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ABSTRACT: Intra-ovarian local factors regulate the follicular microenvironment in coordination with gonadotrophins, thus playing a
crucial role in ovarian physiology as well as pathological states such as polycystic ovary syndrome (PCOS). One recently recognized local
factor is endoplasmic reticulum (ER) stress, which involves the accumulation of unfolded or misfolded proteins in the ER related to various
physiological and pathological conditions that increase the demand for protein folding or attenuate the protein-folding capacity of the
organelle. ER stress results in activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR),
which affect a wide variety of cellular functions. Recent studies have revealed diverse roles of ER stress in physiological and pathological
conditions in the ovary. In this review, we summarize the most current knowledge of the regulatory roles of ER stress in the ovary, in the
context of reproduction. The physiological roles of ER stress and the UPR in the ovary remain largely undetermined. On the contrary,
activation of ER stress is known to impair follicular and oocyte health in various pathological conditions; moreover, ER stress also contrib-
utes to the pathogenesis of several ovarian diseases, including PCOS. Finally, we discuss the potential of ER stress as a novel therapeutic
target. Inhibition of ER stress or UPR activation, by treatment with existing chemical chaperones, lifestyle intervention, or the development
of small molecules that target the UPR, represents a promising therapeutic strategy.

Key words: endometriosis / endoplasmic reticulum stress / follicular microenvironment / granulosa cell / inflammation / oocyte / ovary
/ oxidative stress / polycystic ovary syndrome / unfolded protein response

Introduction
The follicular microenvironment undergoes dynamic changes during
growth and maturation, ovulation, and formation of the corpus luteum.
Gonadotrophins and intra-ovarian local factors contribute to regulation
of the follicular microenvironment in a spatially and temporally well-
coordinated manner. Recent work has shown that intra-ovarian local
factors play crucial roles in ovarian physiology, as well as in pathologi-
cal conditions such as polycystic ovary syndrome (PCOS) (Dumesic
et al., 2015a). On the contrary, recent research has revealed that en-
doplasmic reticulum (ER) stress, a newly recognized local factor, is an
important determinant in the pathogenesis of various diseases and also
plays important roles in the maintenance of physiological processes
(Rutkowski and Kaufman, 2007; Walter and Ron, 2011; Hetz et al.,
2020). ER stress, which involves the accumulation of unfolded or
misfolded proteins in the ER, is caused by various physiological and

pathological conditions that increase the demand for protein folding
or attenuate the protein-folding capacity in the ER. ER stress results
in the activation of several signal transduction cascades, collectively
termed the unfolded protein response (UPR), which affect a wide
variety of cellular functions. ER stress and the UPR play critical
roles in various human diseases, including diabetes, neurodegenera-
tion, cancer, inflammatory conditions, and fibrosis, as well as in the
maintenance of physiological events associated with organ function
and development (Rutkowski and Kaufman, 2007; Hetz et al.,
2019). In this review, we present a summary of the most current
knowledge of the regulatory role of ER stress in both physiological
and pathological conditions in the ovary, in the context of repro-
duction; ER stress in malignancy is outside the scope of this review.
Additionally, we present perspectives on ongoing research about
ER stress in the ovary, including future directions and therapeutic
applications.

VC The Author(s) 2021. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved.
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..ER stress
The ER is the organelle responsible for folding and assembly of secre-
tory proteins. An imbalance between protein-folding load and capacity
in the ER causes the accumulation of unfolded or misfolded proteins, a
cellular state referred to as ER stress. ER stress is induced by various
physiological and pathological processes, including oxidative stress, in-
flammation, high secretory demand, loss of calcium homeostasis, al-
tered lipid and glucose homeostasis, pathogens, pharmacological
agents, and the expression of disease-related mutant proteins (Hasnain
et al., 2012; Bettigole and Glimcher, 2015; Han and Kaufman, 2016;
Urra et al., 2016; Hetz and Saxena, 2017; Choi and Song, 2019; Hetz
et al., 2019; Karna et al., 2020; Rocha et al., 2020). ER stress activates
three sensor proteins, inositol-requiring enzyme 1 (IRE1), double-
stranded RNA-activated protein kinase-like ER kinase (PERK), and
activating transcription factor 6 (ATF6), which represent the three
branches of the UPR (Walter and Ron, 2011) (Fig. 1). In principle, the

UPR first seeks to restore homeostasis and keep the cell alive via
three main reactions: attenuation of translation to decrease the pro-
tein synthetic load; activation of synthesis of ER chaperones to increase
protein-folding capacity; and induction of ER-associated degradation
(ERAD) factors to remove irreparably misfolded proteins. However,
if the ER stress cannot be resolved, the UPR switches to the induction
of programmed cell death.

