Applications of de Branges-Rovnyak decomposition to Graph Theory ${ }^{1}$

Michio Seto (National Defense Academy)
Joint work with
Sho Suda (Aichi University of Education)
and

Tetsuji Taniguchi (Hiroshima Institute of Technology)
${ }^{1}$ Supported by JSPS KAKENHI Grant Numbers JP15K04926 and JP16K05190.

Reminiscences of Bieberbach conjecture

$$
\begin{aligned}
& \mathbb{D}:=\{\lambda \in \mathbb{C}:|\lambda|<1\} \\
& \mathcal{S}:=\left\{f \in \operatorname{Hol}(\mathbb{D}): f \text { is injective and } f(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}\right\}
\end{aligned}
$$

Bieberbach conjecture

- If $f(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in \mathcal{S}$, then $\left|c_{n}\right| \leq n$?
- In 1984, de Branges gave the solution with Hilbert space operator theory.
- However, since his original proof was very complicated, his operator theory method has been forgotten.

In this talk

- We deal with increasing sequences of graphs from the viewpoint of Hilbert space operator theory.
- As results, two different types of inequality are given.
- Our scheme gives a toy model of de Branges' solution to the Bieberbach conjecture (in fact, this is my motivation).

Preliminaries from Graph theory

Graph

We deal with simple graphs (no loops, no multi-edges and no direction).

$V=\{1,2,3,4\}, \quad E=\{\{1,2\},\{2,3\},\{1,3\},\{1,4\}\}, \quad G=(V, E)$
Laplace matrix

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 2 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \quad(\rightarrow \text { spectral graph theory })
$$

Inequality 1

Setting

- V : a finite set of vertices (fixed),
- $G_{j}=\left(V, E_{j}\right):$ connected and simple graphs

$$
\text { s.t. } \left.\quad G_{1} \subset \cdots \subset G_{n} \quad \text { (i.e. } \quad E_{1} \subset \cdots \subset E_{n}\right) .
$$

- $\gamma(G)$: the number of connected components of G.

Inequality 1

Setting

- V : a finite set of vertices (fixed),
- $G_{j}=\left(V, E_{j}\right):$ connected and simple graphs

$$
\text { s.t. } \left.\quad G_{1} \subset \cdots \subset G_{n} \quad \text { (i.e. } \quad E_{1} \subset \cdots \subset E_{n}\right) .
$$

- $\gamma(G)$: the number of connected components of G.

Inequality for γ

$$
\begin{aligned}
\sum_{j=1}^{n-1} \gamma\left(G_{j+1}-G_{j}\right) \leq & \gamma\left(G_{n}-G_{1}\right)+(n-2)|V| \\
& \left(G_{j+1}-G_{j}:=\left(V, E_{j+1} \backslash E_{j}\right)\right)
\end{aligned}
$$

- We have an operator theory proof of this inequality.

Inequality 2

Setting

- V : a finite set (fixed),
- $G_{j}=\left(V, E_{j}\right)(j=0,1)$: connected and simple graphs s.t.

$$
G_{0} \subset G_{1} \quad \text { (i.e. } G_{0} \text { is a subgraph of } G_{1} \text {) }
$$

- L_{j} : Laplace matrix of G_{j},
- $K_{j}=\left(P+L_{j}\right)^{-1}\left(\right.$ where $P:=\operatorname{proj} \operatorname{ker} L_{j}$ in $\left.\ell^{2}(V)\right)$

Inequality 2

Setting

- V : a finite set (fixed),
- $G_{j}=\left(V, E_{j}\right)(j=0,1)$: connected and simple graphs s.t.

$$
G_{0} \subset G_{1} \quad \text { (i.e. } G_{0} \text { is a subgraph of } G_{1} \text {) }
$$

- L_{j} : Laplace matrix of G_{j},
- $K_{j}=\left(P+L_{j}\right)^{-1}\left(\right.$ where $P:=$ proj ker L_{j} in $\left.\ell^{2}(V)\right)$

Trivial observation

- $G_{0} \subset G_{1} \Rightarrow L_{0} \leq L_{1} \Leftrightarrow P+L_{0} \leq P+L_{1} \Leftrightarrow K_{0} \geq K_{1}$.
- Many graph theorists are interested in spectral property of L. We shall improve $K_{0} \geq K_{1}$ in the next page.

