one pyrenoid type (Friedl 1989) is present.
However, variability should first be assessed among individuals
of the same genetic strain because chloroplast structure may
vary from cell to cell and often looks substantially different
according to the plane of ultrathin section examined. In
sequencing, conventional dideoxy chain termination (Sanger)
technology will reliably identify a predominant photobiont
and ignore any others present in low abundance, while the pro-
cedure fails if there are secondary photobionts in sufficient abun-
dance (c. 30%; Paul et al. 2018). High-throughput sequencing
will detect minority photobionts but will also be more sensitive
to epibiontic algae. A recent comparison of the two sequencing
approaches concluded that in most lichens there is a single domin-
ant photobiont genotype, representative of most of the thallus
population (Paul et al. 2018).

The Genera of Lichen Algae

Approximately 50 algal genera are currently said to include lichen
photobionts. Some may represent identifications that are errone-
ous or based on outdated circumscriptions of taxa. Others may
spin off new genera as their cryptic genetic diversity is further elu-
cidated. It is evident that a small number of very prominent
photobiont genera (Asterochloris, Nostoc, Rhizonema, Trebouxia,
Trentepohlia) each partner with many hundreds or thousands
of lichen-forming fungal species; a number of others (e.g.
Coccomyxa, Elliptochloris, Heveochlorella, Symbiochloris) are
lichenized by many dozens or hundreds of different mycobiont
species, while much of the remainder participate in only a small
number of known lichen associations. It seems probable that fur-
ther surveys will uncover more photobiont genera in the latter cat-
egory. While it is widely agreed that the diversity of
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lichen-forming algae remains considerably less well known than
that of lichen-forming fungi, this fact alone is unlikely to account
for the enormous disparity between the currently recognized
number of photobiont genera (c. 50) and that of mycobiont gen-
era (c. 1000; Liicking et al. 2017a). The number of photobiont spe-
cies described, estimated at ¢. 100 not long ago (Skaloud & Peksa
2010), shows a similar disparity with the number of lichen-
forming fungal species (20 000). Indeed, both the generic and spe-
cies estimates differ between mycobiont and phycobiont by the
same factor of 20. Thus, the imbalance is not likely due to differ-
ences in genus/species concepts between algae and fungi. Of
course, much of the genetic diversity discovered within photo-
biont genera in the last few years has been reported as clades
that still lack taxonomic recognition; species numbers will surely
increase substantially in the near future as such diversity becomes
formalized biosystematically. However, this still seems unlikely to
close the enormous gap with mycobiont species numbers. Rather,
the disparities probably indicate a real ecological asymmetry: the
large number of lichen-forming fungal taxa may be partnering
with a substantially smaller pool of photobiont taxa, many of
which are shared among mycobionts. Such was the conclusion
reached recently by Dal Forno et al. (2020) in their detailed com-
parison of genetic diversity in Dictyonema and its Rhizonema
photobionts.

A synopsis of algal genera to which lichen photobionts are cur-
rently attributed is given below.

Cyanobacteria

Anabaena Bory ex E. Bornet & C. Flahault — See Nostoc. Strains
of Anabaena versus Nostoc are resolved in some analyses
(Henson et al. 2002; Rajaniemi et al. 2005; Liu et al. 2013;
Elshobary et al. 2015) but formal distinction of the two genera
remains controversial (Makra et al. 2019). Tschermak-Woess
(1988a) recommended re-examination of earlier reports that
Anabaena occurs as cephalodial photobiont of Stereocaulon.

Anacystis Meneghini — According to Bold & Wynne (1985), this
generic name has been applied to ellipsoid to cylindrical cyano-
bacteria that often accumulate in a common gelatinous matrix,
with some authors also including spheriodal-celled taxa such as
Gloeocapsa and Chroococcus. The much-studied ‘Anacystis
nidulans’ is usually treated now under Synecococcus; other
taxa are currently placed in Microcystis. Photobionts attributed
to Anacystis in the past include the partners of a small number
of Peltula species and the cephalodial symbionts of a
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Stereocaulon (see Tschermak-Woess 1988a); determining their
identities with confidence will require further study.

Brasilonema Fiore et al. — This cyanobacterial genus, forming a
distinct clade in molecular analyses (Fiore et al. 2007), has
aggregated filaments morphologically similar to Scytonema
but only rarely showing false branching. A recent paper re-
ported new species of both Brasilonema and Chroococcidiopsis
as co-occurring photobionts of an unidentified lichen growing
on gravestones in a northern Florida cemetery (Villanueva
et al. 2018). However, as no description or evidence of this asso-
ciation has yet been published, the status of Brasilonema as
lichen photobiont awaits corroboration.

Calothrix C. Agardh ex E. Bornet & C. Flahault and Dichothrix
G. Zanardini ex E. Bornet & C. Flahault — These filamentous
cyanobacteria are members of the Rivulariaceae; their tri-
chomes have a basal heterocyte and gradually narrow towards
the apex. The two genera are morphologically similar and
both have been reported as lichen photobionts, particularly in
association with certain species of Lichina (see Tschermak-
Woess 1988a). However, DNA sequences obtained from two
such examples instead placed the algae in question in the
genus Rivularia (Ortiz-Alvarez et al. 2015). The photobiont
of Placynthium nigrum isolated into culture also shows the dis-
tinctive Rivulariaceae morphology (apically tapering filaments
with basal heterocytes) while the lichenized filaments rather
resemble those now placed in Rhizonema (see Geitler 1934).
The circumscription of Calothrix and Dichothrix with respect
to lichen photobionts currently remains unresolved.

Chroococcidiopsis Geitler (and Myxosarcina H. Printz) — These
unicellular cyanobacteria are found in a great diversity of habi-
tats and include extremophiles. Cells divide in sequence by bin-
ary fission, often in alternating planes to produce more or less
cubical packages of cells. Cells can also undergo multiple fis-
sion to produce four or more autospore-like products known
as baeocytes, initially contained within the sheath-like, fibrous
outer wall layer of the mother cell (Waterbury & Stanier 1978).
The baeocytes of Myxosarcina, unlike those of Chroococcidiopsis,
have a brief stage of gliding motility; the genera are said to be
otherwise indistinguishable morphologically. The baeocyte-
forming cyanobacteria were formerly grouped together in the
order Pleurocapsales (Waterbury & Stanier 1978), but SSU
sequence analysis has shown this trait to be a convergence shared
by a number of lineages of quite different origin (Fewer et al.
2002). In that study, several photobionts isolated from
Lichinaceae appear within the same clade as Chroococcidiopsis
thermalis, sister to the heterocyte-forming Stigonematales and
Nostocales, and distant from Myxosarcina as well as other mor-
phologically similar taxa formerly attributed to Chroococcidiopsis
(Fewer et al. 2002). Sequences obtained from photobionts of sev-
eral Peltula species collected in Vietnam also suggested affin-
ities within a broad ‘Chroococcidiopsidales’ clade (V6 2016).
Other algal partners of Lichinaceae have been attributed to
Chroococcidiopsis based on morphology and the production
of baeocytes observed in cultured isolates (Biidel & Henssen
1983). Tschermak-Woess (1988a) suggested that some taxa
identified as Chroococcidiopsis might actually belong to
Gloeocapsa and require study in culture. Most photobiont iso-
lates attributed to Chroococcidiopsis and Myxosarcina await
more detailed molecular scrutiny.
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Chroococcus Nageli — A morphologically distinctive cyanobacter-

ial genus, Chroococcus has relatively large, spherical cells that
divide at consecutive right angles to produce small packets of
cells, often within concentric, gelatinous sheath layers. A num-
ber of reports, compiled by Tschermak-Woess (1988a), attri-
bute thallus and cephalodial photobionts of various lichens to
this genus or merely to Chroococcaceae, or Chroococcales.
Many are anecdotal and most await reinvestigation with
molecular sequence comparisons. The photobionts of certain
Dictyonema species, once attributed to Chroococcus, have
been shown to belong instead to Rhizonema, a usually fila-
mentous taxon that may be greatly altered morphologically in
certain lichen associations (Liicking et al. 2009). The circum-
scription of Chroococcus and its status as a lichen photobiont
genus remain uncertain at present.

Gloeocapsa Kiitzing — This colonial cyanobacterium has round-

ish to oblong cells surrounded individually and communally
by successive layers of dense mucilage, reflecting the sequence
of cell divisions. Morphologically defined at present,
Gloeocapsa commonly occurs free-living in moist terrestrial
habitats and is also reported as thallus photobiont in several
genera of Lichinaceae, and as cephalodial symbiont in certain
species of Stereocaulon and Amygdalaria (Tschermak-Woess
1988a). In the lichen Gonohymenia, contacting mycobiont
hyphae broadly invaginate the cells of its photobiont, identified
as Gloeocapsa (Paran et al. 1971). Geitler (1933) described
appressorial hyphae in the lichen Synalissa that branch in syn-
chrony with the binary fission of its Gloeocapsa photobiont.
Molecular sequence data are much needed to understand
the relationship among taxa currently assigned to Gloeocapsa.

Hyella E. Bornet & C. Flahault — The filamentous cyanobacter-

ium Hyella is a widespread inhabitant of the marine intertidal
zone, where it colonizes calcareous substrata such as mollusc
shells. The substratum is penetrated by threads arising from a
basal system at the surface; endospore-like baeocytes may be
formed (Fritsch 1945). Genomic analysis shows Hyella phylo-
genetically nearest to the genus Chroococcidiopsis (Brito et al.
2020). Hyella is reported to be the photobiont of some species
of fungi now assigned to Collemopsidium (Mohr et al. 2004).
However, details of the symbiotic interaction are few; other
genera of cyanobacteria, such as Gloeocapsa and Nostoc, are
also said to be photobionts for Collemopsidium
[=Pyrenocollema] (Purvis et al. 1992).

Hyphomorpha A. Borzi — These seldom encountered cyanobac-

teria occur as epiphytes upon tropical liverworts and tree
bark, where they form a prostrate filament system. The fila-
ments have an apical cell producing derivatives that may later
divide periclinally to become pluriseriate, as do structurally
similar species of Stigonema. Cells of these older portions
tend to fall out of alignment and become jumbled into a
‘chroococcoid stage’ (Fritsch 1945). Hyphomorpha was first
identified as photobiont in two species of Spilonema lichens
by Henssen (1981), who reported confirmation of the alga’s
identity by eminent phycologist Lothar Geitler. One of these
mycobiont species has been recently reclassified as Erinacellus
dendroides (Spribille et al. 2014). At present, the algal genus
Hyphomorpha is phenotypically defined; it is currently placed
in Fischerellaceae (Bidel & Kauff 2012) or included under
Hapalosiphonaceae (Komarek et al. 2014) within the Nostocales.
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Nostoc Vaucher ex E. Bornet & C. Flahault — This genus accom-
modates cyanobacteria occurring worldwide in fresh water and
upon soil, bark and low-growing plants, with some strains
highly  desiccation-tolerant ~ (Dodds et al.  1995).
Phenotypically defined at present, taxa attributed to Nostoc
fall within several distinct clades of the Nostocales, making
the genus polyphyletic (Rajaniemi et al. 2005; Gagunashvili &
Andrésson 2018). These algae typically form darkly pigmented,
mucilaginous macrocolonies of highly variable size and shape,
ranging from spheres to irregularly pustulose mats to tangles of
cord-like axes. Embedded within the gelatinous matrix are uni-
seriate trichomes markedly constricted at the cross walls, giving
individual cells an almost spherical to barrel-shaped form and
the filaments a characteristic string-of-beads appearance. Cell
division is diffuse, without apical cells or directional polarity.
At intervals along the chain of vegetative cells are slightly lar-
ger, thicker-walled, lighter-coloured heterocytes (heterocysts)
that specialize as centres of nitrogen fixation. Since the enzyme
involved in this process is inhibited by the presence of oxygen,
heterocytes lack oxygen-generating Photosystem II (Wolk et al.
1994); electron donors are imported and fixed nitrogen is
exported via microplasmodesmatal connections with neigh-
bouring vegetative cells (Giddings & Staehelin 1981; Kumar
et al. 2010). Thus, prokaryotic Nostoc and its heterocytic
relatives show degrees of cell specialization and intercellular
transport characteristic of true multicellular organization
(Garcia-Pichel 2009).

Nostoc, like many filamentous cyanobacteria, has a motile
phase. Short filament segments known as hormogonia are pro-
duced by multiple divisions of the vegetative cells between two
heterocytes, then break free (Boissiére et al. 1987; Paulsrud
2001). The segments disperse or migrate directionally by a glid-
ing motion that involves secretion of polysaccharide, against
which proteinaceous pili appear to push or pull the trichome
(Khayatan et al. 2015). Under favourable conditions, the hor-
mogonia lose motility and differentiate heterocytes as they
transition to vegetative filaments (Paulsrud 2001). It is conceiv-
able that motile hormogonia might facilitate symbiont encoun-
ters in the formation of cyanolichens, as also suspected of
flagellate stages in eukaryotic photobionts, but direct evidence
is lacking. In the establishment of plant-Nostoc symbioses,
the role of hormogonia as infective agents is well known
(Adams et al. 2012), and genes related to hormogonial function
have been identified in lichen-symbiotic strains (Gagunashvili
& Andrésson 2018). Nostoc may also disperse temporally by
forming akinetes, a kind of resistant spore that develops from
a vegetative cell and endures adverse conditions.

Nostoc is photobiont in the majority of cyanophilic
lichens. In the Peltigerales, Nostoc serves as principal thallus
photobiont, or as secondary photobiont specialized for nitro-
gen fixation within discrete structures known as cephalodia;
these are formed upon or within a thallus that has a green
alga as principal photobiont. In a number of cases, Nostoc
may serve as both principal and secondary photobiont of a sin-
gle mycobiont species or individual; this results in cyanomorph
and cephalodiate chloromorph thalli that may be either separ-
ate or conjoined (James & Henssen 1976; Brodo & Richardson
1978; Tonsberg & Holtan-Hartwig 1983; Armaleo & Clerc
1991; Stenroos et al. 2003; Moncada et al. 2013; Simon et al.
2018). The same strain of Nostoc may occur in both morphs
(Paulsrud et al. 1998, 2001). In many such instances, chloro-
morph and cyanomorph are both foliose, but in some species
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of Lobaria and Sticta, the Nostoc-containing cyanomorph is a
branching, fruticose growth that bears no resemblance to the
foliose chloromorph (Jordan 1972; James & Henssen 1976;
Tonsberg & Goward 2001; Magain et al. 2012); when growing
separately, the two morphs were long presumed to represent
very different taxa. Thallus morphology would appear to be
influenced by the distinct photobionts in such cases. In certain
species of Pseudocyphellaria on the other hand, the independ-
ently growing ‘cyanomorphs’ include numerous clusters of the
green algal symbiont (probably Symbiochloris) spread among
the Nostoc within the algal layer (Henskens et al. 2012), with
no visible alterations to thallus morphology. Even when
Nostoc serves as a secondary (cephalodial) photobiont in a
mature lichen, it may be acquired at a very early stage of lichen
formation through contact and capture by the developing
mycobiont prothallus (Ott 1988; de los Rios et al. 2011).
Once organized, thallus lobes containing green algae may sec-
ondarily encounter and incorporate compatible Nostoc on the
lower surface (Jordan 1970; Jordan & Rickson 1971), or either
the upper or lower surface (Cornejo & Scheidegger 2013).
Mycobiont selectivity for particular strains of Nostoc can be
very high (Paulsrud et al. 2001). The Nostoc-containing cyano-
morph may in turn capture compatible green algal symbionts
that contact the tomentum hyphae of the lower cortex, from
which chloromorph lobes arise (Sanders 2001).

In most lichens where it is primary photobiont, Nostoc is
confined to a discrete algal layer; its filaments are often broken
up or contorted into cell clusters with little secretion of muci-
laginous sheath material (Fig. 1J). When isolated into culture, it
reverts to the morphology and growth pattern typical of its
free-living state (Kardish et al. 1989). However, in many of
the so-called gelatinous lichens, the form of the Nostoc is not
fundamentally altered in lichenization; it maintains the
necklace-like filaments and extensive surrounding gelatinous
sheath, through which the mycobiont hyphae penetrate
(Fig. 1I). In such cases, the photobiont constitutes the main
structural component of the lichen, which may maintain an
appearance and texture rather similar to that of free-living
Nostoc macrocolonies. A recent study suggests that these differ-
ences in phenotypic expression, leading to stratified versus gel-
atinous lichens, may be associated with different genetic strains
of Nostoc (Magain & Sérusiaux 2014). This would appear to be
another example where major differences in thallus structure
may be correlated with photobiont identity.

Cyanophilic mycobionts can be highly selective of their
Nostoc partner strains, often overriding geographical factors
(Paulsrud et al. 1998, 2000; Stenroos et al. 2006; Myllys et al.
2007), although a considerably lower selectivity was observed
in lichen communities in maritime Antarctica (Wirtz et al.
2003). Within a single clade of Peltigera, both highly selective
and less discriminating generalist species can be recognized
(Magain et al. 2017, 2018). A study of temperate and boreal
communities reported genetically distinct terricolous and epi-
phytic pools of Nostoc, from which Peltigera and Nephroma
spp. colonizing those respective substrata select their photo-
bionts (Rikkinen et al. 2002). Using a larger data set,
Stenroos et al. (2006) found Nostoc photobiont strains to be
correlated with mycobiont identity rather than ecological
guild. However, fungal preference for the Nostoc photobiont
strains of other community members over those sampled
from the substratum has been reported in other lichen com-
munities (Cardés et al. 2019). In other studies, involving
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Pannaria and other cyanophilic lichens, both corticolous and
saxicolous species sometimes chose closely related strains of
Nostoc, and more complex combinations of variable myco-
biont selectivity and ecological factors were observed
(Elvebakk et al. 2008).

