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Abstract
Because double-mass dynamic vibration absorbers (DVAs) are superior to single-mass DVAs in terms of their vi-
bration suppression performance and robustness, they have been increasingly studied recently. The optimization
of double-mass DVAs is much more difficult than that of single-mass DVAs. However, recently, the ability of
formula manipulation solvers typified by Mathematica has greatly improved, and exact algebraic solutions have
been obtained for double-mass DVAs. The optimal solution for a double-mass DVA attached to a damped primary
system has been reported in the form of an exact algebraic solution in a previous report. That paper reported the
algebraic optimal solutions for a series-type double-mass DVA for the compliance and mobility transfer functions
of the primary system successfully obtained by applying three different optimization criteria: H∞ optimization, H2

optimization, and stability maximization. In the present article, the numerical solutions to optimization problems
for double-mass DVAs that cannot be algebraically solved are presented. There are two types of double-mass
DVAs: series- and parallel-type DVAs. When applying the three optimization criteria mentioned above to each
of them, there exist a total of 22 different optimal solutions because there are three transfer functions— the com-
pliance, mobility, and accelerance transfer functions—that are typically used to describe the absolute response of
the primary system. Of these 22 solutions, 10 solutions for the compliance transfer function are introduced in this
article.

Keywords : Vibration, Optimal design, Double-mass dynamic vibration absorbers, H∞ optimization criterion, H2

optimization criterion, Stability maximization criterion, Damped primary system

1. Introduction

A dynamic vibration absorber (DVA) is a small vibrating body attached to an object to suppress the vibrations of the
object. Early DVAs did not include a damping mechanism, and their optimization criterion was extremely simple: the
natural frequency of the DVA was made to coincide with that of the primary object (Frahm, 1911). Since the development
of such early DVAs, it has become clear that the response of the primary system can be reduced not only in the vicinity of
its resonance point but also over the entire frequency range when the DVA includes a damping mechanism (Ormondroyd
and Den Hartog, 1928). There are now three representative optimization criteria for damped DVAs: H∞ optimization,
H2 optimization, and stability maximization (Asami et al., 2002). Early damped DVAs were composed of a single mass,
but research on DVAs composed of multiple masses has recently been carried out (Iwanami and Seto, 1984; Yasuda
and Pan, 2003). When DVAs are multiplexed, it is expected that multiple vibration modes of the primary system can
be suppressed and robustness against parameter fluctuation can be improved (Pan and Yasuda, 2005; Zuo, 2009). In
this study, a multiplexed DVA was used to achieve improved vibration suppression performance, and the optimal design
conditions for the simplest multiplexed DVA, the double-mass DVA, was investigated. Despite the double-mass DVA
being the simplest multiplexed DVA, its optimization is very difficult because the number of parameters to be optimized
increases from two for the single-mass case to five (Asami, 2017, 2018).
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Regarding the optimization of DVAs, particular interest has been paid to the design conditions for a special case in
which there is no damping in the primary system. For example, as a typical H∞ optimization criterion, Hahnkamm derived
the optimal tuning condition of the DVA in 1932, and Brock then derived a formula for the optimal damping ratio in 1946.
The optimization method they used is an approximation of the H∞ optimization method proposed by Ormondroyd and
Den Hartog in 1928, called the “fixed-point method.” In 1997 and 2002, Nishihara (Nishihara and Matsuhisa, 1997;
Nishihara and Asami, 2002) proposed an exact method of minimizing the H∞ norm, which is the maximum amplitude of
the response of the primary system; this method is hereafter called “Nishihara’s method.” Asami and Nishihara reported
an exact algebraic solution using Nishihara’s method for various transfer functions of the system in 2003. Regarding
double-mass DVAs, the exact solutions based on the three optimization criteria have been reported by Asami (2017, 2018)
and Nishihara (2017). All of these represent solutions for special cases in which there is no damping in the primary system.
Although many researchers have sought general solutions in the case of a damped primary system, only numerical and
perturbation solutions have been reported for optimization based on the H∞ criterion (Ikeda and Ioi, 1978; Randall et al.,
1981; Thompson, 1981; Soom and Lee, 1983; Sekiguchi and Asami, 1984). Surprisingly, exact algebraic solutions were
found earlier for the double-mass DVA than for the single-mass DVA in the general case where there is damping in the
primary system. In a previous study (Asami, 2019), for the mobility transfer function representing the absolute velocity
response of the primary system subjected to force excitation, the H∞-optimal solution of the series-type double-mass
DVA was algebraically derived. The same paper presented an algebraic form of the H2-optimal solution of a series-type
double-mass DVA for the compliance transfer function representing the absolute displacement response of the primary
system subjected to force excitation. Furthermore, with regard to the series-type double-mass DVA, an algebraic optimal
solution has also been found for the stability maximization criterion, which is the third DVA optimization criterion.

