論文

査読有り
2010年6月15日

Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations

Physica D: Nonlinear Phenomena
  • Freddy Bouchet
  • ,
  • Hidetoshi Morita

239
12
開始ページ
948
終了ページ
966
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.physd.2010.01.020

We study the asymptotic behavior and the asymptotic stability of the 2D Euler equations and of the 2D linearized Euler equations close to parallel flows. We focus on flows with spectrally stable profiles U (y) and with stationary streamlines y = y (such that U (y ) = 0), a case that has not been studied previously. We describe a new dynamical phenomenon: the depletion of the vorticity at the stationary streamlines. An unexpected consequence is that the velocity decays for large times with power laws, similarly to what happens in the case of the Orr mechanism for base flows without stationary streamlines. The asymptotic behaviors of velocity and the asymptotic profiles of vorticity are theoretically predicted and compared with direct numerical simulations. We argue on the asymptotic stability of this ensemble of flow profiles even in the absence of any dissipative mechanisms. © 2010 Elsevier B.V. All rights reserved. 0 0 ′

リンク情報
DOI
https://doi.org/10.1016/j.physd.2010.01.020
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77950865747&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=77950865747&origin=inward
ID情報
  • DOI : 10.1016/j.physd.2010.01.020
  • ISSN : 0167-2789
  • SCOPUS ID : 77950865747

エクスポート
BibTeX RIS