Nostoc participates in a range of symbioses besides those it
forms with lichen-forming fungi (Adams et al. 2012). It is
taken up by the locally emergent protoplast of the coenocytic,
glomeromycete fungus Geosiphon pyriformis, which then pro-
duces a swollen bladder within which the endosymbiotic
(endocytobiotic) Nostoc is housed. The intracellular location
of the algal symbiont and the close affinities of the fungal com-
ponent to arbuscular mycorrhizal fungi make the
Geosiphon-Nostoc symbiosis quite distinct from fungal-algal
symbioses treated under the lichen concept (Kluge et al.
2002; Schiif$ler 2012). Nostoc also includes obligatory partners
of plants representing several major clades of embryophytes;
motile hormogonia are the usual infective agent, and fixed
nitrogen, usually in the form of ammonium, is supplied to
the host from the numerous heterocytes that differentiate in
the symbiotic state (Meeks 1998). In hornworts and the liver-
wort Blasia, hormogonia enter and inhabit specialized,
mucilage-secreting chambers within the gametophytes
(Adams & Duggan 2002). Branched filamentous outgrowths
from the inner surfaces of these chambers then develop and
increase surface contact between the host and the cyanobacterial
colonies (Rodgers & Stewart 1977). In cycad gymnosperms,
Nostoc colonizes radial cavities in the cortex of specialized,
upward-growing coralloid roots (Costa & Lindblad 2002).
Symbiosis with the floating aquatic fern Azolla is unique in
that the Nostoc (or Anabaena; Svenning et al. 2005) is vertically
inherited through plant generations, obviating the need for new
symbiont capture; the principal cyanobacterium involved cannot
be cultivated separately, since its genome shows considerable
gene degradation (Ran et al. 2010). In the angiosperm
Gunnera, symbiotic Nostoc occurs intracellularly in leaf base tis-
sue (Bergman et al. 1992). Some of these symbiotic strains, as
well as free-living isolates, appear to be similar or closely related
to those occurring within lichen thalli or cephalodia, whereas cer-
tain other Nostoc strains might be more specialized as lichen
photobionts (O’Brien et al. 2005; Stenroos et al. 2006). Recent
genomic comparisons identified certain genes of potential rele-
vance to symbiosis in Nostoc, suggesting also that symbiotic
strains may have larger genomes than non-symbiotic ones
(Gagunashvili & Andrésson 2018).

Rhizonema Licking & Barrie — This cyanobacterial genus was
resurrected recently to accommodate filamentous, heterocyte-
producing photobionts previously assumed to belong to
Scytonema, but distinct from that lineage in their 16S rRNA
sequences (Licking et al. 2009). Rhizonema species may be
boreal as well as tropical; they are at present known mainly
from lichen symbioses but free-living or liverwort-associated
populations have also been reported (Cornejo et al. 2016).
The filaments may be broken up into cell clusters or remain
as discrete trichomes (Fig. 1E & F), with sporadic lateral prolif-
eration that has been interpreted as true branching based on
the appearance of a mature branch junction (Liicking et al.
2014). This would presumably distinguish Rhizonema from
Scytonema, which shows false branching. Thus, when Vo
(2016) observed paired false branching in photobionts of
Vietnamese Cyphellostereum and Dictyonema, she concluded

https://doi.org/10.1017/50024282921000335 Published online by Cambridge University Press

357

that the algae were Scytonema rather than Rhizonema, appar-
ently without corroborating molecular data. However, recent
observations of Rhizonema, isolated into culture from
Dictyonema and identified with genetic sequence comparisons,
show branching that appears distinctly false (Fig. 1D).
Interestingly, a 19th century illustration of a Dictyonema seri-
ceum thallus (Bornet 1873: plate 12) depicted the photobiont
with both double-false branching and seemingly true branching
with a junction similar to that shown in Liicking et al. (2014).
The range of branch development modes possible in
Rhizonema strains clearly requires further study in both liche-
nized and aposymbiotic material.

Major genera of lichen-forming fungal partners known so
far include Coccocarpia, Erioderma (Peltigerales), and the
basidiomycetes Acantholichen, Dictyonema, Cora, Corella and
Cyphellostereum (all Hygrophoraceae). In those basidiolichens,
the Rhizonema trichome is usually penetrated longitudinally by
a single, central mycobiont haustorium quite unlike anything
reported in other lichen groups (Roskin 1970; Oberwinkler
1980, 1984, 2012; Slocum 1980; Tschermak-Woess 1983). Such
elaborate intrusive structures differ dramatically from the very
limited penetrations known in other lichenized algae and might
represent specialized absorptive structures. Carbon transfer has
not yet been studied in basidiolichens.

Rivularia C. Agardh ex E. Bornet & C. Flahault — The trichomes

of this cyanobacterial genus occur in clusters, often on sub-
merged rocks; each filament has a heterocyte at the base and
tends to taper gradually towards the apex. The genus
includes the photobionts of a couple of maritime species of
Lichina, whose algal symbionts were previously attributed to
the morphologically similar genus Calothrix (Ortiz-Alvarez
et al. 2015).

Scytonema C. Agardh ex E. Bornet & C. Flahault — This aquatic

or aerophilic genus of cyanobacteria has trichome walls
unconstricted at the septa, with vegetative cells usually
wider than long, prominent heterocytes, and thick sheaths
that are often darkly pigmented. Scytonema is traditionally
recognized by the frequently paired (‘double’) false branches,
where segments created by a break in the trichome continue
linear growth by simply reorienting laterally and emerging
from their formerly common sheath. Trichome breaks may
arise where intercellular material is deposited as a separation
disc, or one or more cells degenerate, or at intercalary hetero-
cyte positions (Bharadwaja 1933). Once considered a signifi-
cant photobiont genus, including both principal and
secondary (cephalodial) lichen symbionts, Scytonema in its
current sense encompasses an uncertain but much reduced
number of lichen algae. Photobionts previously ascribed to
Scytonema have been shown by DNA sequence analyses to
belong to a quite distinct clade, now designated Rhizonema
(Lucking et. al. 2009). Nevertheless, at least one recent photo-
biont sequence (16s rRNA), from a Heppia thallus, appears to
fall within Scytonema in the strict sense (V6 2016). This may
provide some corroboration for previous attributions of
Heppia photobionts to Scytonema based on morphology of
cultured isolates (Wetmore 1970). The cell shape and div-
ision planes of the Heppia photobionts are radically trans-
formed to produce cell clusters in the lichenized state,
reverting quickly to typical filamentous growth when cul-
tured aposymbiotically (Marton & Galun 1976). In
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Pyrenothrix nigra, the lichenized filamentous cyanobiont
shows the double-false branching typical of Scytonema
(Tschermak-Woess et al. 1983), although Liicking et al.
(2009) suggested that its photobiont might be Rhizonema.
This is quite plausible, since there is some doubt as to
whether the two cyanobacterial genera can be reliably distin-
guished by their mode of branching (see comments under
Rhizonema). More sequence data are clearly needed to clarify
the extent to which lichen symbioses may involve the genus
Scytonema in its current, more restricted sense.

Stigonema C. Agardh ex E. Bornet & C. Flahault — This cyano-
bacterial genus is recognized by its complex, branching axes
with cells dividing in perpendicular planes as in true paren-
chyma. Filaments are uniseriate at the apex but become locally
multiseriate proximally by periclinal divisions, often but not
necessarily associated with the formation of true branches lat-
erally. After division, cells retain continuity at the central portion
of the septum, where micropores traverse the septal wall (Butler
& Allsopp 1972). Stigonema has been reported as thallus photo-
biont in Ephebe and Spilonema, and also as cephalodial partner
in numerous species of Stereocaulon (Tschermak-Woess
1988a). The genus awaits molecular treatment, remaining mor-
phologically defined for the time being.

Tolypothrix Kiitzing ex E. Bornet & C. Flahault — These are fila-
mentous cyanobacteria resembling Scytonema but with usually
single- rather than double-false branches emerging from fila-
ment breaks; one side of the break grows out as the false
branch, the other usually differentiates as a heterocyte.
Tolypothrix has been reported as photobiont of the ‘primitively
lichenized” Thermutopsis jamesii based on morphology in col-
lected material (Henssen 1990). Molecular sequences obtained
from cephalodia of Placopsis placed the cyanobionts in or near
Tolypothrix (Raggio et al. 2012).

Green algae (Viridiplantae - Archaeplastida)

Apatococcus F. Brand — Abundant and widely distributed as a
free-living organism, Apatococcus has long been known as an
omnipresent subaerial unicellular alga, inevitably encountered
but not chosen by discriminating germling hyphae of lichen-
forming fungi. Now it appears that Apatococcus includes lichen
symbionts as well. Light microscopic observations of algal sym-
bionts cultured from several maritime lichen species first impli-
cated Apatococcus as a photobiont (Watanabe et al. 1997);
molecular sequence comparisons later identified Apatococcus
strains as partners of Scoliciosporum (Beck 2002) and
Fuscidea species (Zahradnikova et al. 2017). Cells are spherical
with alternating perpendicular planes of division, producing
cuboidal packets of transiently adherent daughter cells.
Autospores and biflagellate zoospores are also formed (Ettl &
Gartner 2014). Autospores may be of unequal size within a
sporangium (Gértner & Ingoli¢ 1989), as also occurs in
Watanabalean genera such as Chloroidium and Jaagichlorella.
As with Elliptochloris and Trebouxia, Apatococcus is faculta-
tively heterotrophic: it is very slow growing in culture unless
carbohydrate is supplied (Gustavs et al. 2016). This observation
is particularly interesting because the similarly heterotrophic
behaviour of Trebouxia in culture was central to Ahmadjian’s
(1988, 2002) argument that Trebouxia cannot exist free-living.
The seemingly ubiquitous Apatococcus shows quite clearly that
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a photobiont exhibiting strongly heterotrophic tendencies in
culture may nonetheless abound free-living in nature.

Asterochloris Tschermak-Woess — First described to accommo-

date the trebouxioid photobiont of a single lichen in the
Pertusariaceae (Tschermak-Woess 1980a), this major photo-
biont clade now encompasses the former Trebouxia subgenus
Eleutherococcus (Tschermak-Woess 1989; Skaloud & Peksa
2010). It corresponds roughly to Archibald’s (1975) restricted
concept of genus Trebouxia, a source of continual confusion.
Asterochloris species produce aplanospores, or zoospores in
culture, but most strains do not form the appressed, low-
number autospores characteristic of Trebouxia in the current
sense. Its deeply-lobed chloroplast becomes flattened and par-
ietal during cell division, while that of Trebouxia remains more
or less central (Tschermak-Woess 1989). Pyrenoids are present;
in TEM they may be distinguished as the irregularis-, erici-, or
magna-types of Friedl (1989). Chloroplast morphology is
highly variable and its utility as a marker in species delimitation
was emphasized by Skaloud et al. (2015). As with Trebouxia, a
considerable amount of genetic diversity is revealed at the
molecular level in Asterochloris (Skaloud & Peksa 2010; Peksa
& Skaloud 2011).

Sexual fusion of biflagellate isogametes to form a quadri-
flagellate zygote has been documented in cultures of A. woes-
sige (Skaloud et al. 2015). The detection of genes specific to
meiosis in A. glomerata (Armaleo et al. 2019) provides further
support for a functioning sexual cycle in Asterochloris.

Asterochloris is associated principally with mycobionts of
the Cladoniaceae, Stereocaulaceae, and the genus Lepraria.
These fungal partners appear to range from moderately to
rather highly selective of their Asterochloris symbionts; there is
also some indication that mycobionts of different clades are choos-
ing particular Asterochloris lineages, showing distinct climatic pre-
ferences related to rainfall regime (Peksa & Skaloud 2011).

Auxenochlorella (I. Shihira & R. W. Krauss) T. Kalina &

M. Puncochirova = —  Within  the  Chlorellaceae,
Auxenochlorella is related to the fully heterotrophic genus
Prototheca, and its type species, A. protothecoides, is also
known for its heterotrophic tendencies in culture (Darienko
& Proschold 2015). Auxenochlorella has been implicated in
regard to the identity of the photobiont associated with
Psoroglaena stigonemoides in the Verrucariaceae (Nyati et al.
2007; This et al. 2011). Unlike Chlorella, Auxenochlorella
lacks a pyrenoid. The genus also includes ‘zoochlorellae’ sym-
bionts of the cnidarian Hydra that are now considered a new
species, A. symbiontica (Darienko & Proschold 2015).

Bracteacoccus Tereg — Bracteacoccus are small, spherical unicells

that have a multinucleate stage as they mature, and reproduce
by zoospores or aplanospores; chloroplasts lack pyrenoids
(Kouwets 1996). Currently included in the Sphaeropleales
(Fuc¢ikova et al. 2014), Bracteacoccus appears at present to be
the only genus of the class Chlorophyceae into which lichen
photobionts have been placed with supporting DNA sequence
data. The corresponding mycobionts are two species of the
basidiomycete Sulzbacheromyces in the Lepidostromatales
(Hodkinson et al. 2014; Masumoto 2020).

Cephaleuros Kunze ex E. M. Fries — These foliicolous relatives of

Trentepohlia form macroscopic, multicellular thalli visible as
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small, fuzzy yellow-orange patches on leaves and fruit in trop-
ical and subtropical climates. Cephaleuros species typically grow
beneath the cuticle of the leaf substratum, forming rounded to
lobed thalli of more or less integrated horizontal filaments.
These give rise to the erect setae and sporangiophores that
emerge through the overlying cuticle. Usually, Cephaleuros
develops within the space it excavates between the host cuticle
and epidermis; in some cases, filaments penetrate deeper
among the epidermal or mesophyll cells of the leaf, provoking
a localized phellogen wound response. The alga can therefore
be mildly pathogenic, but it is more often described as ‘para-
sitic’, despite an absence of information concerning any nutri-
tional exchange with the plant host. Occasionally, the alga may
develop upon the leaf cuticle, like other epiphylls. The behav-
iour may vary according to the species of Cephaleuros or that
of the host plant (Ward 1884; Suto & Ohtani 2009; Brooks
et al. 2015). Lichenization by foliicolous Strigula fungi is said
to curb the alga’s invasion of host tissue and its localized patho-
genic effects (Joubert & Rijkenberg 1971).

Morphologically, Cephaleuros can somewhat resemble the
related foliicolous genus Phycopeltis, which is not subcuticular
and generally lacks vertical hairs and complex, long-stalked
sporangiophores. According to molecular sequence analyses,
however, the nearest relatives of Cephaleuros lie not within
Phycopeltis but rather Stomatochroon (Zhu et al. 2017), a
microscopic colonizer of the leaf’s substomatal cavities. While
trentepohliaceous taxa currently ascribed to Phycopeltis and
Trentepohlia are phylogenetically intertwined, Cephaleuros
appears to be essentially monophyletic (Lopez-Bautista et al.
2006; Rindi et al. 2009; Nelsen et al. 2011; Zhu et al. 2017).

Cephaleuros is one of the few lichen photobiont genera for
which life cycle events have been observed in some detail.
Thompson & Wujek (1997) describe a haplodiplontic life
cycle with heteromorphic multicellular phases. The familiar
thallus corresponds to the gametophyte; fusion of gametes pro-
duces a zygote that germinates into a short-stalked, dwarf
sporophyte bearing a putative meiosporangium. Flagellate
meijospores presumably develop into new gametophytic thalli.
The Cephaleuros gametophyte is the phase known to serve as
phycobiont for the fungus Strigula. Whether or not the sporo-
phytes can also be lichenized is unknown. Perhaps they are too
highly reduced or short-lived, but the question does not seem
to have been explored. On gametophyte thalli, two distinct
structures produce flagellate zoospores or gametes (often called
zoids, or swarmers, when their function is uncertain or polyva-
lent). Zoosporangia are elevated in groups upon vertical stalks;
they produce quadriflagellate zoospores that have been
observed to round off, germinate and reproduce the gameto-
phyte thallus asexually (Ward 1884; Thompson & Wujek
1997). The mature sporangia detach readily as units of dispersal,
for which both wind and insects act as vectors. On the horizontal
filament system, single, usually terminal cells may enlarge to
become what are referred to as gametangia; these produce bifla-
gellate cells that may fuse sexually (Thompson & Wujek 1997).
However, other authors have been unable to observe any
instances of sexual fusions in the taxa they studied, instead
reporting that the biflagellate zoids germinate directly as zoos-
pores to form new gametophyte thalli (Suto & Ohtani 2013).

Ward (1884) described in detail the course of lichenization
of Cephaleuros by Strigula. Young germlings of Cephaleuros are
often quickly overrun by the mycelium of Strigula, suppressing
algal reproduction, while individuals contacted at more
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advanced stages of development may produce abundant spor-
angia from portions of its thalli remaining relatively free of
mycobiont domination. Interestingly, both symbionts grow
and sporulate independently upon the leaf substratum, although
the fungus Strigula will produce pycnidia and perithecia only
after successful lichenization. These observations highlight the
flexibility of the symbionts in this particular association.

Chlamydomonas Ehrenberg — This well-known unicellular green

algal genus chiefly encompasses aquatic taxa that are flagellate
in the vegetative state and unlikely candidates for lichen symbi-
osis. However, a number of aeroterrestrial species are also
known (Ettl & Girtner 2014). One species of
Chlamydomonas (C. augustae) was described in association
with the ascomycete Pyronema laetissimum, growing on leaf lit-
ter in Latvia (Skuja 1943). It was included in
Tschermak-Woess’s (1988a) review of phycobionts as ‘faculta-
tively lichenized’. However, Skuja (1943) distinguished this
association from lichen and lichenoid symbioses, making com-
parisons instead with green algae known to grow abundantly
on the surfaces of perennial basidiocarps. The
Chlamydomonas was abundantly present among the dense
hyphae below the Pyronema apothecium, but no tissue layer
was differentiated, nor were any distinctive contact interfaces
noted between symbionts. Skuja also mentioned that other
apothecia of the same fungus were fruiting nearby without
the alga present. The operculate discomycetes (Pezizales), to
which Pyronema belongs, are not otherwise known to include
lichen-forming members. The Pyronema-Chlamydomonas
association is worthy of further investigation but seems unlikely
to fit the criteria usually ascribed to lichen symbioses.

