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Abstract: In analyzing a complex network in the real world, it is ideally of great help to
recognize its universality class. While biological networks, in particular, grow under various
’learning rules’, their impacts on scaling have not yet been characterized enough. Here we
applied the Hodge-Kodaira decomposition, a topological method to count global loops, to neural
networks with different learning rules and edge densities. Interestingly, the networks which
evolved under different learning rules showed different scalings with edge densities. The causal
learning rule scaled similarly to its underlying graph (i.e. Erdős-Rényi random graph, in this
study), on which a network can grow, while the Hebbian-like rule did not.
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1. INTRODUCTION

In analyzing the complex networks in the real world, recog-
nizing their universality classes in some sense can be, ide-
ally, of great help. In particular, co-evolving networks such
as neural networks are intriguing because not only their
dynamical variables on vertices but also the network struc-
tures themselves evolve over time (Aoki and Aoyagi (2007,
2009, 2011, 2012); Takahashi et al. (2009); E. M. Izhikevich
(2004); Morrison et al. (2007); Buonomano (2005); Liu and
Buonomano (2009); Magnasco et al. (2009)). Although
biological networks can have various ’learning rules’ for
structural evolution, their roles on scalings have not yet
been characterized enough.

The scaling of the number of global loops in a network
with edge densities has been analytically obtained for
the Erdős-Rényi random graph (Kahle (2009); Kahle and
Meckes (2013)) by using topological methods (Fulton
(1995); Hatcher (2002); Ghrist (2014); Curto et al. (2013);
Chen et al. (2014); Miura and Nakada (2014)). Recent
advances of the field of computational topology made it
possible to compute topological invariants such as the
number of ”holes” in any networks in a computationally
accessible way (Edelsbrunner and Harer (2009); Kaczynski
et al. (2010); Arai et al. (2009); Gameiro et al. (2012);
Hirata et al. (2013)).

Here we applied the Hodge-Kodaira decomposition, a
topological method to count global loops (Jiang et al.
(2011); Miura and Aoki (2015); Hodge (1941); Kodaira
(1949); de Rham (1984); Warner (1983); Dodziuk (1974);
Polthier and Preuß (2003); Bossavit (1997); Anne and
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Torki-Hamza (2014)), to neural network models with dif-
ferent biological learning rules (Aoki and Aoyagi (2009)) in
order to elucidate their dependencies on edge densities. We
found that the networks which evolved according to dif-
ferent learning rules scales differently with edge densities.
Especially the spike timing dependent plasticity (STDP)
rule scaled similarly to its underlying base network (i.e.
Erdős-Rényi random graph, in this study), on which a
network can evolve, while the Hebbian-like rule did not.

In Sec. 2, we explain the evolving neural network model
we simulated. We also show the method of Hodge-Kodaira
decomposition. In Sec. 3, we show the results of Hodge-
Kodaira decomposition applied to the evolving neural net-
works. Finally, Sec. 4 presents a summary and discussions.

2. MATERIALS AND METHODS

2.1 Simulations

We simulated the following model of N(= 100) phase
oscillators whose couplings evolve over time (Aoki and
Aoyagi (2009)):

dϕi

dt
= ω − 1

N

N∑
j=1

kij sin(ϕi − ϕj + απ)

dkij
dt

=−ϵ sin(ϕi − ϕj + βπ), (1)

where ϕi and kij denote the phase of i-th neuron and the
coupling strength from j-th to i-th neuron and we solely
use ω = 1 and ϵ = 0.005. The learning scheme can be
controlled by β: Hebb-rule for β ∼ −0.5, STDP rule for
β ∼ 0, and anti-Hebb-rule for β ∼ 0.5 (Figs. 1 and 2). We
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Fig. 1. Learning rule of the model:
dkij(∆ϕ)

dt in Eq. 1
(top). The parameter β can control the learning
rule. The bottom left figure illustrates the Hebbian
learning rule in which the neurons that fire together
wire together. The bottom right figure illustrates the
causal or STDP learning rule in which the neurons
that fire sequentially wire in the causal direction.
Note that the phase oscillator neurons continue to fire
almost periodically and the mutual timings matters in
learning rules.

entirely used α = 0.3, although the result did not change
qualitatively when we used α = 0.1.