There are two types of double-mass DVAs, the series-type and the parallel-type, and each can be classified as a force
or motion excitation system depending on the excitation type. When there is no damping in the primary system, force
and motion excitation systems have the same optimal solution, whereas including damping in the primary system causes
them to have different optimal solutions. In addition, there are three typical transfer functions, called the compliance,
mobility, and accelerance transfer functions, which are related to the absolute response of the primary system; thus, 22
different optimal solutions exist for the three types of optimization problems described above. (There is no solution to the
accelerance transfer function in the H2 criterion, and for the stability criterion, the solution does not depend on whether
the system is a force or motion excitation system or which transfer function is used.) Among these solutions, algebraic
forms have only been obtained in the three cases reported by Asami (2019), and exact solutions for the remaining 19 cases
have not yet been obtained. The authors believe that it is necessary to derive the solutions for these unsolved optimiza-
tion problems. Because all optimization problems involving double-mass DVAs can be reduced to solving simultaneous
algebraic equations (Asami 2017; Asami et al., 2018), it is possible to solve the equations numerically.

This report presents the optimization of double-mass DVAs attached to a damped primary system based on the H∞,
H2, and stability criteria using the compliance transfer function, which is the transfer function most frequently used in
the field of mechanical vibration. The numerically determined optimal solutions for both the series- and parallel-type
double-mass DVAs are also reported in this paper. Generally, the conventional fixed-point method cannot be used at all
in the H∞ optimization of multi-mass DVAs. Here, Nishihara’s method (Nishihara and Matsuhisa, 1997; Nishihara and
Asami, 2002) proves to be a powerful tool in this context.

2. Optimization problem for dynamic vibration absorbers attached to a damped primary system

Figures 1 and 2 show three-degree-of-freedom vibration systems consisting of two DVAs, A and B, attached in series
and in parallel, respectively, to a primary system P with damping. Figures 1(a) and 2(a) show force excitation systems, in
which the excitation force acts directly on the primary system, and Figs. 1(b) and 2(b) show motion excitation systems, in
which the foundation of the system is displaced. Because these are linear systems, letting ω1, ω2, and ω3 be the undamped
natural angular frequencies of the primary system P and DVAs A and B, respectively, the ratio |x1/( f /k1)| or |x1/x0| of the
amplitude of the steady-state response x1(t) to that of the sinusoidal input f (t) = f0 sinωt or x0(t) = a0 sinωt can be fully
represented by the following eight dimensionless parameters:

λ =
ω

ω1
, µ =

m2 + m3

m1
, µB =

m3

m2
, ν =

ω2

ω1
, νB =

ω3

ω2
, ζ1 =

c1

2m1ω1
, ζ2 =

c2

2m2ω2
, ζ3 =

c3

2m3ω3
(1)

where

ω1 =
√

k1/m1, ω2 =
√

k2/m2, ω3 =
√

k3/m3. (2)
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Fig. 1 Analytical model of a series-type DVA attached to a damped
primary system subjected to (a) force or (b) motion excitation
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Fig. 2 Analytical model of a parallel-type DVA attached to
a damped primary system subjected to (a) force or
(b) motion excitation

It was assumed that λ varies from zero to infinity and a larger value of µ produces better DVA performance. When
the mass ratio µ of the DVAs to the primary system and the value of the damping ratio ζ1 for the primary system are given,
the remaining five dimensionless parameters have optimal values. Determining these optimal values is the problem of
optimizing the DVA for this system.

The symmetry of the parallel-type DVA shown in Fig. 2 means that a single optimal solution can be represented in
two different forms by changing the assignment of the masses of DVA-A and DVA-B, which are known to have different
masses in the optimal condition. In this report, DVA-A is defined as the larger DVA when the mass ratio µ is small.

As mentioned in the introduction, when there is damping in the primary system, the optimal values of the DVAs in
the force excitation system (Figs. 1(a) and 2(a)) are different from those in the motion excitation system (Figs. 1(b) and
2(b)). Therefore, the optimization work was conducted separately for each system.