Chlorella Beijerinck — A once-notorious miscellany of indistin-

guishable ‘little round green things’, this trebouxiophycean
genus has been radically deconstructed, particularly with the
help of DNA sequence comparisons (Huss et al. 1999). Many
formerly included species have been moved to different genera,
orders, even classes, while taxa surrounding the type species
C. vulgaris, and C. sorokiniana, are retained as true Chlorella.
In TEM, they show a distinctive pyrenoid surrounded by a
thick sheath of starch and bisected centrally by a single thylakoid
(Ikeda & Takeda 1995; Némcova & Kalina 2000; Hoshina et al.
2010). Flagellate cells and sexual reproduction are unknown.
True Chiorella also includes a number of mucilaginous, colonial
forms in its current circumscription (Luo ef al. 2010; Bock et al.
2011). Many of the lichen photobionts previously attributed to
Chlorella s. lat. (e.g. Tschermak-Woess 1988b) are among those
taxa moved to other genera, especially Chloroidium; others
await re-examination. At present, only a couple of lichen-forming
fungal species have photobionts of corroborated placement
within Chlorella (Porpidia crustulata; Li et al. 2013) or
Chlorellales. The genus has also been long identified with endo-
symbiotic algal symbionts of diverse protists and invertebrates.
Molecular sequences confirm that true Chlorella occur as endo-
symbionts of the ciliate Paramecium bursaria (Hoshina et al.
2004; Summerer et al 2008) and the cnidarian Hydra
(Kovacevi¢ et al. 2010), which may also utilize Auxenochlorella
as its algal symbiont (Proschold et al. 2011). Chloroplast ultra-
structure likewise suggests that the green endosymbiont of the
colonial ciliate Ophrydium versatile is a true Chlorella (Forsberg
& Lindblad 1996). However, the phylogenetic affinities of other
‘zoochlorellae’ symbionts appear to fall elsewhere in the
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Trebouxiophyceae (Lewis & Muller-Parker 2004; Kovacevi¢ et al.
2010; Proschold et al. 2011), while many have yet to be explored
with molecular sequence comparisons.

Chloroidium Nadson — Resurrected to accommodate segregates
from Chlorella s. lat. (Darienko et al. 2010), Chloroidium falls
within the trebouxiophycean assemblage now formalized as
Watanabeales (Li et al. 2021). Cells have a parietal chloroplast
with or without a pyrenoid; in C. saccharophilum, a prominent
pyrenoid with surrounding plastoglobuli and traversing mem-
branes has been observed (Gonzédlez et al. 2013).
Reproduction is by autospores, often of variable number and
different sizes within a single sporangium. The genus encom-
passes diverse taxa found in a wide variety of habitats
(Darienko et al. 2018), including extremophiles capable of
using a variety of carbon sources (Nelson et al. 2017). Since
its recent emendation, Chloroidium includes photobiont part-
ners of a growing number of lichen-forming fungi, including
some species of Gomphillaceae, Verrucariaceae, Psora,
Stereocaulon and Sticta.

Chlorosarcinopsis Herndon — In the course of her studies on
lichen haustoria, Plessl (1963) identified as Chlorosarcina
[=Chlorosarcinopsis] minor the photobionts she isolated from
two species of Lecidea, L. plana and L. lapicida.
Chlorosarcinopsis has traditionally accommodated spherical
unicellular green algae dividing to form cuboidal packets.
According to Neustupa (2015), the genus is polyphyletic,
with members scattered among the Chlamydomonadales
(Chlorophyceae). As this clade is not otherwise known for
lichen symbionts (but see Skuja 1943), the photobionts of the
Lecidea species in question need further study.

Coccobotrys Chodat (now Uvulifera Molinari-Novoa) — This
green alga forms irregular cuboidal cell packages or branched
multiseriate filaments in culture (Neustupa 2015). The genus
Coccobotrys was described by Chodat (1913) and emended by
Vischer (1960) to accommodate the putative photobiont C. ver-
rucariae isolated from a thallus of Verrucaria nigrescens. Thiis
et al. (2011), on the other hand, reported Diplosphaera as
photobiont of the V. nigrescens thallus they sampled.
Coccobotrys verrucariae was also cited among algae isolated
from soil crusts (Flechtner et al. 2009), and a photobiont iden-
tified with microscopy as ‘probably Coccobotrys’ (Canals et al.
1997) was isolated from Botrylepraria lesdainii, another mem-
ber of the Verrucariales (Kukwa & Pérez-Ortega 2010). A
second species of Coccobotrys was described by Warén (1920)
as the photobiont of Lecidea  fuliginosa, but
Tschermak-Woess (1988a) expressed doubt that the alga he
described belongs in Coccobotrys. The photobiont status of spe-
cies in this genus should be corroborated. Genetic sequence
analyses place Coccobotrys in the Trebouxiophyceae (e.g. Thiis
et al. 2011; Mikhailyuk et al. 2020), but its affinities among
the defined clades within this class remain uncertain.
Molinari-Novoa (2016) recently found Coccobotrys Chodat to
be a later homonym of a name applied to an anamorphic
basidiomycete and renamed the algal genus Uvulifera.

Coccomyxa Schmidle — This trebouxiophycean algal genus is not-
able for the diversity of habitats and ecological circumstances in
which its species are known to occur. Environmental surveys
have found Coccomyxa sequences to be among the most widely
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distributed OTUs, and notably well represented in cold high-
latitude climates (Metz et al. 2019). It is commonly reported free-
living on terrestrial substrata and in aquatic environments,
including those highly polluted with heavy metals and radio-
active materials (see Gustavs et al. 2017). Coccomyxa species
are subspherical to ovoid-ellipsoidal unicells, often embedded
colonially in thick gelatinous sheath material with concentric
layering that reflects the cell division pattern. The chloroplast
is parietal, not markedly lobed, and lacks a pyrenoid. In
TEM, thylakoid bands often show a distinctly longitudinal
orientation over the length of the chloroplast, with interspersed
starch grains (Peveling & Galun 1976; Palmqyvist et al. 1997).
Flagellate cells and sexual reproduction are unknown; cells sub-
divide into packages of 2-8 autospores (Tschermak-Woess
1988a). Recent assessments of species number within the
genus range from seven (Darienko et al. 2015) to as many as
27 (Malavasi et al. 2016). The genus is thought to include the
photobionts of diverse lichen-forming fungi, such as species
of Icmadophila, Micarea, Nephroma, Peltigera, Solorina, the
stalked-apotheciate ~ genera  Baeomyces,  Dibaeis  and
Phyllobaeis, and the basidiomycete Lichenomphalia (Table 1).
Some of these reports await confirmation with genetic sequence
data. The photobionts do not form a single clade but instead
represent several distinct lineages within Coccomyxa, inter-
mixed among free-living isolates (Darienko et al. 2015). In
lichen symbiosis, the cells are often more spheroidal, and exten-
sive gelatinous sheath material is not usually produced
(Tschermak-Woess 1988a). Interestingly, while the cells of
Coccomyxa and Elliptochloris photobionts are tightly enveloped
by mycobiont hyphae, their walls are usually not penetrated
(Tschermak 1941a; Geitler 1955; Plessl 1963; but see Coppins
1983: figs 2 & 55). This has been attributed to degradation-
resistant polymers resembling sporopollenin in the multi-
layered cell wall (Honegger & Brunner 1981; Brunner &
Honegger 1985). However, Coccomyxa cells are fully penetrated
by Aphelidium collabens, a parasitoid basal within, or sister to,
the kingdom Fungi (Seto et al. 2020).

Species of the genus Coccomyxa also live in poorly under-
stood symbioses within molluscs (Stevenson & South 1974;
Syasina et al. 2012) and echinoderms, and endocytotically within
ovules and other tissues of the gymnosperm Ginkgo biloba
(Trémouillaux-Guiller et al. 2002; Trémouillaux-Guiller &
Huss 2007). Molecular sequence comparisons have shown that
some zoochlorellae isolated from certain strains of Paramecium
bursaria correspond to Coccomyxa, while most others are true
Chlorella (Hoshina & Imamura 2008).

Deuterostichococcus Proschold & Darienko — A recent segregate of

Stichococcus s. lat. (Proschold & Darienko 2020), this trebouxio-
phycean genus currently includes, in addition to free-living iso-
lates, the photobiont of two Placopsis species (Beck et al. 2019)
and Staurothele clopima (Hoda¢ et al. 2016); the latter is also
known to partner with Diplosphaera algae (Thiis et al. 2011).

Dictyochloropsis Geitler — See Symbiochloris.

Dilabifilum Tschermak-Woess — Polymorphic, unicellular to sar-

cinoid to filamentous algae with pyrenoids and quadriflagellate
zoospores have been included in this ulvalean genus. They
occur free-living, as photobionts, or both. Recently, Darienko
& Proschold (2017) deconstructed Dilabifilum, recognizing at gen-
eric level several distinct clades resolved in their gene-based
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phylogenies. A number of photobionts previously contained
therein are now distributed in Halofilum, Lithotrichon,
Paulbroadya and  Pseudendoclonium, while others await
reassessment.

Diplosphaera Bialosuknia — This prasiolalean genus appears to
contain the majority of the unicellular photobiont strains
attributed until recently to the related Stichococcus.
Apparently, the two morphologically plastic genera are often
not distinguishable microscopically, although Diplosphaera
may produce distinctive, adherent two-celled clusters in div-
ision. Pyrenoids may be absent (Proschold & Darienko 2020)
or weakly visible (Ettl & Géartner 2014) but some taxa falling
within the Diplosphaera clade, including lichen photobionts,
show prominent pyrenoids in TEM (Fig. 2E). The main fungal
partners of Diplosphaera are members of the Verrucariaceae.
Photobiont strains compared so far appear to represent the
same species and are similar to free-living collections
(Proschold & Darienko 2020).

In association with certain lichen genera, such as Endocarpon
and Staurothele, Diplosphaera photobionts ‘escape’ vegetative
hyphal contacts and penetrate into the hymenial layer of devel-
oping perithecia, where they freely intermix among the asci
(Fig. 3A). These algal cells are typically much smaller than
those within the algal layer of the vegetative thallus; they scatter
everywhere when a hand-cut section is water-mounted, indicat-
ing that unlike the photobionts in the vegetative thallus, those
entering the perithecia are not bound in place by lichenizing
contacts with the mycobiont. The unassociated photobionts
may adhere to the large ascospores as they are ejected, and can
be dispersed with them. Many readily detach and divide apo-
symbiotically; they are available to the mycobiont if the spore
germinates successfully (Stahl 1877; Bertsch & Butin 1967;
Ahmadjian & Heikkila 1970) or might otherwise divide to
form free-living populations. Potentially co-dispersable photo-
bionts also occur in the conidiomata and ascomal epithecia of
many foliicolous lichens of the Gomphillaceae and
Pilocarpaceae (see Heveochlorella). Dispersal of liberated photo-
bionts can thereby provide a direct connection between liche-
nized and free-living populations of the alga.

Elliptochloris Tschermak-Woess — Like its sister genus
Coccomyxa, Elliptochloris has subspherical to ellipsoidal uni-
cells with a parietal chloroplast, bearing two opposed indenta-
tions in the type species E. bilobata (Tschermak-Woess 1980b).
Sexual or flagellate stages are unknown; reproduction occurs by
autospores, of which there are usually two morphologically dis-
tinct types. Autosporangia may contain a low number (usually
four in cultured E. bilobata) of spherical spores appressed
together at flattened junctions, or more numerous (16-32)
cylindrical-ellipsoidal ~ spores  (Tschermak-Woess  1980b;
Darienko et al. 2016). The multilayered cell wall, as in
Coccomyxa, is impregnated with degradation-resistant poly-
mers, which are thought to explain the lack of haustorial pene-
tration by their lichen-forming partners (Brunner & Honegger
1985). However, haustoria have been noted in certain species of
Micarea (Coppins 1983: figs 2 & 55), a lichen-forming genus
known to partner with Elliptochloris and Coccomyxa photo-
bionts. Unlike Coccomyxa, at least some species of
Elliptochloris possess pyrenoids, and layered mucilaginous
sheaths are typically lacking. However, gelatinous extracellular
material may be copious in free-living populations, and was
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observed in association with Protothelenella thalli where the
photobiont population grew beyond the reach of mycobiont
hyphae (Tschermak-Woess 1985).

Elliptochloris is somewhat less often reported than
Coccomyxa but is known from a similarly diverse array of habi-
tats. It is said to be quite strongly heterotrophic in culture,
where it depends heavily on organic materials to thrive; this
might in part account for its less frequent recovery in isolation
procedures (Gustavs et al. 2017). Species of Elliptochloris are
known to partner with mycobionts of diverse genera including
Catillaria, Catolechia, Fuscidea, Micarea, Sticta, Stictis,
Verrucaria, and the basidiolichen-forming Bryoclavula and
Multiclavula (see Table 1). They also occur as endosymbionts
of the marine anenome Anthopleura (Letsch et al. 2009).

Gloeocystis Nageli — Taxa treated under this genus are unicellular

green algae that form occasionally macroscopic colonies of
ellipsoidal cells with a parietal chloroplast possessing a pyre-
noid. Thick, colourless, often layered gelatinous sheaths sur-
round the cells. Reports of Gloeocystis as photobiont of
Cryptodiscus [Bryophagus] gloeocapsa and Epigloea bactrospora
were cited by Ahmadjian (1967) and Tschermak-Woess
(1988a). There is doubt as to whether Epigloea is lichenized
(Kirk et al. 2001; not included in Liicking et al. (2017a)),
although distinctly symbiotic contacts with living, unicellular
green algae were illustrated by Jaag & Thomas (1934) and
Dobbler (1984).

According to Neustupa (2015), the algal genus Gloeocystis
is highly polyphyletic, encompassing members of both
Chlorophyceae and Trebouxiophyceae. The identities of the
photobionts associated with the mycobionts mentioned above
will therefore require further study.

Halofilum Darienko & Proschold — This is another genus that

now accommodates taxa previously treated under Dilabifilum
(Darienko & Proschold 2017). These algae consist of branched
filaments with parietal chloroplasts containing pyrenoids; fla-
gellated stages are unknown. The species H. ramosum occurs
as photobiont of Hydropunctaria maura and Wahlenbergiella
striatula (Verrucariaceae), as well as free-living (Darienko &
Proschold 2017).

Heveochlorella J. Zhang et al. — Unicellular algae attributed to

Heveochlorella have a prominent, somewhat lobed chloroplast
with a central pyrenoid that is readily visible with light micros-
copy. TEM shows the pyrenoid surrounded by several irregular
starch plates and penetrated centripetally by thylakoid-derived
tubules that are lined with pyrenoglobuli (Fig. 2B). Cells repro-
duce by autospores, usually in low number (2-8) and not infre-
quently of unequal size within sporangia, at least in culture
(Zhang et al. 2008; Ma et al. 2013; Sanders et al. 2016).
Darienko & Proschold (2019) recently subsumed both
Heveochlorella (Zhang et al. 2008) and the related
Heterochlorella (Neustupa et al. 2009), which has not been
reported from lichen symbioses, into the resurrected genus
Jaagichlorella. These algae belong to the trebouxiophyceaen
clade recently formalized as Watanabeales (Li et al. 2021).

The first indication that lichen symbionts belonged in this
group was the report of Heveochlorella isolated as photobiont
from one specimen of Sticta and two of Pseudocyphellaria
from Taiwan (Dal Grande et al. 2014b). Soon thereafter, the
‘trebouxioid”  photobionts associated  with  foliicolous
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Gomphillaceae and Pilocarpaceae were also attributed to this
genus (Sanders et al. 2016). More recently, a study of Sticta
lichens worldwide reported Heveochlorella to be the photobiont
of numerous specimens from New Zealand and Indian Ocean
islands, including six identified species and many undeter-
mined collections (Lindgren et al. 2020). In the opinion of
Darienko & Proschold (2019), the algae encompassed by
Jaagichlorella, though distributed worldwide, are rare taxa.
While more surveys will be necessary to evaluate this view, a
number of observations suggest that these algae might be in
fact quite common and merely overlooked. We know, for
example, that foliicolous lichens of the Gomphillaceae and
Pilocarpaceae occur in abundance throughout much of the
humid tropics (Santesson 1952; Liicking 2008), although it is
not yet clear how consistently they harbour Heveochlorella
(Jaagichlorella) photobionts. Recent sampling of the phyllo-
sphere community in Asian tropical forests has revealed a
major representation of Heveochlorella genotypes (Zhu et al.
2018), as well as several new species in related genera (Li
et al. 2020, 2021). Some of the most frequently detected
OTUs in environmental surveys of marine habitats (Metz
et al. 2019) were also attributed to Heveochlorella.

In many foliicolous lichens, dividing Heveochlorella photo-
bionts may escape the lichenizing vegetative hyphae and prolif-
erate among the spore-generating fungal structures, upon
apothecia and within specialized conidiomata such as campyli-
dia and hyphophores (Fig. 3B & C). They can be dispersed
from these structures, as are the fungal spores or diahyphae
to which the algal cells may adhere (Fig. 3D-F). Once dis-
persed, they may become lichenized by the germinating fungal
propagules, or divide to produce independent populations on
the substratum (Sanders 2014; Sanders & de los Rios 2015).
Co-dispersal and relichenization thereby provide Heveochlorella
with abundant opportunities for exchange between lichenized
and free-living populations.

Interfilum Chodat — This genus of aeroterrestrial charophytes
(Streptophyta) includes taxa that form single, paired or sarcinoid
packets of cells or grow filamentously, often closely resembling
unrelated Chlorophyta, such as Desmococcus (Mikhailyuk et al.
2008). It is sister to clades of the widely distributed
Klebsormidium (Rindi et al. 2011). Interfilum was reported by
Voytsekhovich et al. (2011) as a secondary photobiont within
the algal layer of Micarea and Placynthiella thalli collected in
Ukraine, based on light microscopic examination of thalli and
cultured isolates. The principal photobionts in those lichens
were reported to be Elliptochloris and Radiococcus, respectively.
As the charophytes are not otherwise known as lichen symbionts,
and other algal genera were cited as the main photobionts within
the thalli in question, further study of the reported associations is
warranted.

Jaagichlorella Reisigl — See Heveochlorella.

Leptosira A. Borzi — This photobiont grows as unicells tightly
wrapped by mycobiont hyphae or separated by copious sheath
material free of the mycobiont; in agar culture, it produces
short filaments (Tschermak-Woess 1953). Leptosira is a tre-
bouxiophycean of uncertain placement, appearing in the vicin-
ity of the Microthamniales clade in recent gene-based
phylogenies (Lemieux et al. 2014; Neustupa 2015; Hallmann
et al 2016). According to Mattox & Stewart (1984),
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‘Pleurastrum terrestre’ (a synonym of Leptosira obovata, now
L. terrestris; Friedl 1996) is so similar ultrastructurally to the
genus Trebouxia that they could be combined in the same
genus. Ahmadjian (1988) went one step further, opining that
Trebouxia was merely the lichenized form of this taxon.
However, the aforementioned gene-based cladograms do not
show a close relationship between Leptosira and the
Trebouxiales.

Leptosira terrestris, in lichen symbiosis with Vezdaea aesti-
valis, grows subcuticularly (Tschermak-Woess & Poelt 1976),
a distinction shared with the photobiont Cephaleuros.
Leptosira is also among the very few photobiont genera
(Phycopeltis and Cephaleuros are others) reported to produce zoos-
pores in the lichenized state (Tschermak-Woess & Poelt 1976).