The network can grow, i.e. the coupling strength kij
can be non-zero, only on its underlying base network.
The base network, which is undirected and connected,
was randomly generated in the following way so that
only limited coupling strengths (kij) can take non-zero
(Bollobas (2001), Fig. 5 might also help). To construct an
undirected graph, pairs of nodes were randomly connected
with probability p (=0.05, 0.1, 0.15, 0.2, or 0.25). Note
that our interest in this paper is to see how a network
under a certain biological learning rule scales with this
edge density p. When two nodes of the base network are
connected, both directions of couplings are allowed. As we
avoid self-loops by design, the base network has 100 nodes
and 10000p directed edges (=5000p undirected edges).

For mathematical convenience, the dimension of the anti-
symmetric ”flow” was computed as the number of non-zero
couplings after the time evolution where the initial cou-
pling strengths and phases are randomized uniformly. Note
that we interchangeably use flows and directed couplings
in this paper. That is, the adjacency matrix consisting of
the coupling strengths K = {kij} is antisymmetrized as
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Fig. 2. Bifurcation diagram of the model consisting of three
attractor states: two-cluster (Tw), coherent (Co) and
chaotic (Ch) states (top). The dynamics of 100 neu-
rons in each attractor state (bottom). The phase of
each neuron in [0, 2π] is represented by gradation. The
parameter sets (α, β) are (0.3,−0.6) (left), (0.3, 0)
(middle) and (0.3, 0.6) (right). Note that although
we simulated the random network with 100 neurons
(N = 100), the above phase diagram for reference
was analytically obtained under the mean field ap-
proximation for the all-to-all coupled network with
N = ∞ (Aoki and Aoyagi (2011)).

A =
K −Kt

2
, (2)

where t represents the transpose of a matrix. Then the
dimension, that is, the number of non-zero components
divided by two, of the antisymmetrized matrix, which
represents the directed components of connections, is com-
puted. We judged a coupling strength as non-zero when its
absolute values is larger than the threshold(= 0.05). The
result did not change qualitatively when we used 0.2 for the
threshold although we had smaller dimensions. Similarly,
for the dimension of the symmetric flows, we computed the
half number of non-zero component of the symmetrized
matrix:

S =
K +Kt

2
. (3)

Note that any matrix can be decomposed into the sym-
metric and antisymmetric matrices:

K = A+ S. (4)

In the next subsection, we show that the antisymmetric
matrix can be further decomposed into three matrices
uniquely by the Hodge-Kodaira decomposition.

2.2 Hodge-Kodaira decomposition of a flow on a graph

The Hodge-Kodaira decomposition uniquely decomposes
a flow on a graph into orthogonal three components:
gradient flows, harmonic flows and curl flows (Fig. 3)
(Jiang et al. (2011)). The gradient flow can be represented
as a difference of a potential function on nodes. The
potential is shown as the gray numbers in the figure for
the gradient flow. The other flows are cyclic. The curl flows
have only cycles of length three while the harmonic flows
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Fig. 3. An example of Hodge-Kodaira decomposition of a flow on a graph. The black numbers denote the volumes of
flows on each edge. The gray numbers denote the potentials whose differences give the gradient flow. The two gray
circles with numbers denote the globally cyclic flows constituting the harmonic flow.

have longer cycles. Note that the sum of the three flows
on the right hand side of Fig. 3 reproduces the flow on the
left hand side.

Mathematically, the space of all possible flows {−→a } (=anti-
symmetric components of couplings) can be represented as
the space of all possible antisymmetric matrices {A}. We
would like to have orthogonal direct sum decomposition
of this antisymmetric matrix space into three subspaces
guided by the two operators of the vector calculus.