3. H∞ optimization of series-type dynamic vibration absorber
3.1. H∞ optimization for force excitation system

First, the optimization of the DVA was performed for the force excitation system shown in Fig. 1(a). Because the
optimal damping ratio ζ2opt of DVA-A is known to be zero (Asami, 2017), if c2 = 0 is set from the beginning, then the
equations of motion of the system are

m1 ẍ1 + c1 ẋ1 + k1x1 + k2(x1 − x2) = f , m2 ẍ2 + k2(x2 − x1) + c3(ẋ2 − ẋ3) + k3(x2 − x3) = 0

m3 ẍ3 + c3(ẋ3 − ẋ2) + k3(x3 − x2) = 0.

}
(3)

In the optimization of the compliance transfer function by the H∞ criterion, the DVA is optimized by minimizing the
resonance amplitude of the primary system, given by

hmax =

∣∣∣∣ x1

f /k1

∣∣∣∣
max
. (4)

The minimized value of hmax is hereafter denoted hmin. Because the vibratory system shown in Fig. 1(a) is a three-
degree-of-freedom system, there are three resonance points in the vibration system unless the damping ratios for the
subsystems are excessively large. First, the condition that the resonance points are equal in height gives the following
three simultaneous algebraic equations (Asami et al., 2018):

f1 = r − r3 − 4rζ2
1 + 4rζ4

1 + ≪ 86 terms ≫ + 4rζ4
3µ

5
Bν

4ν4B = 0

f2 = r2 − r3 − 2r2ζ2
1 − 2r2ζ2

3 + ≪ 200 terms ≫ − 2ζ2
3µµ

3
Bν

4ν4B = 0

f3 = 4r4ζ2
3 − 4r4ζ4

3 + 4r4ζ2
3µB − 4r4ζ4

3µB + ≪ 83 terms ≫ + r2µ2µBν
4ν4B = 0.

 (5)

The symbol r used here represents a change of variable from the height hmax of the resonance point using the following
equation:

r2 = 1 − 1
h2

max
. (6)

This variable conversion was carried out so that the terms of Eq. (5) do not include any fractional expressions. By this
conversion, the problem of minimizing hmax is transformed into the problem of minimizing r. Hereafter, the minimum
value of r is denoted rmin.
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In the H∞ optimization of the series-type double-mass DVA, the number of parameters to be optimized is five (µB, ν,
νB, ζ3, and r). Therefore, the number of equations in Eq. (5) is two fewer than the number needed to solve this optimization
problem. The remaining two equations are derived from the condition that minimizes the height of the resonance points
adjusted to have equal heights by Eq. (5), given by

dr =
∂r
∂µB

dµB +
∂r
∂ν

dν +
∂r
∂νB

dνB +
∂r
∂ζ3

dζ3 = 0. (7)

This condition means that the total derivative of the parameter r, which represents the height of the resonance points, with
respect to the four system parameters to be optimized should be zero (Asami et al., 2018). Because r is included in the
functions f1, f2, and f3, Eq. (7) can be rewritten as


dr

dr

dr

 =


∂r
∂ f1

0 0

0
∂r
∂ f2

0

0 0
∂r
∂ f3





∂ f1
∂µB

∂ f1
∂ν

∂ f1
∂νB

∂ f1
∂ζ3

∂ f2
∂µB

∂ f2
∂ν

∂ f2
∂νB

∂ f2
∂ζ3

∂ f3
∂µB

∂ f3
∂ν

∂ f3
∂νB

∂ f3
∂ζ3




dµB

dν

dνB

dζ3

 =


0

0

0

 . (8)

The 3 × 4 matrix in this equation is called the Jacobian matrix. For Eq. (8) to have a nontrivial solution, the rank of the
Jacobian matrix must be less than or equal to 2 (Nishihara, 2017). Furthermore, for the rank drop condition of this matrix
to be satisfied, the determinant of any 3 × 3 submatrix extracted from the Jacobian matrix must be zero: for example,

f4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ f1
∂ν

∂ f1
∂νB

∂ f1
∂ζ3

∂ f2
∂ν

∂ f2
∂νB

∂ f2
∂ζ3

∂ f3
∂ν

∂ f3
∂νB

∂ f3
∂ζ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, f5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ f1
∂µB