The three branches of the UPR overlap functionally and are tightly
regulated in terms of timing and response amplitude. Under ER stress,
the sensor proteins IRE1, PERK and ATF6 activate the three branches
of the UPR, as follows (Walter and Ron, 2011; Hetz et al., 2019,
2020) (Fig. 1). IRE1 dimerizes and trans-autophosphorylates in
response to ER stress, resulting in activation of its endoribonuclease
domain. Activated IRE1 cleaves X-box-binding protein 1 (XBP1) mRNA,
resulting in the production of spliced XBP1 (XBP1s), a transcription
factor that upregulates genes involved in ERAD and protein folding;
the latter class includes chaperones such as heat shock protein family

Figure 1. Endoplasmic reticulum stress and the unfolded protein response pathways. Endoplasmic reticulum (ER) stress, which
involves the accumulation of unfolded or misfolded protein in the ER, results in the activation of several signal transduction cascades, collectively
termed the unfolded protein response (UPR). ER stress activates the three sensor proteins, inositol-requiring enzyme 1 (IRE1), double-stranded
RNA-activated protein kinase-like ER kinase (PERK), and activating transcription factor 6 (ATF6), which represent the three branches of the UPR. In
principle, UPR first seeks to restore homeostasis and keep the cell alive via three main reactions: attenuation of translation to decrease the protein
synthetic load; activation of synthesis of ER chaperones to increase protein-folding capacity; and induction of ER-associated-degradation (ERAD)
factors to remove irreparably misfolded proteins. However, if the ER stress cannot be resolved, the UPR switches to induction of programmed
cell death. The three branches of the UPR overlap functionally and are tightly regulated in terms of timing and response amplitude. CHOP, C/EBP
homologous protein; eIF2a, eukaryotic initiation factor 2a; P, phosphorylation; XBP1, X-box-binding protein 1; XBP1s, spliced XBP1.
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.
A (Hsp70) member 5 (HSPA5), also known as glucose-regulated pro-
tein 78 (GRP 78) or BiP. Activated IRE1 also degrades microRNAs
and mRNAs other than Xbp1 and, thereby reducing protein synthesis
and decreasing the protein-folding load of the ER. Similar to IRE1,
PERK oligomerizes upon sensing ER stress and autophosphorylates;
activated PERK then phosphorylates eukaryotic initiation factor 2a
(eIF2a), inactivating it and thereby inhibiting mRNA translation, eventu-
ally attenuating the protein-folding load of ER. However, inactivation of
eIF2a results in preferential translation of certain mRNAs, including
ATF4. ATF4 is a transcription factor that plays both protective and
proapoptotic roles: it activates transcription of UPR target genes
encoding ER chaperones, but under chronic ER stress it also upregu-
lates the proapoptotic transcription factor C/EBP homologous protein
(CHOP). ATF6 is cleaved upon activation, releasing an N-terminal
cytosolic fragment, ATF6f, which acts as a transcription factor. ATF6f
induces the expression of UPR target genes involved in protein folding,
ERAD, and modulation of XBP1 mRNA levels.

Activation of ER stress in the
ovary
Activation of ER stress is determined either by activation of ER sensor
proteins or by increased expression of UPR factors (Fig. 1). To deter-
mine the activation of sensors, a protein assay is used to detect active
forms of three sensors, phosphorylated IRE1 (phospho-IRE1),
phospho-PERK, and ATF6f. To determine the expression of UPR fac-
tors, an mRNA and/or protein assay is used to detect the expression
of molecules in the three UPR branches, such as XBP1s, ATF6, phos-
pho-eIF2a, ATF4, and CHOP, or a representative ER chaperone
HSPA5. Table I shows a summary of representative genes/proteins in-
volved in ER stress/UPR detected in the ovary. The findings in which
activation of ER stress was examined only in whole ovary, without
identifying specific ovarian cell types, are not included in this table.
Most of the papers reported activation of ER stress in granulosa cells
(GCs), oocytes/embryos, and cumulus-oocyte complexes (COCs);
only one paper (Guerrero-Netro et al., 2017) showed it in theca cells.

ER stress in physiology of the
ovary
ER stress is activated in GCs of growing follicles, as well as in oocytes
and pre-implantation embryos, as evidenced by activation of ER stress
sensor proteins and expression of UPR factors. Activation of ER stress
in mouse GCs of growing follicles is dependent on follicular stage; spe-
cifically, ER stress is activated in GCs of follicles in the later stages of
development (large secondary, antral, and pre-ovulatory), but not in
those of primary and small secondary follicles (Harada et al., 2015). ER
stress in oocytes and pre-implantation embryos has been less carefully
examined; however, ATF6 is observed in mouse oocytes in all stages
of growing follicles (Xiong et al., 2017), and XBP1s is abundantly
expressed in pig germinal vesicle stage oocytes and four-cell, morula,
and blastocyst stage embryos (Zhang et al., 2012b).

The role of ER stress in somatic cells during normal follicular growth
and maturation, as well as in oocytes and embryos during oocyte

maturation and embryo development, remains largely undetermined;
the current knowledge is summarized in Table II. ER stress may
modulate the roles of gonadotrophins in GCs; ER stress decreases
FSH-stimulated estradiol production in mouse GCs, whereas FSH
ameliorates ER stress activation, and HSPA5 is involved in regulation
of LH receptor expression in rat GCs (Kogure et al., 2013; Babayev
et al., 2016). In addition, the fertilization capacity of human oocytes is
positively correlated with the expression level of XBP1s in surrounding
cumulus cells (CCs) (Harada et al., 2015). Moderate levels of ER
stress, resulting in UPR activation in GCs and/or CCs, might contrib-
ute to oocyte maturation.

ER stress may play a role in follicular atresia during normal follicular
selection. ER stress is activated in GCs of goat atretic follicles, and vari-
ous UPR factors are more highly expressed in GCs of atretic follicles
than in those of healthy follicles (Lin et al., 2012). In addition, pharma-
cological activation of ER stress induces apoptosis of GCs in multiple
species in vitro (Lin et al., 2012; Wu et al., 2012; Azhary et al., 2019).
Taken together with the observation that follicular atresia is initiated
or caused by apoptosis of GCs, it is suggested that ER stress in GCs
plays a role in atresia during follicular selection.