The gradient operator is defined as an operator that
returns the difference of the potentials of connected nodes
on each edge. Note that the gradient operator is a linear
operator as the difference can be implemented by the linear
combination of potentials on nodes. The curl operator is
defined as a linear operator that returns the sum of flows
for each triangle. For example, the curl for the triplet of
nodes 1, 2 and 3 in Fig. 3 is (−1)+(−1)+(−4) = −6. The
curl operator is also linear as it can be implemented by
the linear summation of flows on edges. Here we regard a
flow(=antisymmetric matrix) a vector,−→a , just by aligning
its components. To be concrete, we show operators for the
example graph in Fig. 3:



a12
a13
a23
a34
a15
a45
a16
a56


= grad(−→s ) :=



−1 1 0 0 0 0
−1 0 1 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
−1 0 0 0 1 0
0 0 0 −1 1 0
−1 0 0 0 0 1
0 0 0 0 −1 1




s1
s2
s3
s4
s5
s6

 ,

(
C123

C156

)
= curl(−→a ) :=

(
1 −1 1 0 0 0 0 0
0 0 0 0 1 0 −1 1

)


a12
a13
a23
a34
a15
a45
a16
a56


(5)

where si represents a (hypothetical) potential function
evaluated at the i-th node.

Based on the gradient operator, any (antisymmetric) flows
can be decomposed into gradient (=difference of a po-
tential) and non-gradient flows (=cycles). To be precise,
any antisymmetric flow is composed of a linear space that
can be represented by the gradient of a potential function
and the orthogonal complement consisting of cycles. Sim-
ilarly, based on the curl operator, you can orthogonally
decompose an antisymmetric flow into curl and curl-free
flows. Therefore it seems that there are four categories
of flows: gradient-curl, gradient-curlfree, nongradient-curl
and nongradient-curlfree. However a gradient flow is al-
ways curl-free, a known fact of vector calculus. There-
fore we have only three possibilities: gradient, curl and
harmonic(=nongradient-curlfree).

For numerical computations of the Hodge-Kodaira decom-
position, we entirely used least square methods. Every-
thing can be done by linear algebra as the both operators
are linear. The gradient flow is obtained by finding the
best potential that explains as much flow components as
possible. Mathematically, this is equivalent to the linear
regression in statistics that squeezes as much variations in
data as possible by finding the optimal slope and intercept.
Similarly, as much curl flow as possible is squeezed from
the original flow by the least square method. Then the
residual flow represents the harmonic flow. As the triplets
of nodes are considered for the curl operator, the compu-
tation of the Hodge-Kodaira decomposition costs at least
O(N3). This is why we used the network consisting of
(N =)100 nodes, which is large enough but still computa-
tionally tractable.

3. RESULTS

Here we consider an evolving neural network model (Aoki
and Aoyagi (2009)), which has a parameter β to con-
trol its learning rule for structural evolution (Materials
and Methods). Therefore, we can compare the dynam-
ics of the network structure for various learning rules
such as Hebbian, STDP and anti-Hebbian as in Fig. 1.
For example, it is expected that STDP rule generates
more paths coincident with causal firing orders. In fact,
as in Fig. 2, three attractor states have been observed
respectively (Aoki and Aoyagi (2009)): two-cluster states
for the Hebbian rule, coherent states for the STDP rule
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Fig. 4. Three flow components of the (antisymmetrized) simulated coupling strengths for α = 0.3 and various β and p.
The vertical dashed gray lines represent the bifurcation points in Fig. 2. The horizontal dotted gray lines represent
the average initial values at t = 0, which are independent of β. The leftmost cluster region (β << −0.5) has no
”antisymmetric” flow in most plots as the neurons fire altogether and the couplings get symmetric following the
Hebbian rule. For β ≈ 0 or a model with a STDP-rule that tends to form paths coincident with causal firing orders,
dim(curl flow) or the number of local loops of length three is peaked. Within the rightmost chaotic region, the
freedoms of harmonic and curl flows keep changing, suggesting the inhomogeneity of the chaotic region.
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and chaotic states for anti-Hebbian rule. We simulated
this model for a sufficiently long period (0 ≤ t ≤ 80)
and analyzed its network structure. To characterize the
network structure topologically, we counted the number
of global loops by the Hodge-Kodaira decomposition of
the connectivity matrix of the simulated model. Compared
with our previous study (Miura and Aoki (2015)), here we
investigate wider parameter regions: finer step sizes for β
(∆β=0.025) as well as diverse edge densities p(=0.05, 0.1,
0.15, 0.2, or 0.25).