∂ f1
∂ν

∂ f1
∂νB

∂ f2
∂µB

∂ f2
∂ν

∂ f2
∂νB

∂ f3
∂µB

∂ f3
∂ν

∂ f3
∂νB

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (9)

The following fourth and fifth equations are obtained from expanding these determinants:

f4 = − 2r6ζ1ζ
2
3µµBν

3 + 2r7ζ1ζ
2
3µµBν

3 + ≪ 11768 terms ≫ − 8r4ζ7
3µµ

11
B ν

8ν11
B = 0

f5 = 8r6ζ1ζ
3
3µµBν

3 − 8r7ζ1ζ
3
3µµBν

3 + ≪ 18655 terms ≫ + 64r4ζ8
3µµ

10
B ν

8ν11
B = 0.

}
(10)

There are several ways to select a submatrix, and different equations from those given in Eq. (10) are derived depending
on the way selected. However, we have confirmed that the choice does not affect the final solution value. This means that
as long as the rank drop condition is satisfied, the choice of submatrix is arbitrary.

In the simultaneous algebraic equations composed of the formulas given in Eqs. (5) and (10), when the values of µ
and ζ1 are given, the five unknown parameters (µB, ν, νB, ζ3, and r) can be solved using the Newton–Raphson method in
Mathematica ver.11.3 from a suitable starting point for these parameters. Thus, the optimal values µBopt, νopt, νBopt, and
ζ3opt of the DVA parameters and the minimum value rmin representing the height of the resonance points can be obtained.
The minimized resonance amplitude hmin is then calculated as

hmin =

√
1

1 − r2
min
. (11)

In a previous study by one of the authors on the H∞ optimization of a single-mass DVA, the condition for equal-
izing the heights of the two resonance points was described by the simultaneous equations f1 = 0 and f2 = 0 (Asami
and Nishihara, 2003). The height of the resonance points was then minimized by finding the multiple root of these si-
multaneous equations. Fortunately, a single quartic equation could be derived from these simultaneous equations, and
the multiple root of the higher-order equation could be obtained from the condition that the determinant of the Sylvester
matrix must be zero. However, the simultaneous equations given in Eq. (5) cannot be combined into a single equation;
thus, the Sylvester matrix cannot be used in this case. However, the Jacobian matrix in Eq. (8) performs the same function
as the Sylvester matrix. In other words, employing Eq. (7) or (8) is a process of searching for the multiple root of the
simultaneous equations given in Eq. (5).
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3.2. H∞ optimization for motion excitation system
Next, the optimization of the DVA attached to the motion excitation system shown in Fig. 1(b) was performed. Here

again, if c2 = 0, then the equations of motion are

m1 ẍ1 + c1(ẋ1 − ẋ0) + k1(x1 − x0) + k2(x1 − x2) = 0

m2 ẍ2 + k2(x2 − x1) + c3(ẋ2 − ẋ3) + k3(x2 − x3) = 0, m3 ẍ3 + c3(ẋ3 − ẋ2) + k3(x3 − x2) = 0.

}
(12)

In the H∞ optimization of a motion excitation system, the DVA is optimized by minimizing the maximum transmissibility.
That is, the evaluation index is

hmax =

∣∣∣∣ x1

x0

∣∣∣∣
max
. (13)

The following simultaneous algebraic equations with five unknowns can then be derived by the same procedure as for the
force excitation system:

f1 = r − r3 − 4r3ζ2
1 + 4r5ζ4

1 + ≪ 84 terms ≫ + 4rζ4
3µ

5
Bν

4ν4B = 0

f2 = r2 − r3 − 2r4ζ2
1 − 2r3ζ2

3 + ≪ 197 terms ≫ − 2ζ2
3µµ

3
Bν

4ν4B = 0

f3 = 4r4ζ2
3 − 4r4ζ4

3 + 4r4ζ2
3µB − 4r4ζ4

3µB + ≪ 82 terms ≫ + r2µ2µBν
4ν4B = 0

f4 = − 2r6ζ1ζ
2
3µµBν

3 + 2r7ζ1ζ
2
3µµBν

3 + ≪ 11768 terms ≫ − 8r4ζ7
3µµ

11
B ν

8ν11
B = 0

f5 = 8r6ζ1ζ
3
3µµBν

3 − 8r7ζ1ζ
3
3µµBν

3 + ≪ 18655 terms ≫ + 64r4ζ8
3µµ

10
B ν

8ν11
B = 0.