Lithotrichon Darienko & Proschold — Another genus separated

from the Dilabifilum (Ulvales) complex, Lithotrichon forms
clustered cell packets as well as branching filaments and is dis-
tinguished from similar genera by SSU and ITS sequence data.
The species L. pulchrum occurs as photobiont of the freshwater
lichen Hydropunctaria rheitrophila (Darienko & Proschold
2017).

Mpyrmecia Printz — These spherical to pyriform unicells have a

parietal chloroplast, without a pyrenoid, extending around
most of the cell, with 2-4 broad lobes defined by deep notches.
Cells proliferate via zoospores, aplanospores, or autospores (Ettl
& Girtner 2014). Gene-based phylogenies consistently place
Mpyrmecia in the Trebouxiales, sister to Trebouxia (Muggia
et al. 2020) or to the Asterochloris + Vulcanochloris clade
(Vancurova et al. 2015). Myrmecia occurs free-living as well
as in lichen symbiosis. An aerophilic alga, originally described
as Friedmannia from Negev Desert rocks, is now recognized as
Myrmecia israelensis (Friedl 1995) and was recently reported as
lichen photobiont (Thiis et al. 2011; Moya et al. 2018). Psora
decipiens and a number of species in the Verrucariaceae are
among the lichen-forming fungi known to partner with
Myrmecia.

Nannochloris Naumann — The genus Nannochloris has encom-

passed simple, extremely tiny (1.5-2um) chlorophyte algae
that reproduce by binary division or autospores.
Circumscription of the genus has been controversial, but
molecular data indicate that most of the species belong in
Chliorellales (Henley et al. 2004). Tschermak-Woess (1981)
recognized Nannochloris normandinae as the photobiont part-
ner of lichen-forming Normandina pulchella; in other works,
Nannochloris has been mentioned more indirectly in the con-
text of photobionts (e.g. Lohtander et al. 2003). However,
Thiis et al. (2011) found only Diplosphaera as photobiont in
the 10 Normandina thalli they examined and, more recently,
Proschold & Darienko (2020) reduced Nannochloris normandi-
nae to synonymy with Diplosphaera chodatii (Prasiolales).
Thus, clear evidence of lichen photobionts belonging in
Nannochloris appears to be lacking at present.

Neocystis F. Hinddk — Members of this trebouxiophycean genus pro-

duce mucilaginous colonies of spherical to ellipsoidal or crescent-
shaped cells that reproduce by autospores (Neustupa 2015).
Cultures assigned to Neocystis as well as other genera were recently
reviewed with molecular sequence analyses, revealing considerable
taxonomic redundancy assigned to only two closely related,
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genetically distinct but morphologically plastic species (Elid$ et al.
2013). An alga identified as Neocystis sp. was cited as ‘additional
photobiont’ of Micarea misella, in thalli having Elliptochloris
bilobata as principal photobiont (Voytsekhovich et al. 2011).

Paulbroadya Darienko & Proschold — This recently recognized
clade in the Ulvales is distinguished by SSU-ITS sequences
from other taxa previously treated under Dilabifilum
(Darienko & Proschold 2017). The species Paulbroadya petersii
occurs as photobiont of the marine intertidal lichen
Wahlenbergiella mucosa (Darienko & Proschold 2017).

Phycopeltis Millardet — Members of this trentepohliaceous genus
are most often seen as coppery orange discs a few mm in diam-
eter on leaf surfaces in humid subtropical and tropical regions,
with one or two species extending to cooler regions such as
oceanic Europe (Rindi et al. 2004). Thallus discs consist of a
monostromatic layer of closely appressed, bifurcating filaments
(Fig. 6A). Unlike those of Cephaleuros, Phycopeltis thalli are
supracuticular, non-pathogenic, and at least some species read-
ily colonize other favourably displayed plant substrata besides
leaves. Sporangia are usually borne erect on a very short
stalk, and release quadriflagellate zoospores through a pore at
the end opposite to the point of attachment. Gametangia are
sessile and develop from intercalary compartments of the hori-
zontal filament system in most species; gametes are biflagellate
and isomorphic, and their fusion has been observed
(Thompson & Wujek 1997). The life cycle of Phycopeltis is
believed to be haplodiplontic, with alternation of gametophytes
and sporophytes that are isomorphic, rather than hetero-
morphic as in Cephaleuros and Stomatochroon (Thompson &
Wujek 1997). If this is the case, recognizing meiosporangia
by the presence of tetrads might be the only means of distin-
guishing the phases phenotypically, but there do not appear
to be such reports. Whether the gametophytes and sporophytes
are equally susceptible to lichenization would be an interesting
question to examine.

Although distinguishing Phycopeltis from Trentepohlia under
current morphological concepts appears fairly straightforward,
DNA sequence data show species of the two genera to be inter-
twined phylogenetically (Zhu et al. 2015, 2017; Grube et al.
2017a). Phycopeltis is particularly under-sampled at present.
The morphological distinction between the two genera may
also break down in the lichenized condition. Although
Phycopeltis species can retain their placoid thallus characteristics
when partnering with certain foliicolous mycobionts (Grube &
Liicking 2002), in other lichens the algal filaments may be bro-
ken up into individual cells indistinguishable from those of
Trentepohlia (see fig. 9; Liicking 2008). Using TEM, Matthews
et al. (1989) believed they could differentiate the two genera in
such cases by features of the septal wall near plasmodesmata.
It would be useful to test how well such traits correlate with
molecular markers.

As widespread colonizers of the warm-temperate and tropical
phyllosphere, species of Phycopeltis are important photobionts
in foliicolous lichen communities, where they partner with
diverse leaf-dwelling mycobionts including species of Arthonia,
Chroodiscus, Mazosia, Opegrapha, Porina, Trichothelium, and
supracuticular taxa of Strigulaceae, among others (Santesson
1952; Liicking 2008). Multiple Phycopeltis thalli may occur
edge-to-edge within a single foliicolous lichen, as additional
individuals are incorporated by the mycobiont’s expanding
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prothallus (Sanders 2002). There are some reports of algal gam-
etangia or sporangia being produced in the lichenized state,
particularly in those taxa where the Phycopeltis thalli are
sparsely covered by the mycobiont (Santesson 1952; Liicking
1994; Sanders 2002).

In at least one species of Phycopeltis (P. epiphyton), the
highly degradation-resistant biopolymer sporopollenin was
detected in the cell wall (Good & Chapman 1978). Its presence
in the walls of other photobionts (Coccomyxa and
Elliptochloris) has been correlated with the absence of haustor-
ial penetration by mycobionts (Honegger & Brunner 1981;
Brunner & Honegger 1985). However, at least some strains of
lichenized Phycopeltis may be deeply penetrated by mycobiont
haustoria, such as those of Porina (Matthews et al. 1989).

Prasiola Meneghini — This trebouxiophycean seaweed of high-

latitude supratidal zones is exceptional for its class in having a
multicellular, macroscopic blade-like thallus. It is often abundant
and readily visible both free-living and in symbiosis with myco-
biont Mastodia tessellata (Verrucariaceae). Two or three distinct
species of Prasiola appear to serve as photobiont to the bipolarly
distributed Mastodia (Garrido-Benavent et al. 2017, 2018). There
has been some discussion, on structural grounds, as to whether
this fungal-algal partnership ought to be considered a true lichen
(Lud et al. 2001; Kohlmeyer et al. 2004; Pérez-Ortega et al. 2010).
There is no fungal cortex, nor does symbiosis substantially change
algal thallus morphology; its anatomy, however, is significantly
altered, as algal cells become well separated by a proliferation of
encircling mycobiont hyphae (Kovacik & Batista Pereira 2001;
Lud et al. 2001). The symbiosis therefore entails considerably
more structural transformation than that produced by the marine
fungus Mycophycias upon its seaweed host Ascophyllum (Xu et al.
2008), or Turgidosculum upon Blidingia (Pérez-Ortega et al.
2018). From a phylogenetic perspective, it is worth noting that
close relatives of both the mycobiont (Verrucariaceae) and the
alga (Prasiolales) participate in symbioses that are unambiguously
lichenic.

Pseudendoclonium Wille — These ulvalean algae have variably

packet-forming to filamentous morphologies and may be dif-
ferentiated into prostrate and erect filament systems.
Darienko & Proschold (2017) moved into this genus a couple
of photobionts previously treated under Dilabifilum, recogniz-
ing the photobiont of Arthopyrenia kelpii as Pseudendoclonium
arthopyreniae, and the photobiont of Hydropunctaria maura
as P. commune, which is also widespread as a free-living alga
on intertidal rocks. Pseudendoclonium arthopyreniae has a
pyrenoid surrounded by thick plates of starch and traversed
by several narrow, thylakoid-derived membranes lacking
pyrenoglobuli (Namba & Nakayama 2021).

Pseudochlorella J. W. G. Lund — This unicellular genus of

Chliorella-like algae is now placed in the Prasiolales. Molecular
data support inclusion of the photobiont of at least one lichen-
forming fungus, Trapelia coarctata (Darienko et al. 2016).
Other reports attribute to Pseudochlorella the photobionts of cer-
tain Micarea, Placynthiella and Stereocaulon species (see
Tschermak-Woess 1988a; Voytsekhovich et al.  2011).
However, molecular sequence studies have so far identified
photobionts from Micarea as Coccomyxa and Elliptochloris,
and those from the green algal layer of Stereocaulon as
Asterochloris, Chloroidium and Vulcanochloris.
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Pseudococcomyxa  Korshikov. — Isolates identified as
Pseudococcomyxa simplex have been reported as photobionts
of a maritime Leproloma sp. (Watanabe et al. 1997) and also
Micarea prasina (Voytsekhovich et al. 2011), based on light
microscopy and culture studies. The genus Pseudococcomyxa
has been distinguished morphologically from Coccomyxa by
the polarized secretion of mucilage to form a cap at one end
of the cell. However, Darienko et al. (2015) found this character
to be culture-dependent, and the Pseudococcomyxa strains they
analyzed phylogenetically appeared intermixed with those of
Coccomyxa (see also Yahr et al. 2015). Isolates attributed to
P. simplex in particular occurred in several distinct clades.
Darienko et al. (2015) reassigned all these strains to
Coccomyxa. While lichen photobiont isolates attributed to
Pseudococcomyxa remain to be examined, support for
distinction of the genus from Coccomyxa now appears to be
lacking.

Pseudostichococcus L. Moewus — Morphologically similar to
Stichococcus, this genus was recently revised with molecular
data (Proschold & Darienko 2020). It currently includes the
photobiont partner of Neocatapyrenium rhizinosum (Hodac
et al. 2016) in the Verrucariaceae.

Pseudotrebouxia P. A. Archibald — See Trebouxia.

Radiococcus Schmidle — Species of this genus have been reported
to occur as principal photobiont in thalli of two species of
Placynthiella (P. icmalea and P. uliginosa) from the Ukraine
(Voytsekhovich et al. 2011). Corroboration with DNA
sequence data is needed, particularly since diverse, unrelated
taxa have been repeatedly ascribed to this genus in the past
(Wolf et al. 2003). According to a recent taxonomic treatment,
Radiococcaceae and Radiococcus belong in the order
Sphaeropleales of the Chlorophyceae (Neustupa 2015), although
these names are still being applied to taxa falling in other
groups, such as the Trebouxiophyceae (e.g. Metz et al. 2019).

Stichococcus Nigeli s. lat. — In its broad sense, Stichococcus
(Prasiolales) has encompassed smallish unicellular to filament-
ous algae of notably labile morphology, the most commonly
recognized form represented by short-cylindrical cells. The
chloroplast is parietal, often extending to no more than half
of the cell circumference, not markedly lobed, with or without
a pyrenoid. Culture conditions appear to have a significant
effect on cell form. The straight or slightly curved, rod-shaped
cells may separate or remain together after division to form
very short filaments or swell to more spherical shapes, and
may or may not produce a surrounding gelatinous sheath
(Ettl & Gartner 2014). Quite a number of lichen photobionts
have been ascribed to Stichococcus, but as their diversity is stud-
ied at the molecular level, these taxa are being placed in segre-
gate genera or other prasiolalean clades. Some seven to nine
clades have now been recognized within Stichococcus s. lat.
(Hoda¢ et al. 2016; Proschold & Darienko 2020). All
Stichococcus-like photobionts examined in a study of the
Verrucariaceae by This et al. (2011), were shown to belong
in Diplosphaera. Others now appear to fall within
Pseudostichococcus, Deuterostichococcus or Tritostichococcus
(Proschold & Darienko 2020). It is not yet clear whether
Stichococcus in the restricted sense (near to type species S.
bacillaris) includes lichen photobionts.
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Symbiochloris Skaloud et al. — Formally described by Skaloud

et al. (2016), the genus corresponds to a distinct clade of
Dictyochloropsis s. lat. previously recognized by Dal Grande
et al. (2014b). Symbiochloris is currently thought to include
all lichen photobionts previously included in Dictyochloropsis,
as well as some free-living taxa. Principal mycobiont partner
genera are Lobaria, Pseudocyphellaria, Sticta and their recent
segregates Crocodia, Dendriscosticta and Ricasolia, all members
of the Lobariaceae. Other lichens reported harbouring
Symbiochloris photobionts include species of Biatora,
Brigantiaea, Chaenotheca, Megalospora and Phlyctis.

The net-like chloroplast of Symbiochloris, similar to that of
Dictyochloropsis, has reticulations that vary in form, thickness
and orientation according to species and developmental stage
(Skaloud et al. 2005, 2016). Lichenized populations reproduce
by aplanospores, but zoospore production may be observed
in isolated culture. Cells of free-living populations often attain
much larger sizes and their surfaces may be covered with scales
(Tschermak-Woess 1995).

Trebouxia Puymaly — The principal crop of the alga-farming

fungi, unicellular Trebouxia is thought to include the photo-
bionts chosen by the largest proportion (nearly half) of
known mycobiont species. Together with the closely related
Asterochloris, Trebouxia is chlorobiont of most Lecanorales
and Teloschistales, as well as many other taxa of the other
species-rich lecanoromycetid orders (Miadlikowska et al.
2014). Species of Trebouxia are spherical or occasionally ellips-
oidal unicells with a variously lobed, axial chloroplast that fills
much of the cell and bears a prominent pyrenoid (Fig. 2A & C).
There is considerable diversity of pyrenoid ultrastructure within
the genus, involving differences in the morphology of penetrat-
ing membranes and the distribution of starch deposits and pyr-
enoglobuli, when present (Peveling 1968, 1969; Fisher & Lang
1971; Friedl 1989). CO,-fixing Rubisco is concentrated in the
pyrenoids, which in some instances also comprise additional,
smaller, satellite substructures within the chloroplast (Ascaso
et al. 1995). Although pyrenoid types do not correspond pre-
cisely to the Trebouxia clades supported in molecular sequence
analyses, and several are strikingly convergent with pyrenoids
of distantly related algae, they can nonetheless be useful in dis-
tinguishing certain groupings of taxa at close range (Friedl
1989; but see also Muggia et al. (2010)). Some 30 species of
Trebouxia, distributed among four major clades, are currently
recognized. However, this figure is believed to grossly under-
estimate the true genetic diversity present in the genus
(Leavitt et al. 2015; Muggia et al. 2020). The boundaries
among the formally described species remain largely unre-
solved, since much of the genetic diversity uncovered in recent
studies is not fully congruent with the phenotypically defined
taxa. Muggia et al. (2017) postulated that the application of a
phylogenetic species concept would at least triple the number
of species currently recognized in Trebouxia.

Two different groups were long distinguished within
Trebouxia s. lat. (Ahmadjian 1960), which was previously
known as Cystococcus. Archibald (1975) recognized two gen-
era, Trebouxia and Pseudotrebouxia, based on differences in
cell division which were judged sufficient to separate them
into two distinct orders. However, Girtner (1985) and
Tschermak-Woess (1989) found Archibald’s subdivision
untenable and reunited the genus, while acknowledging
that differences in cell division were present. Tschermak-
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Woess (1989) distinguished two subgenera: Trebouxia (cor-
responding roughly to Pseudotrebouxia), which forms apla-
nospores (or zoospores in culture) and also autospores,
and Eleutherococcus (later Asterochloris), which produces
aplanospores/zoospores but not autospores. Autospores are
distinguishable from aplanospores in that they are produced
in lower numbers and are tightly appressed together within
the sporangium such that their walls form angular junctions
between them (Tschermak-Woess 1989). Another difference
is the position of the chloroplast during cell division, which
remains more or less central in Trebouxia but becomes par-
ietal and flattened in Asterochloris (Ahmadjian 1960;
Tschermak-Woess 1989). Molecular data firmly distinguish
the two clades, which have been formally recognized as dis-
tinct genera for the past decade (Skaloud & Peksa 2010).
As a lichen symbiont, Trebouxia is abundant in a great
diversity of habitats worldwide. It is said to be infrequently
reported in the free-living state, although researchers who
sample substrata with microscopy have often found it
(Tschermak-Woess 1978; Bubrick et al. 1984; Mukhtar et al.
1994; Sanders 2005; Handa et al. 2007; Uher 2008; Neustupa
& Stifterova 2013), with the notable exception of Degelius
(1964). Clearly, the germinating spores of trebouxiophilic
mycobionts manage to obtain it, often without needing to pro-
duce an extensive mycelium (Werner 1931; Clayden 1998).
Recent environmental sequencing studies have found
Trebouxia on a variety of surfaces (Darienko et al. 2013;
Hallmann et al. 2013, 2016; Yung et al. 2014) and well repre-
sented in soil, fresh water and even marine environments
(Metz et al. 2019), although one cannot be certain that the
detected sequences represent free-living individuals. By con-
trast, two other principal lichen photobiont genera,
Trentepohlia and Nostoc, are uncontroversially well known in
the free-living state. The comparison may not be fair, however,
because Trentepohlia and Nostoc both form easily recognized
macrocolonies (bright orange tufts and distinctive gelatinous
globs, respectively) whereas Trebouxia cannot be distinguished
without a microscope and some degree of effort. In any case, a
shadow of doubt still seems to haunt the status of free-living
Trebouxia populations, to judge from the cautious wording in
even quite recent literature (e.g. Friedl & Budel 2008).
Although he never claimed to have searched for it in nature,
Ahmadjian (1988, 1993, 2001, 2002) repeatedly affirmed that
Trebouxia existed only in highly coevolved symbiosis with
lichen fungi and did not occur free-living. Yet he acknowledged
that aposymbiotic populations of Trebouxia could appear in
nature. He even proposed, as have others, that they arose
from the breakdown of lichenized propagules, such as soredia
and isidia, that reach microhabitats unsuitable for the partners
to develop symbiotically (Ahmadjian 1988). Ahmadjian
asserted, however, that such populations were not truly free-
living, except in a ‘secondary sense’. Apparently, he meant
that they were ephemeral rather than stably established, but
stable or not, aposymbiotic populations of Trebouxia are
likely to be significant. Like other micro-organisms, many
algae take advantage of ephemeral resources and transiently
favourable microenvironments, then complete their life
cycles with sexual reproduction when conditions deteriorate.
Some then survive as resistant spores; others may escape
adversity by entering into lichen symbioses. Within a lichen
thallus, an algal population may be perpetuated for many
years, yet continually disperse via soredia, isidia, lichenized
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fragments and other propagules that can seed new free-living
populations. This has been characterized as photobiont
‘escape’ from the lichen fungus (Werth 2010). It may be
equally valid to view relichenization as photobiont escape
from conditions that aposymbiotic populations might not
long endure.