In Fig. 4, we plotted the degrees of freedoms for the three
decomposed components of flows (gradient, harmonic and
curl flows) because it is not necessarily helpful to simply
draw the entire network (Miura and Aoki (2015)) and the
flow dimensions are graph invariants, which is unaffected
by relabeling of nodes and robust against noises on flows.
The dimension (degrees of freedoms) for each flow was
computed from the matrix ranks of the operators, which
reflected the network structure. We plotted the dimensions
at the final state (t = 80) averaged over 10 trials with
random initial conditions. Note that the dynamics, after
initial transience, went to the steady states where temporal
variations were fairly small (Miura and Aoki (2015)). This
is especially true for large p as the number of degrees
of freedoms or edges are large. Although we randomized
base graphs and initial conditions for 10 trials for each
fixed parameter set (β, p), all the curves are fairly smooth.
This indicates that the base structure- and initial value-
dependencies are fairly small even if the network size is
finite (N = 100). Note that the plots are periodic in β as
obvious from the dynamics (Eq. 1), i.e. β = 1 and β = −1
represent the same model.

In general, the dimension of the gradient flow is equal
to N(=100) - (the number of connected components).
It is 99 and 0 if all the neurons are connected and
disconnected, respectively. The dimension of the harmonic
flow represents the number of loops whose lengths are
larger than three. The dimension of the curl flow represents
the number of triangles or loops whose lengths are three.

The leftmost cluster region (β < −0.5) in Fig. 4 has
no flow (=no antisymmetric edge in the network) in
most parameters as the neurons fire altogether and the
couplings got symmetric following the Hebbian rule. Note
that symmetric couplings have no (antisymmetric) flow in
our definition. The fact that there is no anti-symmetric
flow in the two-cluster state can be directly derived from
Eq. 1. The phase difference between two neurons in the
two-cluster state can be either 0 (in the same cluster)
or π (in the different clusters). According to Eq. 1, kij
converges to 1 or 0, respectively. Thus only symmetric
couplings kij = kji (= 1 or 0) are allowed in the two-
cluster state. Although nonzero gradient flow dimensions,
indicatives of disconnectedness, are observed especially for
small p, most trials of 10 repeats showed convergence to
zero and only minorities of initial conditions showed a
plateau. The discrepancy from our phase diagram (dotted
gray line), which was analytically computed for N = ∞,
might be due to a finite size effect.

In the middle coherent region beyond the bifurcation point
(−0.5 < β), all the flows get to have significant freedoms.
Especially the gradient flow dimension, that reflects the
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Fig. 5. Scaling of the harmonic flow dimension as a
function of edge density of underlying base graph, on
which coupling strengths can be non-zero. The STDP
rule (β = 0) scaled similarly to the underlying Erdős-
Rényi random graph (Kahle and Meckes (2013)) while
the Hebbian-like rule (β = −0.25) did not.

number of connected clusters, gets full (=99), suggesting
that all the neurons are connected in an oriented manner
in the coherent state (sequential firings). Importantly, for
a model with a STDP-rule (β ≈ 0), which tends to form
paths coincident with causal firing orders, we observed the
most curl flows or local loops of length three. Interestingly,
the harmonic flows showed strong dependency on the edge
density p. Therefore we will come back to this point in
Fig. 5 and replot it as a function of p to see the scaling.

