論文

査読有り
2013年5月

CONVERGENCE AND BLOW-UP OF SOLUTIONS FOR A COMPLEX-VALUED HEAT EQUATION WITH A QUADRATIC NONLINEARITY

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
  • Jong-Shenq Guo
  • ,
  • Hirokazu Ninomiya
  • ,
  • Masahiko Shimojo
  • ,
  • Eiji Yanagida

365
5
開始ページ
2447
終了ページ
2467
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1090/S0002-9947-2012-05797-7
出版者・発行元
AMER MATHEMATICAL SOC

This paper is concerned with the Cauchy problem for a system of parabolic equations which is derived from a complex-valued equation with a quadratic nonlinearity. First we show that if the convex hull of the image of initial data does not intersect the positive real axis, then the solution exists globally in time and converges to the trivial steady state. Next, on the one-dimensional space, we provide some solutions with nontrivial imaginary parts that blow up simultaneously. Finally, we consider the case of asymptotically constant initial data and show that, depending on the limit, the solution blows up nonsimultaneously at space infinity or exists globally in time and converges to the trivial steady state.

リンク情報
DOI
https://doi.org/10.1090/S0002-9947-2012-05797-7
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000326585500008&DestApp=WOS_CPL
ID情報
  • DOI : 10.1090/S0002-9947-2012-05797-7
  • ISSN : 0002-9947
  • eISSN : 1088-6850
  • Web of Science ID : WOS:000326585500008

エクスポート
BibTeX RIS