Inequality 2

Theorem (S-Suda)
If $G_{0} \subset G_{1}$ (simple, connected and having the same vertex set), then $\forall c \in \ell^{2}(V)$

$$
0 \leq\left\langle L_{0}\left(K_{0}-K_{1}\right) \widetilde{c},\left(K_{0}-K_{1}\right) \widetilde{c}\right\rangle_{\ell^{2}(V)} \leq\left\langle\left(K_{0}-K_{1}\right) c, c\right\rangle_{\ell^{2}(V)}
$$

where

$$
\widetilde{c}:=\frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} c \circ g
$$

the averaged vector of c with respect to

$$
\mathcal{G}=\operatorname{Aut}\left(G_{0}\right) \cap \operatorname{Aut}\left(G_{1}\right) .
$$

Remarks

- These two inequalities are derived from de Branges-Rovnyak theory.
- Our scheme gives general method for finding inequalities (but it is rather complicated).
- There is a proof of Inequality 1 with graph theory (Ozeki).
- We have a simple proof of Inequality 2 without de Branges-Rovnyak theory.

Our idea

Hilbert space \mathcal{H}_{G}

- For functions u and v on V (in fact, u and v are vectors),

$$
\langle u, v\rangle_{\mathcal{H}_{G}}:=\left\langle\left(I_{\ell^{2}(V)}+L_{G}\right) u, v\right\rangle_{\ell^{2}(V)} \quad\left(L_{G}: \text { Laplacian of } G\right)
$$

- \mathcal{H}_{G} : the Hilbert space with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}_{G}}$

Our idea

Hilbert space \mathcal{H}_{G}

- For functions u and v on V (in fact, u and v are vectors),

$$
\langle u, v\rangle_{\mathcal{H}_{G}}:=\left\langle\left(I_{\ell^{2}(v)}+L_{G}\right) u, v\right\rangle_{\ell^{2}(v)} \quad\left(L_{G}: \text { Laplacian of } G\right)
$$

- \mathcal{H}_{G} : the Hilbert space with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}_{G}}$

Translation from G to \mathcal{H}

$$
\begin{gathered}
G_{1} \subset G_{2} \subset \cdots \subset G_{n-1} \subset G_{n} \\
\downarrow \\
\mathcal{H}_{G_{1}} \hookleftarrow \mathcal{H}_{G_{2}} \hookleftarrow \cdots \hookleftarrow \mathcal{H}_{G_{n-1}} \hookleftarrow \mathcal{H}_{G_{n}}
\end{gathered}
$$

Can this sequence be telescoped?
(Note: $\mathcal{H}_{G_{j+1}}$ is not a Hilbert subspace of $\mathcal{H}_{G_{j}}$)

Our idea

Hilbert space \mathcal{H}_{G}

- For functions u and v on V (in fact, u and v are vectors),

$$
\langle u, v\rangle_{\mathcal{H}_{G}}:=\left\langle\left(I_{\ell^{2}(v)}+L_{G}\right) u, v\right\rangle_{\ell^{2}(v)} \quad\left(L_{G}: \text { Laplacian of } G\right)
$$

- \mathcal{H}_{G} : the Hilbert space with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}_{G}}$

Translation from G to \mathcal{H}

$$
\begin{gathered}
G_{1} \subset G_{2} \subset \cdots \subset G_{n-1} \subset G_{n} \\
\downarrow \\
\mathcal{H}_{G_{1}} \hookleftarrow \mathcal{H}_{G_{2}} \hookleftarrow \cdots \hookleftarrow \mathcal{H}_{G_{n-1}} \hookleftarrow \mathcal{H}_{G_{n}}
\end{gathered}
$$

Can this sequence be telescoped?
(Note: $\mathcal{H}_{G_{j+1}}$ is not a Hilbert subspace of $\mathcal{H}_{G_{j}}$)
Our answer
Use de Branges-Rovnyak theory.

A review of de Branges-Rovnyak theory

Pull-back construction

- \mathcal{H}, \mathcal{K} : Hilbert spaces
- $T: \mathcal{H} \rightarrow \mathcal{K}$ any bounded linear operator,
- $\langle T x, T y\rangle_{T}:=\langle P x, P y\rangle_{\mathcal{H}}\left(P:=P_{(\operatorname{ker} T)^{\perp}}\right)$,
- $\mathcal{M}(T):=\left(T \mathcal{H},\langle\cdot, \cdot\rangle_{T}\right)$ is a Hilbert space

$$
\because \quad T \mathcal{H} \cong \mathcal{H} / \operatorname{ker} T \cong(\operatorname{ker} T)^{\perp} .
$$