In the rightmost chaotic region, surprisingly, the freedoms
of harmonic and cyclic flows kept changing, suggesting the
inhomogeneity of the chaotic region. As we used a finer
step size for β (∆β = 0.025) than in the previous paper
(∆β = 0.1, Miura and Aoki (2015)), we can observe the
sharp transition in the left side of β ≈ 0.6 and smooth
relaxation in the right side.

Fig. 5 plots the scaling of the harmonic flow dimension
with edge density. The same values as in Fig. 4 were
replotted, but, as a functions of edge density of the base
graph, on which the coupling strengths can be non-zero.
The STDP rule (β = 0) reflected and scaled similarly to
the underlying base graph (Erdős-Rényi random graph, in
this study) while the Hebbin-like rule (β = −0.25) did
not. It is known that the harmonic flow dimension for
the Erdős-Rényi random graph peaks at p = 0.1 (Kahle
(2009); Kahle and Meckes (2013)), because networks with
p ≪ 0.1 get disconnected, while networks with 0.1 ≪ p
have loops of only lengths 3 due to overcrowding.

4. SUMMARY AND DISCUSSIONS

We applied the Hodge-Kodaira decomposition, a topolog-
ical method, to an evolving neural network model in or-
der to characterize its loop structure. The Hodge-Kodaira
decomposition decomposes a graph flow into three compo-
nents (gradient, curl and harmonic flows), and allows us
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to characterize global loop structures of a directed graph
topologically. We found that the networks which evolved
according to different learning rules scales differently with
edge densities. Especially the causal learning rule scaled
similarly to its underlying base network (i.e. Erdős-Rényi
random graph, in this study), on which a network can
grow, while the Hebbian-like rule did not.

In analyzing real world networks, any detailed modeling
can, in principle, suffer from the lack of observational
data. Instead, it may be advantageous to be aware of the
universality classes for the purpose of obtaining clues on
coarse network properties. The Hodge-Kodaira decompo-
sition can be one of the useful tools to characterize and,
ideally, distinguish various classes of networks.

REFERENCES

Anne, C. and Torki-Hamza, N. (2014). The gauss-bonnet
operator of an infinite graph. Anal. Math. Phys.

Aoki, T. and Aoyagi, T. (2007). Synchrony-induced
switching behavior of spike pattern attractors created
by spike-timing-dependent plasticity. Neural Comput.,
19, 2720–38.

Aoki, T. and Aoyagi, T. (2009). Co-evolution of phases and
connection strengths in a network of phase oscillators.
Phys. Rev. Lett., 102, 034101.

Aoki, T. and Aoyagi, T. (2011). Self-organized network of
phase oscillators coupled by activity-dependent interac-
tions. Phys. Rev. E, 84, 066109.

Aoki, T. and Aoyagi, T. (2012). Scale-free structures
emerging from co-evolution of a network and the dis-
tribution of a diffusive resource on it. Phys. Rev. Lett.,
109, 208702.

Arai, Z., Kokubu, H., and Pilarczyk, P. (2009). Recent
development in rigorous computational methods in dy-
namical systems. Japan J. Indust. Appl. Math., 26, 393–
417.

Bollobas, B. (2001). Random Graphs. Cambridge Univer-
sity Press, Cambridge.

Bossavit, A. (1997). Computational Electromagnetism:
Variational Formulations, Complementarity, Edge El-
ements. Academic Press, Boston.

Buonomano, D.V. (2005). A learning rule for the emer-
gence of stable dynamics and timing in recurrent net-
works. J Neurophysiol., 94, 2275–83.

Chen, Z., Gomperts, S.N., Yamamoto, J., and Wilson,
M.A. (2014). Neural representation of spatial topology
in the rodent hippocampus. Neural Comput., 26, 1–39.