Maintenance and regression of the corpus luteum may also be regu-
lated by ER stress. Examination of the corpus luteum during its natural
history in both mouse and cow revealed that the three ER stress sen-
sors are activated during its functional stage, whereas proapoptotic
UPR factors, including CHOP, are highly expressed during its regres-
sion stage (Park et al., 2013; 2014).

Expression of UPR factors increases in mouse ovaries with advanced
reproductive age, concomitant with reduced expression of genes that
protect against ER stress in oocytes (Kim et al., 2018; Zhang et al.,
2019). Controlled ovarian stimulation upregulates the expression of
HSPA5 in bovine oocytes, only in animals of advanced reproductive
age (Cree et al., 2015). Together with the findings that in-vitro treat-
ment with ER stress inhibitors improves oocyte maturation and em-
bryo development by decreasing apoptosis in multiple species (Kim
et al., 2012; Zhang et al., 2012a; Khatun et al., 2020a,b), these obser-
vations suggest that activation of ER stress in oocytes with age can de-
crease oocyte quality. In addition to oocytes, activity of ER stress is
also affected by aging in GCs. Advanced glycation end products
(AGEs) accumulate in GCs of women at late reproductive ages
(Stensen et al., 2014). AGEs are produced by the Maillard reaction, in
which the carbonyl groups of carbohydrates react non-enzymatically
with the primary amino groups of proteins; the resultant compounds
bind to the receptor for AGEs (RAGE) and activate downstream sig-
naling. AGEs accumulate in several tissues during normal aging, as well
as under various pathological conditions (Unoki and Yamagishi, 2008).
Treatment with AGEs upregulates expression of ATF4 in cultured
human GCs, resulting in secretion of the inflammatory cytokines
interleukin (IL)-6 and IL-8. In human follicular fluid (FF) and CCs har-
vested at IVF, the concentration of functional AGEs in FF and ATF4
mRNA expression in CCs are significantly elevated in follicles contain-
ing oocytes that develop into embryos with poorer morphology.
These findings suggest that AGE accumulation in follicles with age
decreases oocyte competence by triggering inflammation via activation
of ER stress in the follicular microenvironment (Takahashi et al., 2019).
In addition to the effects of ER stress on oocyte quality, it needs to be
elucidated whether ER stress contributes to changes in ovarian
stroma during reproductive aging, such as fibrosis and inflammation
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..(Briley SM et al., 2016; Amargant et al., 2020; Zhang et al., 2020),
given that ER stress is closely related to the production of proinflam-
matory and profibrotic cytokines in GCs (Takahashi et al., 2017b,
2019).

ER stress in pathological
conditions of the ovary
Recent progress in this field has revealed the involvement of ER stress
in various pathological conditions of the ovary (Table III). Previous

studies focused mainly on the proapoptotic role of ER stress, whereas
recent work has examined the various roles of the UPR in association
with other local factors that constitute the follicular microenvironment.
Collectively, these studies have elucidated the critical roles of ER stress
as a regulator of the follicular microenvironment, suggesting novel ther-
apeutic strategies that target ER stress. Figure 2 shows simple schemes
for ER stress in the pathogenesis of various conditions, namely phar-
macological insults, obesity, PCOS, ovarian hyperstimulation syndrome
(OHSS), and endometrioma. These schemes are based on the current
knowledge of activators of ER stress and resultant functional changes
determined in the pathogenesis of each condition. Accordingly, it is

............................................................................................................................................................................................................................

Table I Representative genes/proteins involved in endoplasmic reticulum stress/unfolded protein response detected in the
ovary.

Sites of activation Genes/proteins Species

GCs HSPA5 Cows

ATF4, ATF6, CHOP, HSPA5, p-IRE1 Goats

HSPA5 Horses

ATF4, ATF6, CHOP, HSPA5, p-eIF2a, p-IRE1, p-PERK, XBP1s Humans

ATF4, ATF6, CHOP, HSPA5, p-eIF2a, p-IRE1 Mice

HSPA5, p-eIF2a Rats

CCs ATF4, ATF6, CHOP, HSPA5, XBP1s Humans

TCs ATF4, p-eIF2a Cows

Oocytes HSPA5 Cows

p-PERK, XBP1s Mice

ATF4, ATF6, CHOP, HSPA5, p-eIF2a, XBP1s Pigs

Embryos ATF4, ATF6, CHOP, HSPA5, p-IRE1, XBP1s Cows

ATF4, CHOP, HSPA5, p-IRE1, p-PERK, XBP1s Mice

XBP1s Pigs

COCs ATF4, CHOP, HSPA5, p-IRE1, p-PERK Cows

ATF4, ATF6 , CHOP, HSPA5, p-IRE1, XBP1s Mice

ATF4, ATF6, CHOP, HSPA5, XBP1s Pigs

Corpus luteum ATF4, ATF6, HSPA5, p-eIF2a, p-IRE1, XBP1s Cows

ATF4, ATF6, CHOP, HSPA5, p-eIF2a, p-IRE1, XBP1s Mice

ATF, activating transcription factor; CCs, cumulus cells; CHOP, C/EBP homologous protein; COCs, cumulus-oocyte complexes; eIF2a, eukaryotic initiation factor 2a; ER, endoplasmic
reticulum; GCs, granulosa cells; HSPA5, heat shock protein family A (Hsp70) member 5; IRE1, inositol-requiring enzyme 1; p-, phospho-; PERK, double-stranded RNA-activated
protein kinase-like ER kinase; TCs, theca cells; UPR, unfolded protein response; XBP1s, spliced X-box-binding protein 1

............................................................................................................................................................................................................................