Although stages of flagellar development within a lichen
thallus were reported (Slocum et al. 1980), authors have
expressed scepticism that Trebouxia could produce motile
or sexual cells in the symbiotic state (Tschermak-Woess
1989), where all algal cells are held by one or more appres-
sorial hyphae (Honegger 1990). In aposymbiotic culture,
by contrast, the production and release of Trebouxia zoids
are well documented (Ahmadjian 1960, 1967; Tschermak-
Woess 1989; Takeshita 2001). The huge genetic diversity pre-
sent (Muggia et al. 2020) and its structure within popula-
tions (Kroken & Taylor 2000) suggest that Trebouxia is
reproducing sexually, but virtually nothing is known about
how or when the sexual cycle proceeds in nature. Although
it is often said that sexual reproduction has not been
observed in this genus, both Warén (1920) and Ahmadjian
(1960) reported and illustrated the fusion of flagellate isoga-
metes in Trebouxia cultures. However, Ahmadjian (1988,
2001) believed that these features were vestiges of the alga’s
free-living ancestry that no longer play any role in their pre-
sent life histories. Further investigation of aposymbiotic
populations is needed, since considerable indirect evidence
suggests that they may reveal key events in the Trebouxia
life cycle.

Trentepohlia C. Martius — The filamentous taxa currently treated

under this cosmopolitan genus are among the most familiar of
subaerial algae, often forming readily visible yellowish orange
tufts on bark, rocks and other substrata in a wide variety of
environments. They are also among the phycobionts chosen
by the most diverse lichen-forming ascomycetes, including
members of the Arthoniomycetes, Coniocybomycetes,
Dothidiomycetes, Eurotiomycetes (Pyrenulales) and ostropalean
Lecanoromycetes such as the species-rich Graphidaceae.
Members of the order Trentepohliales and its sole family
Trentepohliaceae present a distinctive combination of features:
phragmoplastic cell division with plasmodesmata (otherwise
characteristic of charophycean algae), a uniquely structured fla-
gellar apparatus, peculiar sporangiophores, and distinctive
orange pigmentation. Consequently, widely divergent interpre-
tations of their phylogenetic affinities have been proposed, with
some authors even placing the group in a separate class of its
own (van den Hoek et al. 1995). However, IDNA sequence
data firmly place the subaerial Trentepohliales among orders
of mainly marine taxa within the Ulvophyceae (Lopez-
Bautista & Chapman 2003; Leliaert et al. 2012).

Among the taxa currently treated under Trentepohlia,
a number of genera were described to accommodate the mor-
phological diversity represented, most recently Printzina
(Thompson & Wujek 1992). However, DNA sequence analyses
have so far shown that the phenotypic similarities recognized
are unreliable indicators of phylogenetic affinity (Lopez-
Bautista et al. 2006; Rindi et al. 2009). This also applies to
some of the morphological traits currently used to distinguish
Trentepohlia species from those of Phycopeltis. Free-living
and lichenized isolates of Trentepohlia occur intermixed in
gene-based phylogenies (Nelsen et al. 2011; Hametner et al.
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2014a, b; Kosecka et al. 2020). Due to its visible and widespread
presence in the free-living state, Trentepohlia is an excellent
subject for studying the relationship between lichenized and
aposymbiotic populations in nature (Fig. 1A-C). So far, how-
ever, the genus has been the focus of relatively few modern
phylogenetic studies, despite its visibility and primary import-
ance in lichen symbioses.

The pigments characteristic of the Trentepohliaceae, called
‘haematochrome’ in the older literature, are carotenoids that
occur abundantly as lipidic globules in the cytoplasm. Some
authors have attributed the colour to astaxanthin (Thompson
& Wujek 1997; Grube et al. 2017a), a deep red carotenoid
known from other chlorophytes such as Haematococcus and
the snow alga Chlamydomonas nivalis. However, analyses of
Trentepohlia haematochrome show principally beta-carotenes
(Czeczuga & Maximov 1996; Mukherjee et al.  2010;
Kharkongor & Ramanujam 2015; Chen et al. 2016). Located out-
side the plastids, these secondary carotenoids do not participate in
photosynthetic light-harvesting but are hypothesized to filter
excess light and suppress any damaging reactive oxygen species
thereby generated (Solovchenko 2013). This may contribute to
the visible success of Trentepohlia in colonizing exposed substrata
in diverse environments.

The sporangia of Trentepohlia are themselves units of dis-
persal, easily detached when mature and vectored by wind,
rain or insects. They then initiate a second round of shorter-
distance dispersal by releasing quadriflagellate zoospores
(Thompson & Wujek 1997). Trentepohlia also produces puta-
tive gametangia that are morphologically distinct from sporan-
gia. However, the biflagellate zoids released have most often
been observed germinating as spores rather than fusing as
gametes (Rindi & Guiry 2002).

Cellular contacts between mycobionts and their trentepoh-
liaceous photobionts often appear to be superficial. However,
most of these lichens, when carefully examined microscopically,
reveal haustorial penetration, often deeply into the algal cells
(Tschermak 1941a; Withrow & Ahmadjian 1983; Matthews
et al. 1989; but see Meier & Chapman 1983).

Trentepohlia photobionts have been occasionally reported to
grow out from the algal layer and emerge as free filaments pro-
jecting from the lichen thallus or thalline apothecial margin
(Zahlbruckner 1907: p. 126; McGee 2002). In one case, such
a filament was seen bearing a sporangium (Tschermak 1941a:
p. 289). However, some authors have expressed scepticism
about this interpretation, suggesting that epiphytic
Trentepohlia might instead develop upon, and then grow
into, an already formed thallus (Henssen & Jahns 1974:
p. 196). More detailed observations are clearly required, but
either explanation could represent another potentially signifi-
cant mechanism by which exchange may occur between liche-
nized and free-living populations.

Tritostichococcus Proschold & Darienko — This recent segregate
of Stichococcus s. lat. (Proschold & Darienko 2020) includes
the  Stichococcus-like  photobionts that associate with
Chaenotheca, a genus of lichen-forming fungi that partner with
a remarkably broad spectrum of photobionts (Tibell 2001).

Trochiscia Kiitzing — This genus of unicellar algae is character-
ized by an often-thick cell wall with spine- or wart-like pro-
jections, an irregularly stellate chloroplast, and two forms of
endogenous spore production, resulting in hundreds of
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small cylindrical autospores or just two rounded endospores
(Tschermak 1941b). Trochiscia currently appears to be placed
among the Chlorophyceae, in or near Sphaeropleales
(Fucikova et al. 2019). It was identified as photobiont of
Polyblastia amota and P. hyperborea (Tschermak 1941b;
Ahmadjian 1967) in the Verrucariaceae, but those reports
appear to be in doubt (Ettl & Gartner 2014) and further stud-
ies are needed. Trochiscia was not among the photobionts
detected in the survey by Thiis et al. (2011) of the algal part-
ners of Verrucariaceae.

Vulcanochloris Vancurova et al. — This newest addition to the
Trebouxia family encompasses three recently described spe-
cies with a distinctive, highly dissected chloroplast structure,
and molecular sequences that place them as sister to
Asterochloris (Vancurova et al. 2015). They are known mainly
as principal photobionts from some thalli of Stereocaulon
vesuvianum in the Canary Islands, although there is also a
very recent report of Vulcanochloris from a Stereocaulon thal-
lus collected in highland Bolivia (Kosecka et al. 2021). Most
other Stereocaulon lineages investigated to date appear to
associate with Asterochloris or Chloroidium (Vanlurova
et al. 2018). Vulcanochloris has also been recently reported
as a minority photobiont in thalli of Ramalina farinacea
(Moya et al. 2017).

Stramenopila (Heterokontae)

Heterococcus Chodat — The yellow-green (xanthophyte) algae

lack fucoxanthin, the golden brownish plastidial carotenoid
otherwise characteristic of the photosynthetic stramenopiles.
The absence of fucoxanthin makes them rather easy to confuse
with green algae. Their zoospores, however, will have the char-
acteristic stramenopilous flagellum bearing stiff, hollow, tripar-
tite appendages (mastigonemes). Heterococcus forms irregular
filaments and/or cell clusters when isolated into culture
(Zeitler 1954). Molecular sequences support the light micro-
scope identification of Heterococcus as photobiont in thalli of
three species of Verrucariaceae (Hydropunctaria rheitrophila,
Verrucaria funckii and V. hydrela) that are each in separate
clades and not closely related to one another (This et al.
2011). Another xanthophyte, Heterothrix (now Xanthonema;
Silva 1979) was identified via light microscopy as photobiont
of Staurothele clopimoides (Pereira Riquelme 1992) but that
interesting report requires corroboration.

Petroderma Kuckuck — Petroderma maculiforme is a small crust-

ose brown alga (Phaeophyceae) found on rocks in the lower
intertidal zone of western North America and Europe. In
San Francisco Bay, it is particularly common on discarded plas-
tic (Sanders et al. 2004). The alga is a disc of tightly branched,
radiating horizontal filaments, rather similar in morphology to
the chlorophyte Phycopeltis but with a dense carpet of short,
erect filaments arising proximally from the horizontal system.
In the free-living state, these erect filaments may bear unilocu-
lar and/or plurilocular sporangia (zoidangia) terminally
(Fritsch 1945). Chloroplasts typically possess one or several
large pyrenoids that are prominent in electron micrographs
(Fig. 2D) but not readily visible with light microscopy. The pyr-
enoids are traversed by branching tubules arising from invagin-
ation of the plastidial boundary membranes (rather than
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thylakoids, as in Trebouxia and Heveochlorella); the position of
the pyrenoid may be laminar, protruding to exserted, or
enfolded by chloroplast lobes (Sanders et al. 2005). The alga
was first brought to the attention of lichenologists by a footnote
in a phycology dissertation (Wynne 1969) that reported it in
symbiosis with a Verrucaria species on intertidal rocks in nor-
thern California. The lichen was not studied further until Moe
(1997) re-collected it and formally described the fungal sym-
biont as Verrucaria tavaresiae (now Wahlenbergiella tavaresiae;
Gueidan et al. 2011). When lichenized, the Petroderma
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filaments are separated by fungal tissue, into which they grow
and branch downwards rather than upwards as in the free-
living condition (Sanders et al. 2004). Petroderma is the only
member of the Phaeophyceae known to enter into lichen sym-
biosis. However, certain larger brown seaweeds, such as
Ascophyllum, have intimate, mutualistic associations with ver-
rucariacean fungi (Garbary & London 1995; Garbary &
MacDonald 1995) that are generally not considered to be
lichens on structural grounds, since the fungus grows within
algal tissues as a conventional mycelium (Hawksworth 1988).

Table 1. Taxonomically grouped list of photobiont genera and mycobionts reported in association with them. The family names of the mycobionts are included in
places where emphasis might be useful. id = procedures used in the study to identify the photobiont. LM = light microscopy, TEM = transmission electron microscopy.
See table 1 in Tschermak-Woess (1988a) for a comprehensive list of photobiont reports prior to 1988. Taxon names follow those used in the original articles.

Alga

Fungal symbionts

References & comments

Domain Bacteria, Phylum Cyanobacteria

[Brasilonema] sp.

?

Villanueva et al. (2018). Lichen not identified; need
evidence that algal isolate is lichen photobiont.

Calothrix and Dichothrix

Lichina spp., Placynthium nigrum

see Tschermak-Woess (1988a)

Chroococcidiopsis sp.

Anema nummularium, Peccania cerebriformis,
Psorotichia columnaris, Gonohymenia sp.

Blidel & Henssen (1983); Biidel (1985). id: LM, culture.

Chroococcidiopsis sp.

Peltula spp. and ‘other cyanolichen genera’

Buidel (1999). Unpublished 16S rDNA data of B. Biidel
& T. Friedl. cited.

Chroococcidiopsis sp.

Anema nummularium, Peltula euploca, Thyrea pulvinata

Fewer et al. (2002)

[Chroococcidiopsis] sp.

?

Villanueva et al. (2018). Lichen not identified; need
evidence that algal isolate is a lichen photobiont.

Chroococcidiopsis/
Chroococcidiopsidales

Peltula bolanderi, P. clavata, P. euploca, P. impressa,
P. obscurans, P. placodizans

V6 (2016)

Gloeocapsa sp.

Species of Anema, Edwardiella, Gonohymenia, Heppia,
Jenmania, Peccania, Phylliscum, Psorotichia, Pyrenopsis,
Synalissa and Thyrea; cephalodia of Amygdalaria and
Stereocaulon spp.

Numerous LM reports summarized by
Tschermak-Woess (1988a). Friedl & Biidel (2008);
Brodo et al. (2001). id: LM.

Hyella sp.

Collemopsidium sp.

see Ahmadjian (1967). id: LM.

Hyphomorpha sp.

Spilonema dendroides, S. schmidtii

Henssen (1981). id: LM.

Myxosarcina sp.

Peltula euploca

Friedl & Biidel (2008)

Nostoc sp. Nephroma resupinatum, Peltigera britannica, P. canina, Paulsrud et al. (2000, 2001). High genetic specificity,
P. membranacea; cephalodia of Peltigera aphthosa, P. also for cephalodia formation, overrules geography.
venosa

Nostoc sp. Collema multipartitum Oksanen et al. (2002)

Nostoc sp. Nephroma, numerous spp. Lohtander et al. (2003)

Nostoc sp. Leptogium puberulum, Massalongia carnosa, Placopsis Wirtz et al. (2003). Maritime Antarctica; two main
contortuplicata, P. parellina, Psoroma cinnamomeum clades that also include free-living Nostoc.

Nostoc sp. Collema crispum, Leptogium gelatinosum, Lobaria O’Brien et al. (2005)
amplissima, L. hallii, Massalongia carnosa, Nephroma
bellum, N. helveticum, Pannaria conoplea,

Peltigera canina, P. degenii, P. didactyla, P. horizontalis,

P. lepidophora, P. membranacea, P. neopolydactyla,

P. rufescens, Sticta beauvoisii, S. fuliginosa; cephalodia

of Peltigera aphthosa
Nostoc sp. Pseudocyphellaria crocata, (=)P. neglecta, (=)P. perpetua Summerfield & Eaton-Rye (2006)

p 374 g perp Y,

Nostoc sp. Pannaria andina, P. araneosa, P. athroophila, Elvebakk et al. (2008)

P. conoplea, P. durietzii, P. elixii, P. euphylla, P. farinosa,

P. fulvescens, P. isabellina, P. lobulifera, P. mosenii,

P. obscura, P. pallida, P. patagonica, P. rubiginella,

P. rubiginosa, P. sphinctrina, P. tavaresii
Nostoc sp. Degelia atlantica, D. plumbea Otalora et al. (2013)

https://doi.org/10.1017/50024282921000335 Published online by Cambridge University Press

(Continued)


https://doi.org/10.1017/S0024282921000335

368

Table 1. (Continued)

William B. Sanders and Hiroshi Masumoto

Alga Fungal symbionts References & comments

Nostoc sp. Polychidium muscicola Jayalal et al. (2012)

Nostoc sp. Species of Fuscopannaria, Kroswia, Pannaria, Magain & Sérusiaux (2014). Homoiomerous

Parmeliella and Physma (gelatinous) vs stratified anatomy correlated with

Nostoc strain, not fungal family, across Pannariaceae
and Collemataceae.

Nostoc sp. Leptogium lichenoides, Peltigera islandica, P. ponojensis Joneson & O’Brien (2017)

P ptog g ponoj
Nostoc sp. Peltigera sections Peltigera and Retifoviatae Magain et al. (2018)
Nostoc sp. Pectenia plumbea Cardés et al. (2019)

Rhizonema andinum

Cora arachnodavidea, C. barbulata, C. bovei,

C. dewisanti, C. dewisanti-mexicana, C. elephas,

C. hawksworthiana, C. hochesuordensis, C. pseudobovei,
Cora sp.; cephalodia of Stereocaulon fronduliferum

Dal Forno et al. (2020)

R. interruptum lineage

Coccocarpia filiformis, C. palmicola, C. stellata, Cora
applanata, C. aspera, C. auriculeslia, C. canari, C. ciferrii,
C. crispoleslia, C. galapagoensis, C. hymenocarpa,

C. melvinii, C. paraciferrii, C. reticulifera, C. smaragdina,
C. soredavidia, C. squamiformis, C. strigosa, C. suturifera,
C. terrestris, C. viliewoa, Cora sp. Cyphellostereum sp.,
Dictyonema aeruginosum, D. barbatum, D. darwinianum,
D. hernandezii, D. interruptum [= D. coppinsii],

D. phyllogenum, D. sericeum, D. schenkianum,
Dictyonema sp.; cephalodia of Stereocaulon ramulosum

Dal Forno et al. (2020)

R. neotropicum

Acantholichen pannarioides, Coccocarpia palmicola,
Cora gigantea, C. leslactuca, C. rubrosanguinea, Corella
sp., Dictyonema sp.

Dal Forno et al. (2020)

Rhizonema sp.

Acantholichen pannarioides, Coccocarpia filiformis,

C. palmicola, C. stellata, Dictyonema aeruginosulum,
D. coppinsii, D. glabratum, D. hernandezii,

D. phyllogenum, D. schenkianum, D. sericeum,
Coccocarpia; cephalodia of Stereocaulon fronduliferum
and S. ramulosum

Licking et al. (2009). Shows photobiont more closely
related to Nostoc clade than to Scytonema s. str.
Licking et al. (2014): formal description of genus
Rhizonema.