A review of de Branges-Rovnyak theory

Fundamental theorem

If $T: \mathcal{H} \rightarrow \mathcal{K}$ and $\|T\| \leq 1$, then

1. $\mathcal{K}=\mathcal{M}(T)+\mathcal{H}(T) \quad\left(\mathcal{H}(T):=\mathcal{M}\left(\sqrt{\mathcal{K}-T T^{*}}\right)\right)$,
2. $\|z\|_{\mathcal{K}}^{2} \leq\|x\|_{\mathcal{M}(T)}^{2}+\|y\|_{\mathcal{H}(T)}^{2}$ if $z=x+y \in \mathcal{M}(T)+\mathcal{H}(T)$
3. $\forall z \in \mathcal{K} \quad \exists!x_{z} \in \mathcal{M}(T) \quad \exists!y_{z} \in \mathcal{H}(T)$

$$
\text { s.t. } \quad z=x+y \quad \text { and } \quad\|z\|_{\mathcal{K}}^{2}=\left\|x_{z}\right\|_{\mathcal{M}(T)}^{2}+\left\|y_{z}\right\|_{\mathcal{H}(T)}^{2}
$$

- See Ando's lecture notes or Sarason's red book for details.

How to use de Branges-Rovnyak theory in graph theory
Increasing family of graphs
$G_{1} \subset G_{2} \subset \cdots \subset G_{n-1} \subset G_{n}$

Embedding of Hilbert spaces
$\mathcal{H}_{G_{1}} \stackrel{T_{1,2}}{\leftarrow} \mathcal{H}_{G_{2}} \stackrel{T_{2,3}}{\leftarrow} \cdots \stackrel{T_{n-2, n-1}}{\leftarrow} \mathcal{H}_{G_{n-1}} \stackrel{T_{n-1, n}}{\leftarrow} \mathcal{H}_{G_{n}}$

Telescoping
$T_{1}:=I_{\mathcal{H}_{G_{1}}}, T_{j+1}:=T_{j} T_{j, j+1}$,
$\mathcal{H}\left(T_{n}\right)=\sum_{j=1}^{n-1} \mathcal{M}\left(\sqrt{T_{j} T_{j}^{*}-T_{j+1} T_{j+1}^{*}}\right)$.

Trivial estimate $\operatorname{dim} \mathcal{H}\left(T_{n}\right) \leq \sum_{j=1}^{n-1} \operatorname{dim} \mathcal{M}\left(\sqrt{T_{j} T_{j}^{*}-T_{j+1} T_{j+1}^{*}}\right)$ (\Rightarrow Inequality 1).

How to use de Branges-Rovnyak theory in graph theory
Time evolution of graphs
$G_{0} \subset G_{1} \quad \rightarrow \quad G_{0} \subset G_{r} \subset G_{t} \subset G_{1} \quad(0 \leq r \leq t \leq 1)$.
Continuous chain of Hilbert spaces
$\mathcal{H}_{G_{0}} \hookleftarrow \mathcal{H}_{G_{r}} \stackrel{T_{r ث}}{\hookleftarrow} \mathcal{H}_{G_{t}} \hookleftarrow \mathcal{H}_{G_{1}} \quad(0 \leq r \leq t \leq 1)$.
Quasi-orthogonal integrals
(for details, Vasyunin-Nikolskii, Leningrad Math. J. (1991).)
$\mathcal{H}\left(T_{r t}\right)=\int_{r}^{t} \mathcal{M}\left(T_{r s} \Delta(s)\right) d s \quad(0 \leq r \leq t \leq 1)$.
$\left\|\int_{r}^{t} T_{r s} \Delta(s) f(s) d s\right\|_{\mathcal{H}\left(T_{t t}\right)}^{2} \leq \int_{r}^{t}\|\Delta(s) f(s)\|_{\mathcal{M}(\Delta(s))}^{2} d s$
(\Rightarrow Inequality 2).

Summary 1

The following inequalities are derived from de Branges-Rovnyak theory (discrete and continuous cases):

- If $G_{1} \subset G_{2} \subset \cdots \subset G_{n-1} \subset G_{n}$, then

$$
\sum_{j=1}^{n-1} \gamma\left(G_{j+1}-G_{j}\right) \leq \gamma\left(G_{n}-G_{1}\right)+(n-2)|V|
$$

- If $G_{0} \subset G_{1}$, then

$$
0 \leq\left\langle L_{0}\left(K_{0}-K_{1}\right) \widetilde{c},\left(K_{0}-K_{1}\right) \widetilde{c}\right\rangle_{\ell^{2}(V)} \leq\left\langle\left(K_{0}-K_{1}\right) c, c\right\rangle_{\ell^{2}(V)}
$$

$$
\left(c \in \ell^{2}(V)\right)
$$

Summary 2

Our scheme

This device is similar to that many identities are implied from formulas in Fourier analysis.