Table II Physiological roles of ER stress in the ovary.

Sites of activation Findings Species Ref.

GCs Inhibits FSH-stimulated estradiol production Mice Babayev et al. (2016)

Regulates LHR expression Rats Kogure et al. (2013)

Positive correlation between oocyte fertilization capacity and XBP1s
expression in CCs

Humans Harada et al. (2015)

Induces follicular atresia Goats Lin et al. (2012)

Decreases oocyte developmental competence during reproductive aging Humans Takahashi et al. (2019)

Oocytes Decreases oocyte quality during reproductive aging Cows, mice Cree et al. (2015) and Zhang et al. (2019)

Corpus luteum Regulates maintenance and regression of corpus luteum Cows, mice Park et al. (2013, 2014)

LHR, LH receptor.
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plausible that local factors other than those shown as activators of ER
stress may also activate ER stress in each condition (e.g., ER stress is
activated in obese individuals by high levels of free fatty acids as shown
in Fig. 2b but oxidative stress and/or inflammation determined in the
follicular microenvironment in obese individuals may also contribute to
its activation). It also remains to be elucidated whether functional
changes induced by ER stress determined in one pathology also con-
tribute to pathogenesis of other conditions (e.g., whether the upregu-
lation of vascular endothelial growth factor (VEGF) production in GCs
by ER stress shown in OHSS also contributes to the pathogenesis of
PCOS).

Pharmacological insults
Chemically induced ovarian damage can result in activation of ER stress
(Fig. 2a). Administration of anticancer agent cisplatin to mice activates
ER stress, mainly in GCs of secondary to antral follicles. Concomitant
administration of an ER stress inhibitor ameliorates the cisplatin-
induced loss of healthy follicles and the increase in the number of
atretic follicles (Wu et al., 2018). Another anticancer agent, doxorubi-
cin, activates ER stress in mouse oocytes and thereby induces apopto-
sis (Bar-Joseph et al., 2010). Cadmium, an environmental estrogen

derived mainly from cigarette smoke, also activates ER stress in mouse
and human GCs, and induces apoptosis of these cells, resulting in a
decrease in antral follicles and an increase in atretic follicles (Wan
et al., 2018; Liu et al., 2019; Yang et al., 2019); the same effects are
also observed in rat and mouse GCs and bovine theca cells following
exposure to other endocrine disruptors (Wang et al., 2016; Guerrero-
Netro et al. 2017; Chen et al., 2019a). Furthermore, cryopreservation
of mouse and bovine oocytes and embryos, which involves exposure
to vitrification solution and drastic changes in temperature, activates
ER stress and induces apoptosis. Treatment with ER stress inhibitors
before or during vitrification ameliorates the adverse effects of cryo-
preservation and improves viability and developmental competence of
vitrified/warmed oocytes and embryos (Zhao et al., 2015; Yang et al.,
2018; Khatun et al., 2020a).

Obesity
Obesity in women impairs reproduction by affecting ovulatory func-
tion, as well as by decreasing oocyte quality and the ovarian response
to hormonal stimulation (Practice Committee of the American Society
for Reproductive Medicine, 2015). Obesity or intake of a high-fat diet
(HFD) is associated with elevated concentrations of triglycerides and

............................................................................................................................................................................................................................

Table III Roles of ER stress in pathological conditions of the ovary.

Pathologies Sites of activation Findings Species Ref.

Pharmacological insults GCs "cisplatin-induced apoptosis of GCs and follicular
atresia

Mice Wu et al. (2018)

Oocytes "doxorubicin-induced oocyte apoptosis Mice Bar-Joseph et al. (2010)

GCs, TCs "apoptosis of GCs and TCs and follicular atresia
induced by endocrine disruptors (e.g. cadmium)

Cows, Humans,
mice, rats

Wang et al. (2016), Guerrero-Netro et al.
2017), Wan et al. (2018), Chen et al.
(2019a), Liu et al. (2019), and Yang et al.
(2019)

Oocytes, Embryos "cryopreservation-induced damage of oocytes
and embryos

Cows, mice Zhao et al. (2015), Yang et al. (2018), and
Khatun et al. (2020a)

Obesity GCs " apoptosis of GCs and follicular growth arrest Mice Wu et al. (2010, 2017) and Chen et al.
(2019b)

COCs, Embryos " apoptosis of COCs, #embryo development Mice Wu et al. (2010, 2012, 2015), and Yang
et al. (2012)

GCs #production of estradiol and progesterone in
GCs

Goats, mice Yang et al. (2017), Chen et al. (2019b), and
Hua et al. (2020)

GCs #hCG-stimulated progesterone production in
GCs

Humans, mice Takahashi et al. (2017a)

PCOS GCs "secretion of TGF-b1 from GCs and interstitial fi-
brosis of the ovary

Humans, mice Takahashi et al. (2017b)

GCs "testosterone-induced apoptosis of GCs and fol-
licular atresia

Humans, mice Azhary et al. (2019)

GCs "testosterone-induced accumulation of AGEs in
GCs

Humans, mice Azhary et al. (2020)