Rhizonema sp.

Athelia andina, Cyphellostereum pusiolum

Oberwinkler (2012). Mycobiont also associates with
green photobiont.

Rhizonema sp.

Athelia phycophila

Jilich (1972). Reported as Scytonema. Athelia poeltii
also said to associate with filamentous cyanobacteria;
Jiilich (1978).

Rhizonema sp.

Coccocarpia palmicola, Erioderma pedicellatum,
E. sorediatum, Leptogidium sp., Lichinodium sp.,
Moelleropsis nebulosa, Parmeliella parvula

Cornejo & Scheidegger (2016); Cornejo et al. (2016).
Boreal env. (Newfoundland). Also symbiotic among
liverwort Frullania asagrayana.

Rhizonema sp.

Lichinodium ahlneri, L. sirosiphoideum (Leotiomycetes!)

Prieto et al. (2019)

Rhizonema sp.

Dictyonema moorei

Masumoto (2020)

Rivularia sp.

Lichina confinis, L. pygmaea

Ortiz-Alvarez et al. (2015)

Scytonema sp.

Pyrenothrix nigra

Tschermak-Woess et al. (1983). id: LM & TEM.

Scytonema sp.

Species of Heppia, Lichinodium, Thermutis and
Zahlbrucknerella

Henssen (1994). DNA sequence data needed. Might be
Rhizonema, but see V& (2016) concerning Heppia.

Scytonema sp.

Heppia lutosa

V6 (2016). A 16s rRNA sequence suggests true
Scytonema, not Rhizonema.

Stigonema sp.

Species of Ephebe and Spilonema

Henssen & Jahns (1974). id: LM.

Stigonema sp.

Cephalodia of Stereocaulon

Lavoie et al. (2020)

Tolypothrix sp.

Thermutopsis sp.

Henssen (1990)

cf. Tolypothrix

Cephalodia of Placopsis perrugosa and P. stenophylla

Raggio et al. (2012)

Domain Eukarya, Eukaryote supergroup Archaeplastida, Kingdom Plantae, Division Chlorophyta

Class Trebouxiophyceae, Order Chlorellales

Auxenochlorella

Psoroglaena stigonemoides

This et al. (2011)

Near A. protothecoides

Psoroglaena stigonemoides

Nyati et al. (2007). Strain P-1015.
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Alga

Fungal symbionts

References & comments

Near Chlorella sorokiniana

Porpidia crustulata

Li et al. (2013)

Nannochloris normandinae

Normandina pulchella

Tschermak-Woess (1988a). Proschold & Darienko
(2020) synonymize N. normandinae with Diplosphaera
chodatii.

Class Trebouxiophyceae, Order Prasiolales

Deuterostichococcus allas and D.
antarcticus

Placopsis antarctica, P. contortuplicata

Beck et al. (2019). Reclassified by Proschold &
Darienko (2020).

D. deasonii

Staurothele clopima

Hodac¢ et al. (2016); Proschold & Darienko (2020).

Diplosphaera chodatii

Dermatocarpon luridum var. luridum

Fontaine et al. (2012); Doering et al. (2020).

Diplosphaera sp.

Agonimia koreana, A. opuntiella, A. repleta, A. tristicula,
Bagliettoa parmigera, Catapyrenium cinereum,

C. daedaleum, Dermatocarpon luridum, D. miniatum,
Endocarpon adscendens, E. diffractellum, E. pallidulum,
E. pusillum, Flakea papillata, Neocatapyrenium
rhizinosum, Normandina acroglypta, N. pulchella,
Placidiopsis cartilaginea, Placopyrenium bucekii,
Polyblastia cupularis, P. viridescens, Staurothele
areolata, S. clopima, S. clopimoides, S. drummondii,

S. fissa, S. frustulenta, Verrucaria elaeina, V. hochstetteri,
V. nigrescens, V. pratermissa, V. rupestris (Verrucariaceae)

This et al. (2011). Morphologically similar to
Stichococcus, but not close to type sp. S. bacillaris.

Diplosphaera sp.

Ramalina farinacea

Moya et al. (2017). Minority photobiont.

Prasiola borealis

Mastodia tessellata

Moniz et al. (2012). Authors refer to symbiotic form as
lichenized. Stipe section shows photobiont
well-embedded in fungal tissue.

P. borealis and one undescribed sp.

Mastodia tessellata

Pérez-Ortega et al. (2012); Garrido-Benavent et al. (2017).

P. delicata

Mastodia tessellata

Moniz et al. (2014); Garrido-Benavent et al. (2018).

Prasiola sp.

Mastodia tessellata

This et al. (2011)

Pseudochlorella pyrenoidosa

Micarea assimilata

Zeitler (1954); Tschermak-Woess (1988a).

P. signiensis

Trapelia coarctata

Darienko et al. (2016)

Pseudochlorella sp.

Stereocaulon strictum

Brunner & Honegger (1985). Pyrenoid ultrastructure
suggests this strain might be Chloroidium, as indicated
by DNA sequences from other Stereocaulon
photobionts.

Pseudochlorella sp.

Placynthiella dasaea

Voytsekhovich et al. (2011). id: LM, culture.

Pseudochlorella sp.

Umbilicaria antarctica

Park et al. (2015). In some thallus samples, along with
Trebouxia. Status as photobiont needs corroboration.

Pseudostichococcus clade

Neocatapyrenium rhizinosum

Hodac et al. (2016); Préschold & Darienko (2020).

Tritostichococcus coniocybes

Chaenotheca sp.

Proschold & Darienko (2020)

Class Trebouxiophyceae, Order Trebouxiales

Asterochloris antarctica

Cladonia sp.

Kim et al. (2020)

Asterochloris clade 11

Cladonia corymbescens, C. furcata, C. pyxidata,
C. rangiferina

Ridka et al. (2014)

Asterochloris clade 12

Cladonia furcata

Ridka et al. (2014)

Asterochloris clade Il

Cladonia subtenuis

Yahr et al. (2006)

Asterochloris clade 9

Cladonia cariosa, C. coniocraea, C. delavayi,
C. fruticulosa, C. praetermissa, C. scabriuscula,
C. verticillata

Ridka et al. (2014)

Asterochloris clade 12

Cladonia pyxidata

Ridka et al. (2014)

Asterochloris clade 16

Cladonia fruticulosa

Ridka et al. (2014)

A. echinata

Lepraria caesioalba, L. rigidula

Skaloud et al. (2015)

A. erici

Cladonia calycanta, C. chlorophaea, C. crispata,
C. floerkeana, C. gracilis ssp. turbinata, C. ramulosa,
C. squamosissima

Nakano & Iguchi (1994). id: LM, culture.
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Asterochloris excentrica

Lepraria caesioalba, L. neglecta, L. rigidula

Skaloud & Peksa (2010)

. friedlii

Lepraria caesioalba, L. lobificans

Skaloud et al. (2015)

. friedlii

Lepraria achariana, L. finkii

Kosecka et al. (2021)

. friedlii

Cladonia fimbriata

Pino-Bodas & Stenroos (2020)

. gaertneri

Lepraria incana, L. rigidula

Skaloud et al. (2015)

Cladonia humilis

Nakano & Iguchi (1994). id: LM, culture.

. glomerata

Diploschistes muscorum

Skaloud & Peksa (2010)

. glomerata

Stereocaulon pileatum, S. saxatile, Stereocaulon sp.

Peksa & Skaloud (2011)

A
A
A
A
A. glomerata
A
A
A

. glomerata

Cladonia coniocraea, C. squamosa, Stereocaulon
evolutoides, S. pileatum

Ridka et al. (2014)

A. glomerata

Cladonia deformis, C. pleurota

Steinova et al. (2019)

A. glomerata

Cladonia grayi

Armaleo et al. (2019)

A. glomerata

C. caroliniana, C. cornuta, C. deformis, C. hondoensis,
C. krogiana, C. mitis, C. monomorpha, C. oricola,

C. phyllophora, C. piedmontensis, C. pleurota,

C. submitis, C. subulata, C. uncialis

Pino-Bodas & Stenroos (2020)

A. glomerata/irregularis clade

Cladonia cariosa, C. cervicornis ssp. verticillata,
C. phyllophora

Rola et al. (2021)

A. irreqularis

Squamarina lentigera

Beck et al. (2002)

A. irregularis

Cladonia furcata, Lecidea fuscoatra, L. plana, Lepraria
caesioalba, Porpidia crustulata, P. flavocaerulescens,
P. macrocarpa, Porpidia spp., Stereocaulon vesuvianum

Beck (2002)

A.irregularis

Cladonia arbuscula, C. mitis, Stereocaulon botryosum,
S. pileatum, S. subcoralloides

Skaloud & Peksa (2010); Skaloud et al. (2015).

A. irreqularis

Stereocaulon alpinum, S. apocalypticum,
S. intermedium, S. paschale, S. symphycheilum,
S. tomentosum, S. vesuvianum

Vancurova (2012)

A. irregularis

Stereocaulon botryosum, S. pileatum, S. subcoralloides,
S. vesuvianum, Stereocaulon sp.

Peksa & Skaloud (2011)

A. irregularis

Cladonia deformis, C. pleurota

Steinova et al. (2019)

A. irreqularis

Cladonia albonigra, C. alinii, C. amaurocraea, C. botrytes,
C. crispata, C. ecmocyna, C. gracilis, C. granulans,

C. kanewskii, C. labradorica, C. macrophylla, C. uliginosa,
C. uncialis

Pino-Bodas & Stenroos (2020)

C. capitellata, C. ciliata, C. foliacea, C. groenlandica,

C. islandica, C. lepidophora, C. mawsonii,

C. merochlorophaea, C. neozelandica, C. pleurota,

C. portentosa, C. prolifica, C. pulvinata, C. rappi, C. rigida,
C. subcervicornis, C. subsubulata, C. ustulata,

C. weymouthii

A. italiana Cladonia capitellata, C. scabriuscula Skaloud et al. (2015)

A. italiana Cladonia coccifera, C. diversa Steinova et al. (2019)

A. italiana Stereocaulon condensatum Vancurova (2012)

A. italiana Cladonia bellidiflora, C. borbonica, C. brevis, C. callosa, Pino-Bodas & Stenroos (2020)

A. italiana clade

Diploschistes muscorum

Rola et al. (2021)

A. leprarii

Lepraria caesioalba, L. neglecta

Skaloud et al. (2015)

A. lobophora

Cladonia cf. bacillaris, Diploschistes muscorum, Lepraria
alpina, L. borealis, L. caesioalba

Skaloud et al. (2015)

A. lobophora

Cladonia coccifera

Steinova et al. (2019)

A. lobophora

Cladonia rei

Pino-Bodas & Stenroos (2020)
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Asterochloris lobophora/
phycobiontica clade

Cladonia cariosa, C. rei, Diploschistes muscorum

Rola et al. (2021)

A. magna

Porpidia contraponenda

Beck (2002)

A magna

Cladonia chlorophaea, C. decorticata

Pino-Bodas & Stenroos (2020)

A. mediterranea

Cladonia cervicornis, C. concoluta, C. foliacea,
C. rangiformis

Moya et al. (2015)

A. mediterranea

Cladonia calycantha, Stereocaulon pachycephalum

Kosecka et al. (2021)

A. mediterranea Cladonia corsicana, C. crispata, C. cryptochlorophaea, Pino-Bodas & Stenroos (2020)
C. diversa, C. glauca, C. rei
A. phycobiontica Anzina [Varicellaria] carneonivea Tschermak-Woess (1980a); Skaloud et al. (2015).
A. phycobiontica Stereocaulon alpinum Vancurova (2012)
A. phycobiontica Lepraria neglecta Skaloud & Peksa (2010)
A. phycobiontica Lepraria alpina, L. caesioalba, L. neglecta, Lepraria sp. Peksa & Skaloud (2011)
A. pseudoirregularis Cladonia gracilis, Cladonia sp. Kim et al. (2020)
A. pseudoirregularis Cladonia amaurocraea, C. gracilis, C. granulans, Pino-Bodas & Stenroos (2020)
C. vulcanii, Pycnothelia papillaria
A. sejongensis Cladonia pyxidata, Sphaerophorus globosus Kim et al. (2017)

A. stereocaulonicola

Stereocaulon alpinum

Kim et al. (2020)

A. woessiae Cladonia foliacea, Lepraria borealis, L. caesioalba, Skaloud et al. (2015)
L. crassissima, L. nigrocinta, L. nylanderiana, Lepraria
sp., Stereocaulon saxatile
A. woessiae Cladonia coccifera Steinova et al. (2019)
A. woessiae Cladonia conista, C. foliacea Pino-Bodas & Stenroos (2020)

A. woessiae clade

Diploschistes muscorum

Rola et al. (2021)

Asterochloris sp.

Bagliettoa cazzae

This et al. (2011)

Asterochloris sp.

Psora decipiens

Ruprecht et al. (2014). Also Trebouxias and a
Chloroidium in this lichen sp., but see Williams et al.
(2017).

Asterochloris sp.

Lepraria borealis, Ochrolechia frigida

Engelen et al. (2010, 2016). Maritime Antarctica.

Asterochloris sp.

Lecidea lurida, Psora decipiens, Squamarina cartilaginea

Schaper & Ott (2003). Gotland, Sweden.

Asterochloris sp.

Ramalina farinacea

Moya et al. (2017). Minority photobiont.

Asterochloris sp.

Porpidia from southern South America

Ruprecht et al. (2020). All mycobiont species also
partnered with Trebouxia.

Asterochloris sp.

Cladonia acuata, C. aggregata, C. andesita, C. arbuscula
ssp. boliviana, C. calycantha, C. chlorophaea, C. confusa,
C. dactylota, C. didyma, C. furcata, C. granulosa,

C. isabellina, C. melanopoda, C. pocillum, C. ramulosa, C.
cf. subradiosa, C. vouauxii, Lepraria cryptovouauxii,

L. hodkinsoniana, Stereocaulon myriocarpum,

S. tomentosum

Kosecka et al. (2021)

Asterochloris sp.

Cladonia arbuscula, C. fimbriata, C. foliacea, C. rei,
Diploschistes muscorum, Lepraria alpina, L. borealis,

L. caesioalba, L. lobificans, L. neglecta, L. nigrocincta,
L. nylanderiana, L. rigidula, Pilophorus sp., Stereocaulon
botryosum, S. paschale, S. pileatum, S. saxatile,

S. subcoralloides, S. tomentosum, S. vesuvianum

Nelsen & Gargas (2008). Formal emendation of genus
by Skaloud & Peksa (2010) to include Trebouxia
subgen. Eleutherococcus Tschermak-Woess.

Asterochloris sp.

Cladia aggregata, Cladonia cf. bacillaris, C. evansii, C.
fimbriata, C. perforata, C. rangiferina, Lepraria
atromentosa, L. caesiella, L. caesioalba, L. incana,

L. lobificans, L. nigrocincta, L. nivalis, L. nylanderiana,
Lepraria spp., Pilophorus acicularis, P. cf. cereolus,
Stereocaulon dactylophyllum, S. paschale, S. saxatile,
S. tomentosum, S. vesuvianum, Stereocaulon spp.

Nelsen & Gargas (2008)
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Asterochloris spp.

Species of Lepraria and Stereocaulon

Peksa & Skaloud (2011)

Asterochloris spp.

Cladonia furcata

Ridka et al. (2014)

Myrmecia biatorellae

Catapyrenium rufescens, Dermatocarpon hepaticum,
D. tuckermani, D. velebiticum, Lecidea berengeriana,
Lobaria linita, Polysporina simplex, Psora decipiens,

P. globifera, Psoroma hypnorum, Sarcogyne privigna,
Verrucaria submersella

Tschermak-Woess (1988a)

M. biatorellae

Fuscidea cyathoides var. japonica, Leproloma sp.

Watanabe et al. (1997). Maritime lichens. id: LM.

M. biatorellae

Placidium squamulosum

Voytsekhovich & Beck (2016)

M. biatorellae

Heteroplacidium contumescens, H. imbricatum,
Placidium acarosporoides, P. arboreum, P. chilense,
P. lachneum, P. lacinulatum, P. squamulosum,

P. umbrinum (Verrucariaceae)

Thus et al. (2011)

M. biatorellae

Psora decipiens

Williams et al. (2017). Austrian samples.

M. israelensis

Psora decipiens, P. saviczii, Placidium pilosellum,
Placidium spp., Clavascidium spp.

Moya et al. (2018)

Myrmecia sp.

Psora decipiens

Williams et al. (2017). Transplant study; algal layer
degenerates, no photobiont switching.

Trebouxia aggregata

Xanthoria parietina

Beck & Mayr (2012)

T. angustilobata

Acarospora sinopica, Porpidia tuberculosa, Tremolecia
atrata

Beck (2002)

T. angustilobata

Protoparmelia badia

Singh et al. (2017)

T. angustilobata

Pseudephebe sp.

Garrido-Benavent et al. (2020)

T. arboricola

Lecania cyrtella, Lecanora sp., Lecidella elaeochroma,
Xanthoria parietina

Beck et al. (1998)

T. arboricola

Anaptychia ciliaris

Helms et al. (2001); Dahlkild et al. (2001).

T arboricola

Pleurosticta acetabulum

Beck & Koop (2001)

T. arboricola

Chaenotheca phaeocephala

Tibell & Beck (2002)

T. arboricola

Ramalina farinacea, R. pollinaria, R. siliquosa

Tschaikner et al. (2007). id: LM, cultures.

T. arboricola

Caloplaca fernandeziana, C. orthoclada

Vargas Castillo & Beck (2012)

T. arboricola

Xanthoria aureola, X. calcicola, X. capensis,
X. ectaneoides, X. flammea, X. hirsuta, X. karrooensis,
X. ligulata, X. parietina, X. polycarpa, X. turbinata

Nyati et al. (2013, 2014)

T. arboricola

Ochrolechia sp., Xanthoria calcicola, X. parietina

Voytsekhovich & Beck (2016)

T. arboricola clade

Acarospora conafii, Ramalina thrausta

Jung et al. (2019)

T. arboricola/T. gigantea clade

Xanthoparmelia spp.