Curto, C., Itskov, V., Veliz-Cuba, A., and Youngs, N.
(2013). The neural ring: an algebraic tool for analyzing
the intrinsic structure of neural codes. Bull. Math. Biol.,
75, 1571–1611.

de Rham, G. (1984). Differentiable Manifolds: Forms,
Currents, Harmonic Forms. Springer-Verlag, New York.

Dodziuk, J. (1974). Combinatorial and continuous hodge
theories. Bull. Amer. Math. Soc., 80, 1014–1016.

E. M. Izhikevich, J. A. Gally, G.M.E. (2004). Spike-timing
dynamics of neuronal groups. Cereb. Cortex, 14, 933–44.

Edelsbrunner, H. and Harer, J.L. (2009). Computational
Topology. American Mathematical Society, Providence.

Fulton, W. (1995). Algebraic Topology: A First Course.
Springer-Verlag, New York.

Gameiro, M., Hiraoka, Y., Izumi, S., Kramar, M., Mis-
chaikow, K., and Nanda, V. (2012). Topological mea-

surement of protein compressibility via persistence dia-
grams. MI Preprint Series, 6, 1–10.

Ghrist, R. (2014). Elementary Applied Topology. CreateS-
pace.

Hatcher, A. (2002). Algebraic Topology. Cambridge
University Press, Cambridge.

Hirata, A., Kang, L.J., Fujita, T., Klumov, B., Matsue,
K., Kotani, M., Yavari, A.R., and Chen, M.W. (2013).
Geometric frustration of icosahedron in metallic glasses.
Science, 341, 376–9.

Hodge, W.V.D. (1941). The Theory and Applications of
Harmonic Integrals. Cambridge University Press, New
York.

Jiang, X., Lim, L.H., Yao, Y., and Ye, Y. (2011). Statistical
ranking and combinatorial hodge theory. Math. Pro-
gram., Ser. B, 127, 203–244.

Kaczynski, T., Mischaikow, K., and Mrozek, M. (2010).
Computational Homology. Springer-Verlag, New York.

Kahle, M. (2009). Topology of random clique complexes.
Discrete Mathematics, 309, 1658–1671.

Kahle, M. and Meckes, E. (2013). Limit theorems for betti
numbers of random simplicial complexes. Homology,
Homotopy and Applications, 15, 343–374.

Kodaira, K. (1949). Harmonic fields in riemannian man-
ifolds (generalized potential theory). Annals of Mathe-
matics, 50, 587–665.

Liu, J.K. and Buonomano, D.V. (2009). Embedding mul-
tiple trajectories in simulated recurrent neural networks
in a self-organizing manner. J Neurosci., 29, 13172–81.

Magnasco, M.O., Piro, O., and Cecchi, G.A. (2009). Self-
tuned critical anti-hebbian networks. Phys. Rev. Lett.,
102, 258102.

Miura, K. and Aoki, T. (2015). Hodge-kodaira decompo-
sition of evolving neural networks. Neural Netw., 62,
20–24.

Miura, K. and Nakada, K. (2014). Neural implementation
of shape-invariant touch counter based on euler calculus.
IEEE Access, 2, 960–970.

Morrison, A., Aertsen, A., and Diesmann, M. (2007).
Spike-timing-dependent plasticity in balanced random
networks. Neural Comput., 19, 1437–67.

Polthier, K. and Preuß, E. (2003). Identifying vector
field singularities using a discrete hodge decomposition.
Visualization and Mathematics III, 113–134.

Takahashi, Y.K., Kori, H., and Masuda, N. (2009). Self-
organization of feed-forward structure and entrain-
ment in excitatory neural networks with spike-timing-
dependent plasticity. Phys. Rev. E, 79, 051904.

Warner, F.W. (1983). Foundations of Differentiable Man-
ifolds and Lie Groups. Springer-Verlag, New York.

Copyright © 2015 IFAC 180