COCs "testosterone-induced cumulus expansion Mice Jin et al. (2020)

OHSS CCs, GCs "hCG-stimulated VEGF production in GCs and
vascular permeability

Humans, rats Takahashi et al. (2016)

Endometrioma GCs "oxidative stress-induced apoptosis and cellular
senescence of GCs

Humans Kunitomi et al. (2020) and Lin et al. (2020)

AGEs, advanced glycation end products; OHSS, ovarian hyperstimulation syndrome; PCOS, polycystic ovary syndrome; TGF, transforming growth factor; VEGF, vascular endothelial
growth factor
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.free fatty acids in FF in human and horse (Wu et al., 2010; Sessions-
Bresnahan et al., 2016). High levels of free fatty acids and the resultant
production of lipid peroxides cause lipotoxicity, which involves impair-
ment of ER function (Borradaile et al., 2006).

Lipotoxicity causes activation of ER stress, affecting the viability of
GCs, COCs, and oocytes (Fig. 2b). ER stress is activated in GCs of
obese humans and horses, and in the GCs and COCs of mice
with obesity caused by HFD intake or overeating of standard chow
(Wu et al., 2010, 2015; Sessions-Bresnahan et al., 2016; Takahashi

et al., 2017a). Obese mice show growth arrest of follicles at an early
stage, follicular atresia, and lower rates of ovulation and fertilization; in
addition, these animals have higher rates of apoptosis in GCs and
COCs, and their embryos are less developmentally competent
(Wu et al., 2010, 2015, 2017). Activity of ER stress in COCs reflects
the lipid content of the surrounding FF, as shown by the observation
that treatment of mouse COCs with lipid-rich FF harvested from
obese women activates ER stress in COCs (Yang et al., 2012). In-vitro
treatment of mouse COCs with pharmacological ER stress inducers or

Figure 2. ER stress in the pathogenesis of various conditions. (a) Pharmacological insults. Chemically induced ovarian damage can result in
activation of ER stress. Administration of the anti-cancer agents cisplatin and doxorubicin activates ER stress in granulosa cells (GCs) and oocytes, re-
spectively, and induces apoptosis, which causes the gonadotoxicity of these agents. Endocrine disruptors, including cadmium, also activates ER stress
in GCs and theca cells (TCs) and induces apoptosis of these cells, resulting in loss of healthy follicles. Furthermore, cryopreservation of oocytes and
embryos activates ER stress and induces apoptosis, which causes cryodamage. Arrows in the same color indicate cause and result of activated ER
stress in the same condition. (b) Obesity. High levels of free fatty acids in the follicular microenvironment of obese individuals activate ER stress
in GCs, cumulus-oocyte complexes (COCs), and embryos. Activated ER stress induces apoptosis of GCs and COCs and impairs developmental
competence of embryos that cause follicular growth arrest and failure in ovulation and fertilization. Activated ER stress also affects steroidogenesis
by decreasing production of progesterone (P4) and estradiol (E2) in GCs; thus impairing follicular health and luteal function. (c) Polycystic ovary
syndrome (PCOS). Local hyperandrogenism in the follicular microenvironment of PCOS activates ER stress. Activated ER stress in GCs increases
production of the profibrotic cytokine transforming growth factor-b1 (TGF-b1) in GCs, thereby contributing to ovarian interstitial fibrosis. ER stress
also induces apoptosis of GCs in antral follicles that causes follicular growth arrest. Furthermore, activated ER stress mediates testosterone-induced
expression of receptor for advanced glycation end products (RAGE) in GCs and the resultant accumulation of advanced glycation end products
(AGEs) that affect various cellular processes. (d) Ovarian hyperstimulation syndrome (OHSS). Cumulus cells (CCs) from patients who subsequently
develop OHSS are under greater ER stress, although the activator of ER stress is not determined. Activated ER stress upregulates hCG-induced
vascular endothelial growth factor (VEGF) production in GCs and increases vascular permeability, causing development of OHSS. (e) Endometrioma.
Reactive oxygen species (ROS) present in endometrioma activates ER stress in GCs in ovaries affected by endometrioma. Activated ER stress
mediates oxidative stress-induced apoptosis and cellular senescence of GCs, contributing to ovarian dysfunction in patients with endometrioma.
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palmitic acid, a major fatty acid in FF, activates ER stress, induces apo-
ptosis, and impairs embryo development; these effects are reversed by
co-treatment with an ER stress inhibitor (Wu et al., 2012). Treatment
of obese mice with ER stress inhibitors improves ovulation rate and
the developmental competence of embryos (Wu et al., 2015). In-vitro
treatment with palmitic acid also activates ER stress in mouse GCs and
induces apoptosis of these cells; again, this effect is reversed by co-
treatment with ER stress inhibitors (Chen et al., 2019b).

Obesity or intake of HFD not only impairs viability of GCs, but also
affects steroidogenesis in these cells (Fig. 2b). Even in normally cycling
women, elevated BMI is associated with a shorter luteal phase and
lower progesterone levels (Santoro et al., 2004). Indeed, activated ER
stress impairs steroidogenesis of GCs, in addition to induction of
apoptosis. Activation of ER stress decreases secretion of estradiol and
progesterone from mouse and goat GCs in vitro (Yang et al., 2017;
Chen et al., 2019b; Hua et al., 2020), and abrogates upregulation of se-
rum progesterone levels in response to hCG in mice (Takahashi et al.,
2017a). In human GCs, activation of ER stress decreases the hCG-
stimulated secretion of progesterone. ER stress inhibits hCG-stimulated
expression and enzyme activity of genes related to progesterone bio-
synthesis, steroidogenic acute regulatory protein, and 3b-hydroxyste-
roid dehydrogenase. Activation of ER stress attenuates the hCG-
induced increase in the phosphorylation of protein kinase A substrates
and extracellular signal-regulated kinase 1/2, without affecting hCG-
stimulated activation of adenylate cyclase (Takahashi et al., 2017a).