Leavitt et al. (2013)

T. arboricola/T. gigantea clade

Cladonia cariosa, C. rei, Diploschistes muscorum

Osyczka et al. (2021)

Clade A (= arboricola/gigantea

Species of Melanelixia, Melanohalea, Montanelia,

Leavitt et al. (2015)

group) Oropogon, Parmotrema, Protoparmeliopsis, Rhizoplaca
and Xanthoparmelia
T. ‘arnoldoi’ Buellia zoharyi Molins et al. (2020)
T. asymmetrica Buellia zoharyi Helms et al. (2001); Molins et al. (2020).
T. asymmetrica Fulgensia fulgida, Toninia sedifolia Beck et al. (2002)
T. asymmetrica Protoparmeliopsis muralis Guzow-Krzeminska (2006)
T. asymmetrica Caloplaca teicholyta, Circinaria contorta Voytsekhovich & Beck (2016)
T. asymmetrica Circinaria spp. Molins et al. (2018)
T. asymmetrica clade Placidium sp. Jung et al. (2019)
T. australis Lecanora farinacea, L. polytropa, Rhizocarpon Beck (2002)

geographicum
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Alga Fungal symbionts References & comments
Trebouxia brindabellae Protoparmelia badia Singh et al. (2017)
T. corticola Parmotrema tinctorum Ohmura et al. (2006, 2019)
T. corticola Umbilicaria muehlenbergii Cao et al. (2015)
T. crenulata Ramalina capitata Tschaikner et al. (2007)
T. crenulata Xanthoria parietina Beck & Mayr (2012)
T. crenulata Caloplaca aurantia, C. xerica, Candelariella medians, Voytsekhovich & Beck (2016)
Lecanora swartzii, Leproplaca xantholyta, Tephromela
atra, Xanthoria calcicola
T. crespoana Parmotrema pseudotinctorum Skaloud et al. (2018)
T. cretacea Aspicilia desertorum, Rusavskia papillifera Voytsekhovich & Beck (2016)
T. cretacea Buellia zoharyi Molins et al. (2020)
T. decolorans Lecanora rupicola Blaha et al. (2006)
T. decolorans Xanthoria parietina Beck & Mayr (2012)
T. decolorans Xanthomendoza borealis, Xm. fulva, Xm. hasseana, Nyati et al. (2013, 2014)
Xanthoria candelaria, X. elegans, X. parietina,
X. polycarpa
T. decolorans Ramalina menziesii Werth & Sork (2014)
T. decolorans Caloplaca orthoclada Vargas Castillo & Beck (2012)
T. decolorans Ramalina fraxinea Catala et al. (2016)
T. decolorans Anaptychia ciliaris, Xanthoria parietina Dal Grande et al. (2014q)
T. decolorans Anaptychia setifera, Candelariella medians Voytsekhovich & Beck (2016)
Trebouxia clade G (galapagensis/ Species of Parmotrema and Xanthoparmelia Leavitt et al. (2015)
usneae group)
T. gelatinosa Caloplaca spp., Hymenelia sp., Lecanora subimmergens, Watanabe et al. (1997). Maritime lichens. id: LM.
Lecidella enteroleucella, Ochrolechia parellula, Rinodina
sp., Verrucaria sp.
T. gelatinosa Physcia semipinnata Helms et al. (2001)
T. gelatinosa Flavoparmelia caperata, Punctelia subrudecta, Doering & Piercey-Normore (2009)
Teloschistes sp., Xanthoria sp.
T. gelatinosa Josefpoeltia parva, Teloschistes chrysophthalmus, Nyati et al. (2013, 2014)
T. hosseusianus, Xanthomendoza novozelandica, Xm.
weberi
T. gelatinosa Rhizocarpon geographicum Voytsekhovich & Beck (2016)
T. gigantea Parmelia subramigera Watanabe et al. (1997). Maritime. id: LM.
T. gigantea Rinodinella controversa Helms et al. (2001)
T. gigantea Protoparmeliopsis muralis Guzow-Krzeminska (2006)
T. gigantea Caloplaca orthoclada Vargas Castillo & Beck (2012)
T. gigantea Caloplaca erythrocarpia, Candelariella medians Voytsekhovich & Beck (2016)
T. glomerata Species of Polyblastia, Rinodina and Verrucaria Watanabe et al. (1997). Maritime lichens. id: LM.
T. higginsiae Aspicilia sp., Buellia stellulata, Caloplaca kobeana, Watanabe et al. (1997). Maritime lichens. id: LM.
Hymenelia sp., Lecidella enteroleucella, Parmelia
congensis, Rhizocarpon sp., Rinodina sp., Rinodinella sp.
‘T. hypogymniae’ Hypogymnia physodes Hauck et al. (2007)
‘T. hypogymniae’ Evernia divaricata, E. mesomorpha Piercey-Normore (2009)
T. impressa Parmelia mexicana Watanabe et al. (1997). Maritime lichens. id: LM.
T. impressa Phaeophyscia orbicularis, Physcia adscendens, P. tenella Beck et al. (1998); Helms et al. (2001).
T. impressa Dimelaena oreina, Physcia aipola, Physconia perisidiosa, Helms et al. (2001)
Rinodina capensis, R. milvina
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Trebouxia impressa

Phaeophyscia orbicularis, Physcia caesia, P. tenella,
Physconia distorta

Dahlkild et al. (2001)

T. impressa Umbilicaria kappenii Romeike et al. (2002)
T. impressa Melanelia glabra, Parmelina carporrhizans, P. tiliacea, Doering & Piercey-Normore (2009)
Phaeophyscia orbicularis, Physcia caesia, P. stellaris,
P. tenella
T. impressa Xanthomendoza fallax, X. ulophyllodes Nyati et al. (2014)
T. impressa Lecanora rupicola Blaha et al. (2006)
T. impressa Lecanora fuscobrunnea, Lecidea andersonii, Ruprecht et al. (2012)
L. atrobrunnea, L. cancriformis, L. tesselata, Lecidella
carpathica
T. impressa Thamnolia vermicularis Onut-Brannstrom et al. (2017)

T. impressa/T. gelatinosa

Cladonia cariosa, C. rei, Diploschistes muscorum

Osyczka et al. (2021)

Clade | (impressa/gelatinosa group)

Species of Melanelixia, Melanohalea, Montanelia,

Oropogon, Parmelia, Protoparmeliopsis, Rhizoplaca and

Xanthoparmelia

Leavitt et al. (2015)

T. impressa/T. potteri

Ramalina americana, R. sinensis

Francisco de Oliveira et al. (2012)

T. impressa/T. potteri

Pleurosticta koflerae

Voytsekhovich & Beck (2016)

Trebouxia clade including
T. impressa, T. flava and T. potteri

Physconia distorta, P. grisea

Wornik & Grube (2010)

T. incrustata

Xanthoria candelaria

Aoki et al. (1998). Antarctica. id: LM, culture.

T. incrustata

Rinodina atrocinerea

Helms et al. (2001)

T. incrustata Acarospora bullata, Lecanora muralis, L. stenotropa, Beck (2002)
Neofuscelia stygiodes, Protoparmelia badia, Rhizocarpon
cf. cyanescens, R. cf. viridiatrum
T. incrustata Lecanora rupicola Blaha et al. (2006)
T. incrustata Protoparmelia incrustans Muggia et al. (2013)
T. incrustata Protoparmeliopsis muralis Guzow-Krzeminska (2006)
T. incrustata Caloplaca crenulatella, C. squamulosa, Circinaria Voytsekhovich & Beck (2016)
contorta, Lecanora muralis, Staurothele sp.,
Xanthoparmelia pulla, X. stenophylla
T. irregularis Diploschistes muscorum Friedl (1989). Photobiont taken from parasitized
Cladonia; later substituted by T. showmanii. id: LM.
T. jamesii Candelaria concolor, Candelariella sp. Beck et al. (1998)
T. jamesii Tremolecia atrata Beck & Koop (2001)
T. jamesii Chaenotheca subroscida Tibell & Beck (2002)
T. jamesii Umbilicaria antarctica, U. decussata, U. kappenii, Romeike et al. (2002)
U. umbilicarioides
T. jamesii Evernia mesomorpha, Melanelia exasperatula Piercey-Normore (2006, 2009). Multiple clades within.
T. jamesii Evernia divaricata, E. prunastri, Ramalina fraxinea, Tschaikner et al. (2007)
R. siliquosa
T. jamesii Ramalina farinacea Casano et al. (2011); Moya et al. (2017).
T. jamesii Ramalina fraxinea Catala et al. (2016)
T. jamesii Carbonea vorticosa, Lecanora fuscobrunnea, Ruprecht et al. (2012)
L. physciella, Lecidea auriculata, L. cancriformis,
L. lapicida, L. obluridata, Lecidella greenii, L. siplei
T. jamesii Lecidea cancriformis Pérez-Ortega et al. (2012). Hap4, well-supported
clade.
T. jamesii Lepraria borealis Engelen et al. (2010). Maritime Antarctica.
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Trebouxia jamesii Ramalina menziesii Werth & Sork (2014). Only 6% of sampled thalli;
majority had T. decolorans.
T. jamesii Candelariella vitellina, Lecanora frustulosa, Lecidea sp., Voytsekhovich & Beck (2016)
Protoparmelia psarophana, Ramalina calicaris,
R. capitata, R. pollinaria, R. pontica, Ramalina sp.,
Rhizocarpon geographicum, Rhizoplaca sp., Umbilicaria
grisea
T. jamesii Protoparmelia badia, P. montagnei Singh et al. (2017)
T. jamesii Letharia barbata, L. gracilis, L. lucida, L. lupina, L. rugosa Kroken & Taylor (2000)

>

clade ‘T. lethariae

T. jamesii
clade ‘T. vulpinae’

Letharia vulpina

Kroken & Taylor (2000)

T. jamesii
clade ‘T. vulpinae’

Cetraria aculeata

Fernandez-Mendoza et al. (2011); Onut-Brannstrom
et al. (2018).

T. jamesii and Trebouxia clades A, |,
S, G

Thamnolia vermicularis

Nelsen & Gargas (2009)

T. jamesii ‘group A’

Boreoplaca ultrafrigida, Umbilicaria esculenta,
U. muehlenbergii

Cao et al. (2015)

T. jamesii ‘group B’

Boreoplaca ultrafrigida, U. muehlenbergii

Cao et al. (2015)

T. jamesii ssp. angustilobata

Acarospora sinopica, Lecidea lapicida

Beck (1999)

T. jamesii ssp. jamesii

Acarospora rugulosa, Bellemerea diamartha, Lecanora
polytropa, L. subaurea, Lecidea silacea, Rhizocarpon
geographicum, Umbilicaria cylindrica

Beck (1999)

T. potteri

Pertusaria spp.

Takeshita et al. (1989). id: LM, culture.

T. potteri/flava

Lecanora rupicola

Blaha et al. (2006)

T. showmanii Caloplaca spp. Watanabe et al. (1997). Maritime lichens. id: LM,
culture.
T. showmanii Diploschistes muscorum Friedl (1989). id: LM.
T. simplex Acarospora rugulosa, A. sinopica, A. smaragdula, Beck (2002)
Bellemerea alpina, B. cinereorufescens, B. subsorediza,
Carbonea vorticosa, Lecidea confluens, L. epanora,
L. handelii, L. lapicida, L. paupercula, L. polytropa,
L. silacea, L. subaurea, L. tesselata, Miriquidica atrofulva,
M. garovaglii, Pleopsidium chlorophanum, Porpidia
tuberculosa, Rhizocarpon geographicum, R. lecanorinum,
R. norvegicum, R. polycarpum, R. ridescens,
R. simillimum, Sporastatia testudinea, Tremolecia atrata,
Umbilicaria crustulosa, U. cylindrica, U. torrefacta
T. simplex Lecanora rupicola Blaha et al. (2006)
T. simplex Lecanora conizaeoides Hauck et al. (2007)
T. simplex Evernia mesomorpha, Everniastrum catawbiense, Piercey-Normore (2009)
Imshaugia aleurites, Pseudevernia consocians
T. simplex Evernia mesomorpha, Imshaugia placorodia, Lecanora Doering & Piercey-Normore (2009)
conizaeoides, Pseudevernia cladoniae, P. consocians
T. simplex Bryoria americana, B. bicolor, B. capillaris, B. fremontii, Lindgren et al. (2014)
B. furcellata, B. glabra, B. implexa, B. lanestris,
B. nadvornikiana, B. nitidula, B. simplicior, B. smithii,
B. subcana, B. tenuis, Bryoria sp.
T. simplex Protoparmelia hypotremella, P. ochrococca, P. oleagina Singh et al. (2017)
T. simplex Thamnolia vermicularis Onut-Brannstrém et al. (2017)

T. simplex/jamesii

Lasallia pustulata, L. hispanica, Umbilicaria spodochroa

Hestmark et al. (2016); Dal Grande et al. (2018).

Clade S (simplex/letharii/jamesii
group)

Species of Cetraria, Letharia, Melanohalea, Motanelia,
Rhizoplaca and Xanthoparmelia

Leavitt et al. (2015)
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Clade S (Trebouxia simplex/letharii/
Jjamesii group)

Pseudephebe minuscula, P. pubescens

Garrido-Benavent et al. (2020)

T. simplex/suecica
(S clade)

Cetraria aculeata, C. ericetorum, C. islandica,

C. muricata, C. sepincola, Flavocetraria cucullata,

F. nivalis, Melanelia agnata, M. hepatizon, M. stygia,
Tuckermannopsis chlorophylla, Vulpicida pinastri

Xu et al. (2020)

T. simplex s. lat.

Tephromela atra s. str.

Muggia et al. (2008). Tephromela photobionts also
found in two other Trebouxia clades.

T. simplex subclades 1 and 2

Cetraria aculeata, C. islandica, Thamnolia subuliformis

Onut-Brénnstrom et al. (2018)

Trebouxia solaris

Aspicilia cinerea, Caloplaca aractina, Candelariella
vittelina, Circinaria contorta, Ramalina capitata,
Rhizocarpon geographicum

Voytsekhovich & Beck (2016)

T. aff. solaris

Chrysothrix candelaris

Ertz et al. (2018)

T. aff. solaris

Lecanographa amylacea (‘Buellia violaceofusca’)

Ertz et al. (2018). Same mycobiont produces
morphologically distinct, sexual thallus with
Trentepohlia sp.!

T. suecica Acarospora sinopica, Candelariella vitellina, Immersaria Beck (2002)
athroocarpa, Lecanora polytropa, Miriquidica atrofulva,
Protoparmelia atriseda, P. badia, Rhizocarpon
geographicum, Tremolecia atrata, Umbilicaria torrefacta
T. suecica Protoparmelia badia, P. memnonia Singh et al. (2017)
T. suecica Pseudephebe sp. Garrido-Benavent et al. (2020)
T. vagua Candelariella vitellina, Circinaria contorta, Diploschistes Voytsekhovich & Beck (2016)
diacapsis, Porpidia crustulata
T. vagua Thamnolia vermicularis Onut-Brénnstrém et al. (2017)

Near T. vagua

Caloplaca tubelliana, Dirina massiliensis
[Arthoniomycetes!], Lecanora albescens

Voytsekhovich & Beck (2016)

Trebouxia clade IV (including T.
corticola, T. galapagensis,
T. higginsiae and T. usneae)

Tropical Ramalina anceps, R. complanata, R. dendroides,
R. gracilis, R. peruviana, R. sorediosa, R. sprengelii

Cordeiro et al. (2005)

Trebouxia A 02

Austrolechia sp., Buellia frigida, Carbonea vorticosa,
Huea sp., Lecidea cancriformis, L. polypycnidophora,
Lecidella greenii, Rhizoplaca macleanii

Wagner et al. (2020). Antarctic Dry Valleys.

Trebouxia sp. clade 1

Fulgensia bracteata, F. fulgens, Toninia sedifolia

Schaper & Ott (2003). Goétland, Sweden.

Trebouxia sp. ‘D11’

Buellia frigida, endolithic Lecidea sp., Umbilicaria aprina

de los Rios et al. (2005). Continental Antarctic.

Trebouxia TR9

Ramalina farinacea

Casano et al. (2011); Moya et al. (2017).

Trebouxia sp. ‘URal’

Carbonea vorticosa, Lecidea cancriformis

Ruprecht et al. (2012)

Trebouxia sp. ‘URa2’

Carbonea vorticosa, Lecidea andersonii, L. atrobrunnea,
L. cancriformis, L. fuscoatra, L. lapicida, Lecidea sp.,
Lecidella greenii, L. siplei, Rhizoplaca macleanii

Ruprecht et al. (2012)

Trebouxia sp. ‘URa3’

Carbonea vorticosa, Lecanora physciella, Lecidea
andersonii, L. cancriformis, L. lapicida,

L. polypycnidophora, Lecidella greenii, L. patavina,
L. siplei, Rhizoplaca macleanii

Ruprecht et al. (2012)

Trebouxia sp. ‘URa4’

Lecidea andersonii, Lecidella stigmatea

Ruprecht et al. (2012)

Trebouxia sp.

Buellia papillata, Caloplaca johnstonii, C. lewis-smithii,
Candelariella flava, Lecidella pataviana, Lepraria
cacuminum, Pseudephebe minuscula, Psoroma sp.,
Tephromela atra, T. disciformis, Usnea lambii, Xanthoria
elegans

Engelen et al. (2016). Maritime Antarctic.

Trebouxia sp.

Bagliettoa marmorea

Ths et al. (2011)

Trebouxia sp.

Lasallia pustulata

Sadowksa-Des$ et al. (2014)

Trebouxia sp.

Cetraria aculeata

Lutsak et al. (2016)
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Trebouxia sp.

Austrolechia spp., Buellia frigida, Caloplaca cf. citrina,

C. sublobata, Caloplaca sp., Carbonea vorticosa, Huea sp.,
Lecanora cancriformis, L. flotowiana, L. fuscobrunnea,
Lecidella greenii, Rhizoplaca macleanii, Rhizoplaca sp.,
Umbilicaria aprina

Pérez-Ortega et al. (2012). Crustose lichens of
McMurdo Dry Valleys, probably representing at least
two undescribed clades.

Trebouxia sp.

Circinaria spp.

Molins et al. (2018)

Trebouxia sp. B

Boreoplaca ultrafrigida, Parmelia omphalodes

Cao et al. (2015)

Trebouxia lineages lacking formal
recognition

Rhizoplaca spp., Protoparmeliopsis spp.

Leavitt et al. (2016). Some 15 spp., collected
worldwide.

Vulcanochloris sp.

Stereocaulon vesuvianum

Vancurova et al. (2015). From La Palma.

Vulcanochloris sp.

Ramalina farinacea

Moya et al. (2017). Minority photobiont.

Vulcanochloris sp.