(14)

Equation (14) can be numerically solved in the same way as Eqs. (5) and (10).

3.3. Optimal values of design parameters for dynamic vibration absorber
The H∞-optimal design parameters for the DVA obtained by numerical analysis are shown in Fig. 3. As shown in the

figure, the optimal values for the four design parameters of the DVA monotonically decrease or increase as the primary
system damping increases. When considering the overall behavior of the parameters, the changes in their optimal values
with respect to ζ1 are smaller in the motion excitation system than in the force excitation system. It is noteworthy that
νopt has been previously reported to monotonically increase in the H∞-optimal solution to the optimization of the mobility
transfer function (Asami, 2019), whereas νopt was found to decrease monotonically in the optimization of the compliance
transfer function in the previous study, as shown in Fig. 3(b).

3.4. Minimized H∞ performance index
In Fig. 4, panels (a) and (b) show the resonance amplitudes of the force and motion excitation systems, respectively,

to which the series-type double-mass DVA optimized by the H∞ criterion is attached. The curve for µ = 0 shown in gray
is the resonance amplitude for the primary system when no DVA is attached, which can be calculated from the following
simple equations. First, for the force excitation system shown in Fig. 4(a),

hmin =
1

2ζ1
√

1 − ζ2
1

. (15)

Second, for the motion excitation system shown in Fig. 4(b),

hmin =
1

2ζ1

√
1 + 4ζ2

1 − 8ζ4
1 +

√
1 + 8ζ2

1

2(1 − ζ2
1 )

. (16)

As shown in Fig. 4, the resonance point is kept low as the primary system damping ζ1 increases and can be further
suppressed by attaching the DVA. Furthermore, the values of hmin in the motion excitation system (Fig. 4(b)) are greater
than those in the force excitation system (Fig. 4(a)) from when ζ1 exceeds approximately 0.1.

3.5. Frequency response of the primary system with a series-type dynamic vibration absorber optimized by the
H∞ criterion
Figures 5 and 6 show the frequency response function for the system fitted with the series-type double-mass DVA

optimized by the H∞ criterion in the force and motion excitation systems, respectively, in the cases where the mass ratio
of the DVA to the primary system is µ = 0.05 and 0.1. As shown in these figures, the resonance is kept low as the primary
system damping ζ1 or the mass of the DVA increases. These curves are very similar to the frequency response function
for a damped single-degree-of-freedom system but with three resonance points.
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4. H∞ optimization of parallel-type dynamic vibration absorber
4.1. H∞ optimization for force excitation system

When the damping coefficient c2 of DVA-A is assumed to be nonzero, the equations of motion of the force excitation
system shown in Fig. 2(a) are as follows:

m1 ẍ1 + c1 ẋ1 + c2(ẋ1 − ẋ2) + c3(ẋ1 − ẋ3) + k1x1 + k2(x1 − x2) + k3(x1 − x3) = f

m2 ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0, m3 ẍ3 + c3(ẋ3 − ẋ1) + k3(x3 − x1) = 0.

}
(17)

Here again, the following simultaneous algebraic equations are obtained from the condition that the heights of the three

6



2
© 2020 The Japan Society of Mechanical Engineers

Asami and Yamada, Mechanical Engineering Journal, Vol.7, No.2 (2020)

[DOI: 10.1299/mej.19-00051]

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

λ

|
1
/(
f/
k

1
)|

ζ1 = 0
       0.05
       0.1
       0.2
       0.3
       0.4
       0.5
       0.6

0 0.5 1 1.5 2
0

1

2

3

4

5

λ

|
1
/(
f/
k

1
)|

ζ1 = 0
       0.05
       0.1
       0.2
       0.3
       0.4
       0.5
       0.6

Fig. 5 Optimal responses of a force excitation primary system fitted with the series-type DVA optimized by the
H∞ criterion; (a) Mass ratio µ = 0.05; (b) Mass ratio µ = 0.1
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Fig. 6 Optimal responses of a motion excitation primary system fitted with the series-type DVA optimized by the
H∞ criterion; (a) Mass ratio µ = 0.05; (b) Mass ratio µ = 0.1

resonance points are equal:

f1 = − r + r3 + 4rζ2
1 − 4rζ4

1 + ≪ 525 terms ≫ − 4rζ4
3µ

4µ4
Bν

4ν4B = 0

f2 = r2 − r3 − 2r2ζ2
1 + 2r3ζ2

2 + ≪ 450 terms ≫ − 2ζ2
3µ

3µ2
Bν

4ν4B = 0

f3 = 4r4ζ2
3 − 4r4ζ4

3 + 8r4ζ2
3νB − 8r4ζ4

3µB + ≪ 167 terms ≫ + r2µ2µ2
Bν

4ν4B = 0.

