論文

2008年

Strategy for Converting an Inverting Glycoside Hydrolase into a Glycosynthase

Carbohydrate-Active Enzymes: Structure, Function and Applications
  • Motomitsu Kitaoka
  • ,
  • Yuji Honda
  • ,
  • Masafumi Hidaka
  • ,
  • Shinya Fushinobu

開始ページ
193
終了ページ
205
記述言語
英語
掲載種別
論文集(書籍)内論文
DOI
10.1533/9781845695750.2.193
出版者・発行元
Elsevier Ltd.

We found a novel inverting xylanolytic enzyme belonging to GH8, reducing end xylose-releasing exo-oligoxylanase (Rex, EC. 3.2.1.156), that hydrolyzed xylooligosaccharides (X3 or larger) to release X1 at their reducing end. Rex hydrolyzed α-X2F into X2 only in the presence of X1, clearly proving the Hehre-resynthesis hydrolysis mechanism. A library of mutant Rex at the catalytic base (Asp263) was constructed by saturation mutagenesis. Among them, D263C showed the highest level of X3 production, and D263N exhibited the fastest consumption of α-X2F. However, F- releasing activities of the mutants were much less than that of wild type. Next, Y198 of Rex that forms a hydrogen bond with the nucleophilic water was substituted with phenylalanine, causing a drastic decrease in the hydrolytic activity and a small increase in F- releasing activity from α-xylobiosyl fluoride in the presence of xylose. Y198F of Rex accumulates much more product during the glycosynthase reaction than D263C. We here conclude that an inverting glycosidase is effectively converted into glycosynthase by mutating a residue holding the nucleophilic water molecule with the general base residue while keeping the general base residue intact. © 2008 Woodhead Publishing Limited. All rights reserved.

リンク情報
DOI
https://doi.org/10.1533/9781845695750.2.193
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84903022515&origin=inward
ID情報
  • DOI : 10.1533/9781845695750.2.193
  • SCOPUS ID : 84903022515

エクスポート
BibTeX RIS