Stereocaulon pityrizans

Kosecka et al. (2021)

Class Trebouxiophyceae, Order Prasiolales, Elliptochloris clade

(Coccomyxa greatwallensis)

Isolated from Psoroma hypnorum

Cao et al. (2018). Symbiotic status not established.

C. icmadophilae

Dibaeis baeomyces

Beck (2002)

C. solorinae var. croceae, var.
saccatae and C. peltigerae

Peltigera variolosa, Solorina bispora, S. crocea,
S. saccata

Malavasi et al. (2016)

C. subellipsoidea

Lichenomphalia ericetorum, L. grisella, L. hudsoniana,
L. luteovitellina, L. velutina, Lichenomphalia sp.

Zoller & Lutzoni (2003)

C. subellipsoidea

Lichenomphalia hudsoniana, L. meridionalis,
L. umbellifera

Masumoto et al. (2019); Gasulla et al. (2020);
Masumoto (2020).

Coccomyxa sp.

Dacampia hookeri

Henssen (1995). id: LM.

Coccomyxa sp.

Nephroma arcticum, N. expallidum, Peltigera aphthosa,
P. britannica, P. leucophlebia

Lohtander et al. (2003)

Coccomyxa sp.

Peltigera variolosa, Solorina bispora, S. crocea,
S. saccata

Darienko et al. (2015). Photobionts not monophyletic,
related to free-living C. subellipsoidea.

Coccomyxa sp.

Micarea byssacea, M. denigrata, M. leprosula, M. lignaria,
M. micrococca, M. nitschkeana, M. peliocarpa, M. prasina
(Pilocarpaceae)

Yahr et al. (2015)

Coccomyxa sp.

Icmadophila aversa, I. ericetorum, I. japonica,
I. splachnirima

Ludwig (2015)

Coccomyxa sp.

Lichenomphalia oreades

Liicking et al. (2017b)

Coccomyxa sp.

Sticta laciniosa from Cuba

Lindgren et al. (2020)

Related to Coccomyxa and
Pseudococcomyxa

Schizoxylon albescens (Stictidaceae)

Muggia et al. (2011)

Elliptochloris bilobata

Fuscidea cyathea var. japonica

Watanabe et al. (1997). Maritime. id: LM, culture.

bilobata

Species of Buellia and Leproloma

Aoki et al. (1998). Antarctic. id: LM, culture.

bilobata

Baeomyces rufus

Trembley et al. (2002b)

bilobata

Verrucaria sublobulata

Thus et al. (2011)

bilobata

Micarea misella, M. prasina

Voytsekhovich et al. (2011). id: LM, culture.

Micarea prasina

Yahr et al. (2015)

bilobata

Catolechia wahlenbergii

Darienko et al. (2016)

parasphaerica ad int.

Multiclavula petricola, M. vernalis

Reported by H. Masumoto & S. Handa in Masumoto (2020).

perforata

Micarea prasina

Darienko et al. (2016)

E.
E.
E.
E.
E. bilobata
E.
E.
E.
E.

reniformis

Fuscidea cyathoides var. japonica, Leproloma sp.,
Ochrolechia parellula

Watanabe et al. (1997); Darienko et al. (2016).
Maritime. id: LM, culture.

ke

reniformis

Micarea peliocarpa

Voytsekhovich et al. (2011). id: LM, culture.

e

subsphaerica

Aspicilia sp., Fuscidea cyathoides var. japonica

Watanabe et al. (1997). Maritime. id: LM, culture.
(=Chlorella reisiglii Watanabe; Darienko et al. 2016)

E. subsphaerica

Micarea melanobola, M. prasina, M. subnigrata

Voytsekhovich et al. (2011). id: LM, culture.
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Elliptochloris subsphaerica

Multiclavula mucida

Masumoto (2020)

Elliptochloris sp.

Stictis urceolatum

Ths et al. (2011)

Elliptochloris sp.

Catillaria chalybeia

Dal Grande et al. (2014b)

Elliptochloris sp.

Ramalina farinacea

Moya et al. (2017). Minority photobiont.

Elliptochloris sp.

Bryoclavula phycophila

Masumoto (2020)

Elliptochloris sp.

Sticta filix, S. menziesii, S. stipitata, S. subcaperata

Lindgren et al. (2020)

Pseudococcomyxa simplex

Leproloma sp.

Watanabe et al. (1997). Maritime. id: LM, culture.

Pseudococcomyxa sp.

Micarea prasina

Voytsekhovich et al. (2011). id: LM, culture.

Class Trebouxiophyceae, Order Watanabeales

Chloroidium angustoellipsoideum

Stereocaulon nanodes, S. spathuliferum

Vancurova (2012); Vancurova et al. (2018). Darienko
et al. (2018): C. angustoellipsoideum now C. lichenum.

C. ellipsoideum

Trapelia obtegens

Beck (2002)

C. ellipsoideum

Stereocaulon nanodes, S. pileatum, S. vesuvianum,
S. spathuliferum, Stereocaulon sp.

Vancurova (2012); Vancurova et al. (2018).
Stereocaulon vesuvianum also hosts Asterochloris and
Vulcanochloris.

Near C. ellipsoideum

Trapeliopsis flexuosa, T. granulosa

Schmitt & Lumbsch (2001). Amplified unintentionally
with non-specific primers. ‘Chlorella’ ellipsoidea
sequence X63520. Known photobionts of other
Trapeliaceae are in Prasiolales.

C. saccharophilum

Trapelia coarctata

Tschermak-Woess (1988b)

C. saccharophilum

Lecidea inops, Psilolechia leprosa, Stereocaulon nanodes

Beck (2002)

C. saccharophilum

Psora decipiens

Ruprecht et al. (2014). One record; all other thalli had
Asterochloris or Trebouxia. Contrast Williams et al. (2017).

C. viscosum

Bacidina [Woessia] fusarioides

Tschermak-Woess (1988b); Darienko et al. (2018).

Chloroidium sp.

Verrucaria praetermissa

This et al. (2011). Possibly an accessory alga rather
than main photobiont.

Chloroidium sp.

Verrucaria nigrescens, Verrucaria sp.

Voytsekhovich & Beck (2016). id: LM.

Chloroidium sp.

Species of Gomphillus and Gyalidea

Sanders et al. (2016)

Chloroidium sp.

Sticta latifrons, S. subcaperata

Lindgren et al. (2020)

Near Chloroidium and
Parachloroidium

Bapalmuia lineata

Sanders et al. (2016)

Heveochlorella sp.
(Jaagichlorella Darienko &
Proschold 2019)

Pseudocyphellaria sp., Sticta sp.

Dal Grande et al. (2014b). Three specimens; authors
confident alga is photobiont.

Heveochlorella sp.

Aspidothelium cinerascens, A. fugiens, A. geminiparum
(Thelenellaceae); Aderkomyces heterellus, Echinoplaca
spp., Gyalectidium appendiculatum, G. floridense,

G. imperfectum, G. paolae, G. ulloae, Gyalideopsis
sessilis, Gyalideopsis sp. (Gomphillaceae); Byssoloma
discordans, Calopadia fusca, C. perpallida, C. puiggarii
(Pilocarpaceae)

Sanders et al. (2016). Mainly foliicolous.

Heveochlorella sp.

Sticta caperata, S. dichotoma, S. latifrons, S. squamata,
S. subcaperata, S. variabilis, Sticta spp.

Lindgren et al. (2020)

[unidentified, falling ‘near’
Heterochlorella]

Psoroglaena epiphylla

Nyati et al. (2007); This et al. (2011).

Class Trebouxiophyceae, incertae sedis

Apatococcus lobatus

Caloplaca sp., Fuscidea cyathoides var. japonica,
Lecanora subimmergens, Pyrenopsis sp., Verrucaria sp.

Watanabe et al. (1997). Maritime. id: LM.

A. lobatus

Scoliciosporum umbrinum

Beck (2002)

A. fuscideae

Fuscidea arboricola, F. cyathoides, F. kochiana, F. pusilla

Zahradnikova et al. (2017)

Apatococcus sp.

Fuscidea lightfootii

Zahradnikova et al. (2017)
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Coccobotrys verrucariae

Verrucaria nigrescens

Chodat (1913); Vischer (1960).

Coccobotrys sp. (?)

Botryolepraria lesdainii

Canals et al. (1997). id: LM, culture.

Dictyochloropsis splendida

Phlyctis argena

Tschermak-Woess (1995). id: LM.

D. symbiontica

Sphaerophorus diplotypus, S. fragilis, S. melanocarpus,
S. melophorus

lhda et al. (1997). id: LM, culture.

D. symbiontica

Species of Caloplaca and Leproloma

Watanabe et al. (1997). Maritime. id: LM.

D. symbiontica

Lecania naegelii

Beck et al. (1998)

Dictyochloropsis clade 2

Brigantiaea ferruginea, B. leucoxantha
(Brigantiaeaceae); Crocodia aurata, Lobaria oregana,
L. patinifera, L. pulmonaria, Lobariella crenulata,

L. pallidocrenulata, Lobariella sp., Pseudocyphellaria
fimbriata, P. homeophylla, P. lindsayi, P. lividofusca,
P. multifida, Sticta canariensis, S. latifrons,

S. pulmonariodes, S. subcaperata, Sticta spp.
(Lobariaceae); Megalospora sulphurata
(Megalosporaceae); Chaenothecopsis consociata
(Mycocaliciaceae); Phlyctis argena (Phlyctidaceae);
Biatora sp. (Ramalinaceae); Chaenotheca brunneola
(Coniocybomycetes)

Dal Grande et al. (2014b). Dictyochloropsis. clade 2 =
Symbiochloris; Skaloud et al. (2016).

Leptosira terrestris

Vezdaea aestivalis

Tschermak-Woess & Poelt (1976). id: LM, culture.

L. thrombii

Thrombium epigaeum

Tschermak-Woess (1953). id: LM, culture.

Neocystis sp.

Micarea misella

Voytsekhovich et al. (2011). Reported as an ‘additional
photobiont’ to Elliptochloris. id: LM, culture.

Symbiochloris sp.

Brigantiaea ferruginea, B. leucoxantha (Brigantiaeaceae);
Crocodia aurata, Dendriscosticta platyphylla, D. wrightii;
Lobaria macaronesica, L. oregana, L. patinifera,

L. pulmonaria; Lobariella crenulata, L. pallidocrenulata,
Lobariella sp., Pseudocyphellaria sp., Ricasolia
amplissima, Sticta canariensis, S. neopulmonaria
(Lobariaceae); Megalospora sulphurata
(Megalosporaceae); Chaenothecopsis consociata
(Mycocaliciaceae); Phlyctis argena (Phlyctidaceae);
Chaenotheca brunneola (Coniocybomycetes).

Skaloud et al. (2016). All known photobionts
previously included in Dictyochloropsis s. lat.

Symbiochloris sp.

Sticta ainoae, S. cinereoglauca, S. granatensis,
S. laciniata, S. laciniosa, S. puracensis, Sticta spp.

Lindgren et al. (2020)

Class Ulvophyceae, Order Trentepohliales

Cephaleuros sp.

Strigula smaragdula

Green (2012)

Cephaleuros sp.

Strigula smaragdula

Jiang et al. (2020)

Phycopeltis sp.

Tenuitholiascus porinoides

Jiang et al. (2020)

Trentepohlia lagenifera

Graphina cleistoblephara, G. inabensis, G. intortura,

G. mendax, G. undulata, Graphis aperiens, G. aphanes,
G. batanensis, G. cognata, G. connectans, G. dupaxana,
G. handelii, G. intricata, G. proserpens, G. rikuzensis,

G. rufla, G. scripta, G. subdura, G. subtropica,

G. subvirginea, G. tenella, Phaeographina
chlorocarpoides, P. endofusca, Phaeographis
asteriformis, P exaltata, P. pruinosa

Nakano (1988). id: LM, culture.

T. lagenifera

Pyrenula japonica

Nakano & lhda (1996). id: LM, culture.

Trentepohlia/‘Printzina’

Acanthothecis sp., Anthracothecium sp., Astrothelium
cinnamomeum, A. galbineum, A. leucoconicum,

A. versicolor, Astrothelium sp., Coenogonium linkii,
Cryptothecia assimilis, Cryptothelium pulchrum,
Cryptothelium sp., Dendrographa alectorioides,
Dichosporidium boschianum, Graphis scripta, Graphis
sp., Laurera megasperma, Myriotrema peninsulae,
Porina distans, P. dolichophora, P. imitatrix, P. nucula,
P. tetracerae, Porina spp., Racodium rupestre,
Thalloloma hypoleptum, Thelotrema pachysporum,
Trypethelium aenum, T. nitidiusculum, Trypethelium spp.

Nelsen et al. (2011). ‘Printzina’ clades occur scattered
throughout Trentepohlia.

Mycobionts represent Arthoniomycetes,
Dothideomycetes and Lecanoromycetes.

https://doi.org/10.1017/50024282921000335 Published online by Cambridge University Press

(Continued)


https://doi.org/10.1017/S0024282921000335

380

Table 1. (Continued)

William B. Sanders and Hiroshi Masumoto

Alga

Fungal symbionts

References & comments

>

Trentepohlia/‘Printzina

Astrothelium variolosum, Graphis endoxantha,

G. pulverulenta, G. scripta, Herpothallon rubrocinctum,
Phaeographina sp., Phaeographis inusta, P. punctiformis,
Pyrenula confinis, P. cruenta, P. pseudobufonia,

P. sexlocularis, Strigula subtilissima, Trypethelium virens

Green (2012). Photobiont of one Strigula sp. included.

5

Trentepohlia ‘Printzina

Acrocordia gemmata, Arthonia cinnabarina, A. radiata,
Arthothelium ruanum, Cystocoleus ebeneus, Dimerella
pineti, Graphis propinqua, G. scripta, G. submarginata,
Gyalecta jenensis, Mycoporum sparsellum, Opegrapha
atra, Pyrenula laevegata, Roccella decipiens,

R. galapagoensis, R. linearis, R. lirellina, R. maderensis,
R. cf. montagnei, R. phycopsis, R. tinctoria,

R. tuberculata; Thelotrema lepadinum

Hametner et al. (2014a, b)

Trentepohlia sp.

Lecanographa amylacea

Ertz et al. (2018). Mycobiont also forms
heteromorphic, asexual thalli with Trebouxia sp.!

Trentepohlia sp.

Dichosporidium sp., Diorygma antillarum, D. confluens,
D. nigrocinctum, Diorygma sp., Herpothallon echinatum,
H. rubroechinatum, Herpothallon sp., Ocellularia
sorediigera, Ocellularia spp., Porina sp., Sagenidiopsis
isidiata, Sagenidiopsis sp., Syncesia farinacea

Kosecka et al. (2020)

Class Ulvophyceae, Order Ulvales

Blidingia minima

Turgidosculum ulvae

Pérez-Ortega et al. (2018). Form ‘borderline lichen’ but
mycobiont belongs to lichen-forming clade.

(Dilabifilum) Hydropunctaria adriatica Tschermak-Woess (1976). id: LM, culture.
(Dilabifilum) Hydropunctaria maura, H. rheitrophila, Wahlenbergiella This et al. (2011)

striatula, Verrucaria aquatilis
(Dilabifilum) Verrucaria glaucina Voytsekhovich & Beck (2016). id: LM.

Halofilum ramosum

Hydropunctaria amphibia, H. maura, Wahlenbergiella
striatula

Darienko & Proschold (2017); Gasulla et al. (2019).

Lithotrichon pulchrum

Hydropunctaria rheitrophila

Darienko & Prdschold (2017). Submerged lichen.

Paulbroadya petersii

Wahlenbergiella mucosa

Darienko & Proschold (2017)

Pseudendoclonium arthopyreniae

Species of Caloplaca, Rinodina, Thelidium and
Verrucaria

Watanabe et al. (1997). Maritime lichens. According to
This et al. (2011), maritime specimens of Caloplaca
etc. may overgrow Verrucariaceae containing
Dilabifilum (Pseudendoclonium). id: LM, culture.

P. incrustans

Verrucaria aquatilis

Tschermak-Woess (1970). Dilabifilum, reclassified in
Darienko & Proschold (2017).

P. commune

Hydropunctaria maura

Dilabifilum, reclassified in Darienko & Proschold (2017).

Class Chlorophyceae

Bracteacoccus sp.

‘Multiclavula clara’ [=Sulzbacheromyces sinensis]

Takeshita et al. (2010). id: LM, culture.

Bracteacoccus sp.

Sulzbacheromyces caatingae

Hodkinson et al. (2014). rbcL sequences.

Bracteacoccus sp.

Sulzbacheromyces sinensis

Masumoto (2020). ITS and rbcL sequences.

Chlamydomonas sp.

Pyronema

Skuja (1943). Association doubtfully lichenic.

Chlorosarcinopsis minor

Lecidea lapicida, L. plana

Plessl (1963). Genus polyphyletic (Neustupa 2015).

Gloeocystis sp.

Bryophagus gloeocapsa, Epigloea bactrospora

Tschermak-Woess (1988a). Gloeocystis s. lat. highly
polyphyletic (Neustupa 2015).

Radiococcus signiensis

Placynthiella icmalea, P. uliginosa

Voytsekhovich et al. (2011). Other photobionts found in
lesser abundance within same algal layer. id: LM, culture.

Trochiscia sp.

Polyblastia amota, P. hyperborea

Tschermak (1941b); Ahmadjian (1967); but Ettl &
Gartner (2014) consider ID questionable.

Domain Eukarya, Eukaryote supergroup Archaeplastida, Kingdom Plantae, Division Streptophyta (Charophytes)

Interfilum sp.

Micarea prasina; Placynthiella icmalea, P. uliginosa

Voytsekhovich et al. (2011). Reported as secondary
(less abundant) photobiont within algal layer. id: LM,
culture.
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Alga Fungal symbionts

References & comments

Domain Eukarya, Eukaryote supergroup: SAR (Stramenopila Alveolata Rhizaria), Kingdom Stramenopila (Heterokontae)

Class Phaeophyceae

Petroderma maculiforme Wahlenbergiella tavaresiae

Moe (1997); Peters & Moe (2001); Gueidan et al. (2011).

Class Xanthophyceae

Heterococcus sp. Verrucaria funckii, V. laevata

Zeitler (1954); Tschermak-Woess (1988a).

Heterococcus sp. Hydropunctaria maura

Parra & Redon (1977). id: LM.

Heterococcus sp.

Hydropunctaria rheitrophila; Verrucaria funckii, V. hydrela

This et al. (2011)

Xanthonema sp. Staurothele clopimoides

Pereira Riquelme (1992). id: LM.
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