 (18)

In the H∞ optimization of the parallel-type double-mass DVA, the number of parameters to be optimized is six: µB,
ν, νB, ζ2, ζ3, and r. Therefore, the number of formulas given in Eq. (18) is three fewer than the number needed to solve
this optimization problem. The additional conditional expressions are derived from the following equation obtained from
the fact that these simultaneous equations must have multiple roots:

dr =
∂r
∂µB

dµB +
∂r
∂ν

dν +
∂r
∂νB

dνB +
∂r
∂ζ2

dζ2 +
∂r
∂ζ3

dζ3 = 0. (19)

Because r is included in the functions f1, f2, and f3, Eq. (19) can be rewritten as


dr

dr

dr

 =


∂r
∂ f1

0 0

0
∂r
∂ f2

0

0 0
∂r
∂ f3





∂ f1
∂µB

∂ f1
∂ν

∂ f1
∂νB

∂ f1
∂ζ2

∂ f1
∂ζ3

∂ f2
∂µB

∂ f2
∂ν

∂ f2
∂νB

∂ f2
∂ζ2

∂ f2
∂ζ3

∂ f3
∂µB

∂ f3
∂ν

∂ f3
∂νB

∂ f3
∂ζ2

∂ f3
∂ζ3





dµB

dν

dνB

dζ2

dζ3


=


0

0

0

 . (20)

Again, the 3 × 5 matrix in the equation is the Jacobian matrix. The condition of Eq. (20) equaling zero can be satisfied
by setting the determinant of any arbitrary 3 × 3 submatrix extracted from this Jacobian matrix to zero. From this, the
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remaining three equations needed to solve the optimization problem are obtained as follows:

f4 = 128r6ζ1ζ3µµBν
2 − 256r7ζ1ζ

3
3µµBν

2 + ≪ 278674 terms ≫ + 128r4ζ1ζ2ζ
4
3µ

7µ6
Bν

10ν11
B = 0

f5 = 128r7ζ1ζ
2
2µνB − 128r8ζ1ζ

2
2µνB + ≪ 183411 terms ≫ + 512r5ζ2ζ

6
3µ

8µ8
Bν

9ν11
B = 0

f6 = 128r6ζ1ζ
2
3µµBν

2 − 256r7ζ1ζ
2
3µµBν

2 + ≪ 191969 terms ≫ + 256r4ζ1ζ2ζ
3
3µ

7µ7
Bν

10ν11
B = 0.

 (21)

When the values of µ and ζ1 are known, the simultaneous algebraic equations given in Eqs. (18) and (21) can be solved
using the Newton–Raphson method, which is included in Mathematica. The resulting solution consists of the five optimal
parameter values µBopt, νopt, νBopt, ζ2opt, and ζ3opt and the minimum value rmin.

4.2. H∞ optimization for motion excitation system
Next, the DVA is optimized for the motion excitation system in Fig. 2(b). The equations of motion are

m1 ẍ1 + c1(ẋ1 − ẋ0) + c2(ẋ1 − ẋ2) + c3(ẋ1 − ẋ3) + k1(x1 − x0) + k2(x1 − x2) + k3(x1 − x3) = 0

m2 ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0, m3 ẍ3 + c3(ẋ3 − ẋ1) + k3(x3 − x1) = 0.

}
(22)

The simultaneous algebraic equations are given below

f1 = − r + r3 + 4r3ζ2
1 − 4r5ζ4

1 + ≪ 543 terms ≫ − 4rζ4
3µ

4µ4
Bν

4ν4B = 0

f2 = r2 − r3 − 2r4ζ2
1 + 2r3ζ2

2 + ≪ 448 terms ≫ − 2ζ2
3µ

3µ2
Bν

4ν4B = 0

f3 = 4r4ζ2
3 − 4r4ζ4

3 + 8r4ζ2
3µB − 8r4ζ4

3µB + ≪ 167 terms ≫ + r2µ2µ2
Bν

4ν4B = 0

f4 = 128r6ζ1ζ
3
3µµBν

2 − 256r7ζ1ζ
3
3µµBν

2 + ≪ 306049 terms ≫ + 128r4ζ1ζ2ζ
4
3µ

7µ6
Bν

10ν11
B = 0

f5 = 128r7ζ1ζ
2
2µνB − 128r8ζ1ζ

2
2µνB + ≪ 201986 terms ≫ + 512r5ζ2ζ

6
3µ

8µ8
Bν

9ν11
B = 0

f6 = 128r6ζ1ζ
2
3µµBν

2 − 256r7ζ1ζ
2
3µµBν

2 + ≪ 213924 terms ≫ + 256r4ζ1ζ2ζ
3
3µ

7µ7
Bν

10ν11
B = 0.


