論文

国際誌
2022年7月20日

Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays.

ACS photonics
  • Anton Matthijs Berghuis
  • ,
  • Ruth H Tichauer
  • ,
  • Lianne M A de Jong
  • ,
  • Ilia Sokolovskii
  • ,
  • Ping Bai
  • ,
  • Mohammad Ramezani
  • ,
  • Shunsuke Murai
  • ,
  • Gerrit Groenhof
  • ,
  • Jaime Gómez Rivas

9
7
開始ページ
2263
終了ページ
2272
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1021/acsphotonics.2c00007

Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton-polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton-polaritons with an exciton fraction of 50% show a propagation length of 4.4 μm, which is an increase by 2 orders of magnitude compared to the singlet exciton diffusion length. This remarkable increase has been qualitatively confirmed with both finite-difference time-domain simulations and atomistic multiscale molecular dynamics simulations. Furthermore, we observe that the propagation length is modified when the dipole moment of the exciton transition is either parallel or perpendicular to the cavity field, which opens a new avenue for controlling the anisotropy of the exciton flow in organic crystals. The enhanced exciton-polariton transport reported here may contribute to the development of organic devices with lower recombination losses and improved performance.

リンク情報
DOI
https://doi.org/10.1021/acsphotonics.2c00007
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/35880071
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306002
ID情報
  • DOI : 10.1021/acsphotonics.2c00007
  • PubMed ID : 35880071
  • PubMed Central 記事ID : PMC9306002

エクスポート
BibTeX RIS