Polycystic ovary syndrome
PCOS is the most common endocrine disorder among reproductive-
age women, affecting 6–20% of this population (Escobar-Morreale,
2018). Although the pathophysiology remains unclear, recent studies
have shown that intra-ovarian factors play crucial roles in the pathogen-
esis of PCOS (Dumesic et al., 2015b). ER stress is activated in GCs of
both PCOS patients and immature female mice induced to develop
PCOS by continuous administration of androgen, dehydroepiandroster-
one (DHEA) or dihydrotestosterone (Takahashi et al., 2017a; Jin et al.,
2020). Local hyperandrogenism in the follicular microenvironment of
PCOS, regardless of serum testosterone levels, is an activator of ER
stress in human and mouse GCs (Azhary et al., 2019; Jin et al., 2020)
(Fig. 2c). Activated ER stress in GCs contributes to the pathogenesis of
PCOS in several ways. Treatment of human GCs maintained in vitro
with pharmacological ER stress inducers stimulates the expression of
pro-fibrotic growth factors, including transforming growth factor (TGF)-
b1, in these cells (Takahashi et al., 2017b). ER stress also mediates
testosterone-induced apoptosis of cultured human GCs via induction of
the proapoptotic factor death receptor 5 (Azhary et al., 2019).
Furthermore, activated ER stress mediates testosterone-induced ex-
pression of RAGE and the resultant accumulation of AGEs in human
GCs (Azhary et al., 2020); it was recently recognized that AGEs accu-
mulate in GCs of PCOS patients and contribute to its pathology
(Diamanti-Kandarakis et al., 2007; Merhi et al., 2019). By mediating
testosterone-induced AGE accumulation in GCs, ER stress may bridge
hormonal and metabolic abnormalities in the pathology of PCOS, i.e.,
local hyperandrogenism and insulin resistance. ER stress also mediates
the testosterone-stimulated mouse cumulus cell expansion in vitro (Jin
et al., 2020). The roles of activated ER stress in the pathogenesis of
PCOS have been further confirmed by in-vivo experiments with a

DHEA-induced PCOS mouse model. Treatment of PCOS model mice
with ER stress inhibitors decreases interstitial fibrosis and collagen de-
position in the ovary, apoptosis of GCs in antral follicles, and accumula-
tion of AGEs in GCs, accompanied by a reduction in local ER stress in
GCs (Takahashi et al., 2017b; Azhary et al., 2019, 2020). Intriguingly,
treatment with ER stress inhibitors partially improves the reproductive
phenotype of PCOS; in particular, it improves the estrous cycle and
decreases the number of atretic antral follicles (Azhary et al., 2020).

Critically, these findings show that ER stress directly contributes to
the pathogenesis of PCOS. In addition to affecting the viability of GCs
(and thus follicular and oocyte health, as proven by previous studies),
activated ER stress induces interstitial fibrosis, follicular atresia, and ac-
cumulation of AGEs, thereby contributing to the pathogenesis of
PCOS (Fig. 2c).

Ovarian hyperstimulation syndrome
OHSS is another disorder in which ER stress in GCs plays a critical
role in its pathogenesis (Takahashi et al., 2016) (Fig. 2d). OHSS is a
major complication of infertility treatment that typically affects patients
undergoing controlled ovarian stimulation with gonadotrophins fol-
lowed by hCG administration. Excess production of VEGF has been
implicated in its pathogenesis (Gómez et al., 2010). CCs from patients
who subsequently develop OHSS are under greater ER stress, with a
positive correlation between the levels of XBP1s and VEGF (Takahashi
et al., 2016). ER stress upregulates hCG-induced VEGF production in
human cultured GCs. Treatment of OHSS model rats with an ER
stress inhibitor suppresses the increase in vascular permeability and
prevents development of OHSS by decreasing VEGF production in
GCs (Takahashi et al., 2016).

Endometrioma
Endometrioma exerts detrimental effects on ovarian physiology and
compromises follicular health (de Ziegler et al., 2010). The proportion
of atretic follicles in the ovarian cortex is elevated in ovaries with
endometrioma, which is associated with high levels of apoptosis in
GCs (Kitajima et al., 2014; Sanchez et al., 2014). On the contrary,
GCs in ovaries affected by endometrioma are under high oxidative
stress owing to the highly diffusible character of reactive oxygen spe-
cies present in endometrioma (Seino et al., 2002). ER stress is acti-
vated in human GCs in ovaries affected by endometrioma, as
evidenced by the fact that UPR factors and activated ER stress sensors
are present at higher levels than in GCs from disease-free ovaries
(Kunitomi et al., 2020; Lin et al., 2020). In cultured human GCs, oxida-
tive stress activates ER stress and induces apoptosis and cellular senes-
cence; these effects are ameliorated by pretreatment with an ER
stress inhibitor (Kunitomi et al., 2020; Lin et al., 2020). ER stress may
contribute to ovarian dysfunction in patients with endometrioma by
promoting oxidative stress-induced damage in GCs (Fig. 2e).