(23)

These simultaneous equations can be solved numerically using the Newton–Raphson method.

4.3. Optimal values of design parameters for dynamic vibration absorber
Figure 7 shows the H∞-optimal solution for the parallel-type double-mass DVA obtained by numerical analysis. The

primary system damping ζ1 is taken as the independent variable in these plots. As shown in this figure, as the damping
ζ1 of the primary system increases, the optimal parameters for the motion excitation system change less than do those for
the force excitation system, with the exception of ζ3opt.

4.4. Minimized H∞ performance index
In Fig. 8, panels (a) and (b) show the relationship between the height of the resonance points and the primary system

damping for the parallel-type double-mass DVA optimized by the H∞ criterion in the cases of force and motion excitation
systems, respectively. A comparison of the results shown in Fig. 8 with the corresponding results for the series-type DVA
shown in Fig. 4 reveals the similarity between the two cases; however, the response amplitude for the system with the
parallel-type DVA takes on a large value when the primary system damping ζ1 is less than 0.1. It has been demonstrated
in a previous report (Asami, 2017) that the series-type DVA achieves better performance than the parallel-type DVA when
there is no damping in the primary system, but the present results indicate that this also holds true even when the primary
system includes a damping mechanism. The difference between the two types of DVAs becomes negligible when the
primary system damping is greater than 0.1.

4.5. Frequency response for the primary system with a parallel-type dynamic vibration absorber optimized by the
H∞ criterion
Figure 9 shows the frequency response function for the system fitted with the parallel-type DVA optimized by the

H∞ criterion for the case of the force excitation system. A comparison of this frequency response function with that for
the system having a series-type DVA shown in Fig. 5 confirms that at the same mass ratio, the resonance points in the
system with the series-type DVA are lower than those in the system with the parallel-type DVA.
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5. H2 optimization of series-type dynamic vibration absorber
5.1. H2 optimization for force excitation system

In the H2 optimization of the DVA under force excitation, the objective is to minimize the following evaluation index:

Ia =
1

2π

∫ ∞
−∞

∣∣∣∣ x1

f /k1

∣∣∣∣2 dλ. (24)

The minimum value of Ia is denoted Iamin. In a previous study (Asami, 2019), the H2-optimal solution was obtained
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Fig. 7 H∞-optimal solutions for the parallel-type DVA; (a) Optimal mass ratio µBopt; (b) Optimal tuning ratio
νopt; (c) Optimal tuning ratio νBopt; (d) Optimal damping ratio ζ2opt; (e) Optimal damping ratio ζ3opt
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Fig. 8 Minimized response amplitude of primary systems fitted with the parallel-type DVA optimized by the H∞
criterion; (a) Minimized amplitude hmin of the force excitation system; (b) Minimized amplitude hmin of
the motion excitation system
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Fig. 9 Optimal responses of a force excitation primary system fitted with the parallel-type DVA optimized by the
H∞ criterion; (a) Mass ratio µ = 0.05; (b) Mass ratio µ = 0.1

algebraically as

µBopt = µ + q1/3
2 + µ

2q−1/3
2 , νopt =

√
1 + µBopt, νBopt =

1
1 + µBopt

, ζ2opt = 0, ζ3opt =
ζ1µ

νopt(µBopt − 2µ)

q2 = µ
2
(

2ζ2
1 − µ + 2ζ1

√
ζ2

1 − µ
)
.

(25)

This expression was obtained as a solution to a cubic algebraic equation solved by Cardano’s method, in which an inter-
mediate variable q2 is permitted to be a complex number but all optima are calculated as positive real numbers.

5.2. H2 optimization for motion excitation system
For the H2 optimization of the motion excitation system shown in Fig. 1(b), the objective is to minimize the following

evaluation index:

Ia =
1

2π

∫ ∞
−∞

∣∣∣∣ x1

x0

∣∣∣∣2 dλ. (26)

In this case, only numerical solutions have been obtained (Asami et al., 2018).

