Papers

Peer-reviewed
2018

Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle

Astrobiology
  • Laneuville, Matthieu
  • ,
  • Kameya, Masafumi
  • ,
  • Cleaves, H. James, II

Volume
18
Number
7
First page
897
Last page
914
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1089/ast.2017.1700
Publisher
MARY ANN LIEBERT, INC

Nitrogen is the major component of Earth's atmosphere and plays important roles in biochemistry. Biological systems have evolved a variety of mechanisms for fixing and recycling environmental nitrogen sources, which links them tightly with terrestrial nitrogen reservoirs. However, prior to the emergence of biology, all nitrogen cycling was abiological, and this cycling may have set the stage for the origin of life. It is of interest to understand how nitrogen cycling would proceed on terrestrial planets with comparable geodynamic activity to Earth, but on which life does not arise. We constructed a kinetic mass-flux model of nitrogen cycling in its various major chemical forms (e.g., N-2, reduced (NHx) and oxidized (NOx) species) between major planetary reservoirs (the atmosphere, oceans, crust, and mantle) and included inputs from space. The total amount of nitrogen species that can be accommodated in each reservoir, and the ways in which fluxes and reservoir sizes may have changed over time in the absence of biology, are explored. Given a partition of volcanism between arc and hotspot types similar to the modern ones, our global nitrogen cycling model predicts a significant increase in oceanic nitrogen content over time, mostly as NHx, while atmospheric N-2 content could be lower than today. The transport timescales between reservoirs are fast compared to the evolution of the environment; thus atmospheric composition is tightly linked to surface and interior processes. Key Words: Nitrogen cycleAbioticPlanetologyAstrobiology. Astrobiology 18, 897-914.

Link information
DOI
https://doi.org/10.1089/ast.2017.1700
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000439467700007&DestApp=WOS_CPL
ID information
  • DOI : 10.1089/ast.2017.1700
  • ISSN : 1531-1074
  • eISSN : 1557-8070
  • ORCID - Put Code : 50860055
  • Web of Science ID : WOS:000439467700007

Export
BibTeX RIS