ER stress as a novel therapeutic
target
The expansion of our knowledge about ER stress in various pathologi-
cal conditions in the ovary has identified ER stress as a novel
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.therapeutic target. Hence, inhibition of ER stress and UPR induction in
the ovary represents a promising therapeutic strategy that would be
independent of hormonal therapies. Pharmacological approaches could
proceed according to two strategies as listed in Table IV: by attenuat-
ing the protein misfolding that causes ER stress and by targeting spe-
cific UPR factors (Fig. 3).

Chemical chaperones are a group of low-molecular-mass com-
pounds that stabilize folding proteins and buffer abnormal protein ag-
gregation, thereby decreasing ER stress and improving ER function
(Hetz et al., 2013); these compounds have been used to decrease
protein misfolding. Two chemical chaperones have been proven safe
for clinical use in humans: tauroursodeoxycholic acid (TUDCA) and 4-
phenylbutyrate (4-PBA), which have been used to treat liver diseases
and urea cycle disorders, respectively, and recent research revealed
their function as chemical chaperones. The in-vivo effectiveness of these
chemical chaperones has been shown in several ER stress-related dis-
eases in rodent models and human patients. Treatment with TUDCA
or 4-PBA improves glucose tolerance in patients with insulin resistance
or obesity (Kars et al., 2010; Xiao et al., 2011). 4-PBA also exerts a
neuroprotective effect by alleviating local ER stress in a rodent model
of brain ischemia–perfusion (Qi et al., 2004). In pathological conditions
in the ovary, administration of TUDCA improves the reproductive
phenotype of PCOS and prevents development of OHSS in rodent
models of each disease (Takahashi et al., 2016; Azhary et al., 2020).

The generation of small molecules that target the UPR has advanced
rapidly, although none have yet been approved for clinical use. Most
of these molecules target PERK signaling and function either as PERK
inhibitors or eIF2a phosphatase inhibitors. GSK2606414 and
GSK2656157, or their newly developed analogs AMG52 and AMG44,
inhibit PERK phosphorylation and its resultant activation. These com-
pounds exert inhibitory effects on tumor growth in several xenograft
models, and neuroprotective effects in several animal models of neuro-
degenerative disease, including prion disease and Parkinson’s disease
(Hetz et al., 2019). Salubrinal and the newly developed Sephin1, which

is more selective, inactivates eIF2a phosphatase complexes, thereby
increasing the levels of eIF2a phosphorylation, decreasing translation
rates, activating downstream ATF4 signaling, and restoring ER homeo-
stasis. Interestingly, unlike chronic ER stress or chemically induced
stress, these eIF2a phosphatase inhibitors do not prompt the transi-
tion to apoptotic signaling, a downstream effect of ATF4. eIF2a phos-
phatase inhibitors are neuroprotective and confer functional
improvement in multiple neurodegenerative disease models associated
with abnormal protein aggregation and ER stress, including multiple
sclerosis and amyotrophic lateral sclerosis (Hetz et al., 2013, 2019).
The effect of salubrinal was also shown in obesity-associated ovarian
dysfunction. Treatment of obese mice with salubrinal reverses ovula-
tory dysfunction in these mice, and also alleviates poor oocyte devel-
opmental competence and skewed fetal growth in these animals,
concomitant with restoration of oocyte quality and the mitochondrial
DNA content of fetal tissue (Wu et al., 2015). Inhibitors of phospho-
eIF2a-mediated translational repression and ATF4 induction, including
ISRIB, as well as molecules targeting other branches of UPR signaling,
including IRE1 inhibitors (Fig. 3), have also emerged as potent candi-
dates (Hetz et al., 2019; Grandjean and Wiseman, 2020).

Pharmacological targeting is not the only way to manipulate ER
stress. Given that ER stress is activated in the GCs of obese women
and mice with obesity caused by HFD intake or overeating of standard
chow (Wu et al., 2010, 2015; Takahashi et al., 2017b), lifestyle inter-
vention might be an effective way to decrease ER stress in the ovary.
Furthermore, ER stress is closely intertwined with other local factors,
including oxidative stress, AGEs, and inflammation. Indeed, oxidative
stress induces apoptosis of GCs via activation of ER stress, and several
lines of evidence have shown that in-vivo and in-vitro supplementation
with the antioxidant melatonin decreases ER stress in GCs and
oocytes (Park et al., 2018; Chen et al., 2019b; Kunitomi et al., 2020;
Lin et al., 2020). AGEs increase production of inflammatory cytokines
in GCs, an effect that is mediated by activation of ATF4 (Takahashi
et al., 2019). AGEs form endogenously or are absorbed exogenously

............................................................................................................................................................................................................................

Table IV Representative agents targeting ER stress/UPR.

Category Agents Mode of action

Chemical chaperones TUDCA Decreases protein misfolding

4-PBA Decreases protein misfolding

Targeting PERK signaling GSK2606414 Inhibits activation of PERK

GSK2656157 Inhibits activation of PERK

AMG52/AMG44 Inhibits activation of PERK

Salubrinal Inactivates eIF2a phosphatase complexes, thereby increasing the levels of eIF2a
phosphorylation

Sephin1 Inactivates eIF2a phosphatase complexes, thereby increasing the levels of eIF2a
phosphorylation

ISRIB Inhibits phospho-eIF2a-mediated translational repression and ATF4 induction

2BAct Inhibits phospho-eIF2a-mediated translational repression and ATF4 induction

Targeting IRE1 signaling STF-083010 Inhibits IRE1a RNase, thereby inhibits degradation/splicing of mRNA/miRNA

MKC3946 Inhibits IRE1a RNase, thereby inhibits degradation/splicing of mRNA/miRNA

KIRA6/KIRA8 Inhibits IRE1a RNase, thereby inhibits degradation/splicing of mRNA/miRNA

Targeting ATF6 signaling Compound 147 Activates ATF6

ATF6, activating transcription factor 6; eIF2a, eukaryotic initiation factor 2a; 4-PBA, 4-phenylbutyrate; TUDCA, tauroursodeoxycholic acid.
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.by smoking or intake of a high-fat and/or high-protein diet, especially
when the food is cooked at high temperature with low moisture
(Garg and Merhi, 2015). Thus, lifestyle interventions, including supple-
ment intake, which alleviate oxidative stress and/or AGEs could exert
a beneficial effect by relieving ER stress. Lifestyle intervention targeting
ER stress, either directly or indirectly, represents a potentially valuable
mode of preconception care.

Conclusion
Recent research progress has revealed the critical role of activated ER
stress in various pathological conditions in the ovary. Activated ER
stress impairs follicular and oocyte health following exposure to vari-
ous chemicals, including anticancer agents, as well as in obese women
and patients with endometrioma. Intriguingly, activated ER stress not
only hinders follicular growth and maturation, ovulation, and the pro-
duction of high-quality oocytes, but also contributes to the pathogene-
sis of ovarian pathologies, including PCOS and OHSS. Future studies

are necessary to determine the detailed molecular mechanisms by
which the three UPR signaling pathways regulate ovarian function, as
well as the interactions of these three pathways. In addition, research
is also needed to elucidate the types of cells which undergo functional
changes as a result of ER stress and contribute to the pathogenesis of
each pathological condition, given that the ovary consists of various
types of cells and UPR signaling induced by ER stress may depend on
the nature of stimuli and cell types affected.

The physiological roles of ER stress and UPR remain largely undeter-
mined. It was shown that ER stress/UPR is activated in GCs and
oocytes of healthy follicles, as well as in embryos (Zhang et al., 2012b,
Harada et al., 2015, Xiong et al., 2017). Furthermore, the fertilization
capacity of human oocytes is positively correlated with the expression
level of XBP1s in surrounding CCs (Harada et al., 2015). Accordingly,
it is speculated that certain moderate levels of ER stress might be nec-
essary for follicular, oocyte, and embryo development. Indeed, recent
studies have uncovered the critical role of UPR in various physiological
events. For example, ER stress and the UPR are prerequisites in shap-
ing intestinal tissue homeostasis and immunity by playing a pivotal role

Figure 3. Potential interventions and therapeutic targets in ER stress and the UPR pathways. Potential approaches could proceed
according to two strategies: by attenuating the protein misfolding that causes ER stress, and by targeting specific UPR factors. Chemical chaperones
decrease protein misfolding; two molecules in clinical use, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyrate (4-PBA), were proven to func-
tion as chemical chaperones. Lifestyle modification, including weight loss, changes in dietary habits, and supplement intake, may also decrease ER
stress either directly or indirectly. For the latter strategy, no small molecules that target the UPR have yet been approved for clinical use. Most of
these molecules target PERK signaling, including PERK inhibitors, eIF2a phosphatase inhibitors, and eIF2B activators that inhibit downstream signaling
of phosho-eIF2a. Molecules targeting other branches of UPR signaling, such as IRE1 inhibitors and ATF6 activators, are also under development.
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.
in the development, differentiation, activation, and cytokine secretion
of immune cells (Coleman and Haller, 2019). Given that the primary
role of the UPR is to maintain cellular homeostasis and that growing
follicles, especially in later stages, undergo dynamic local environmental
change, including a progressive increase in follicular size with massive
proliferation of GCs and induction of vascular networks surrounding
follicles, it is plausible that activated ER stress and the UPR play a role
in normal follicular growth and maturation. Future research addressing
the roles of ER stress and the UPR in normal follicular growth and
maturation, as well as in oocyte maturation and embryo development,
will open the way to understanding the regulatory machinery of nor-
mal ovarian function.

From a translational point of view, it is necessary to evaluate the ef-
fectiveness of chemical chaperones, such as TUDCA or 4-PBA, in
humans. Obesity-related ovarian dysfunction, PCOS, and OHSS will
be appropriate targets for testing the therapeutic effects of these
chemical chaperones, which have already been shown to be effective
in animal models. It will also be interesting to examine the effects of
combined inhibition of ER stress and other local factors. ER stress and
local factors, such as oxidative stress and AGEs, exacerbate each
other, creating a vicious cycle that causes the follicular microenviron-
ment to deteriorate. The combination of a chemical chaperone and
antioxidant, both of which are safe in humans, could exert additive or
even synergistic effects. Concomitantly, it is clearly necessary to inves-
tigate the in-vitro and in-vivo effectiveness of existing small molecules
targeting specific UPR factors, as well as new molecules developed in
the future. It would be particularly important to show in-vivo efficacy,
as well as potential adverse effects, of candidate molecules using dis-
ease models in addition to in-vitro efficacy in culture systems, given the
heterogeneity and temporal changes in composition of the cells in the
ovary.
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