5.3. Optimal values of design parameters for dynamic vibration absorber
Figure 10 shows the H2-optimal solution of the DVA, which minimizes the area under the square of the compliance

transfer function curve for the primary system. As is clear from these figures, in contrast to the H∞-optimal solution, the
primary system damping ζ1 has less of an effect on the optimized parameter values in the force excitation system than on
those in the motion excitation system. One point that sets the H2-optimal solution apart from the H∞-optimal solution
described above is that the value of the natural angular frequency ratio νopt monotonically increases with increasing ζ1.
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Fig. 10 H2-optimal solutions for the series-type DVA; (a) Optimal mass ratio µBopt; (b) Optimal tuning ratio νopt;
(c) Optimal tuning ratio νBopt; (d) Optimal damping ratio ζ3opt

The solid lines do not span the entire range of ζ1 values in Fig. 10, which means that the motion excitation has no solution
for the ζ1 values beyond the endpoints of the lines.

5.4. Minimized H2 performance index
Figure 11 shows the value of the area under the square of the compliance transfer function curve for the primary

system fitted with the series-type DVA optimized by the H2 criterion. The curve for µ = 0 shown in gray represents the
case when the primary system is not fitted with a DVA, and the effect of the DVA can be seen with this curve considered
as a point of reference.

5.5. Frequency response of the primary system with a series-type dynamic vibration absorber optimized by the
H2 criterion
Figure 12 shows the frequency response function for the force excitation system with the series-type DVA optimized

by the H2 criterion. As shown in this figure, when the DVA optimized by the H2 criterion is attached to the primary system,
the three resonance amplitudes for the primary system always decrease in the order of the 1st-, 2nd-, and 3rd-order peaks.
Inevitably, the maximum resonance point is higher than that achieved by H∞ optimization.

6. H2 optimization of parallel-type dynamic vibration absorber
6.1. H2 optimization for force excitation system

The definite integral shown in Eq. (24) was solved by the residue theorem (Kreyszig, 1999), and the result can be
expressed in a fractional form as follows:

Ia =
1

2π

∫ ∞
−∞

∣∣∣∣ x1

f /k1

∣∣∣∣2 dλ =
IaNum

IaDen

IaNum = ζ2ζ3 + 3ζ2ζ3µB + 3ζ2ζ3µ2
B + ≪ 3024 terms ≫ + ζ2ζ3µ4µ3

Bν
8ν8B

IaDen = 4(ζ1ζ2ζ3 + 3ζ1ζ2ζ3µB + 3ζ1ζ2ζ3µ2
B + ≪ 3276 terms ≫ + ζ1ζ2ζ3µ4µ3

Bν
8ν8B).

 (27)
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Fig. 11 Minimized evaluation index of primary systems fitted with the series-type DVA optimized by the H2
criterion; (a) Evaluation index Iamin for the force excitation system; (b) Evaluation index Iamin for the
motion excitation system
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Fig. 12 Optimal responses of a force excitation primary system fitted with the series-type DVA optimized by the
H2 criterion; (a) Mass ratio µ = 0.05; (b) Mass ratio µ = 0.1

When this equation is partially differentiated with respect to each of the five parameters to be optimized and the sum of
the partial differentials is set to zero, the following simultaneous algebraic equations are obtained:

f1 = ζ3
2ζ

2
3 + 2ζ3

2ζ
2
3µB + 6ζ3

2ζ
2
3µ

2
B + ≪ 65216 terms ≫ + ζ1ζ2

2ζ
2
3µ

6µ4
Bν

13ν16
B = 0

f2 = − ζ3
2ζ

2
3 − 5ζ3

2ζ
2
3µB − 10ζ3

2ζ
2
3µ

2
B + ≪ 83146 terms ≫ + 2ζ1ζ2

2ζ
2
3µ

6µ5
Bν

13ν16
B = 0

f3 = − ζ3
2ζ

2
3 − 5ζ3

2ζ
2
3µB − 10ζ3

2ζ
2
3µ

2
B + ≪ 61169 terms ≫ + 2ζ1ζ2

2ζ
2
3µ

6µ5
Bν

13ν13
B = 0

f4 = − ζ2
2ζ

2
3 − 5ζ2

2ζ
2
3µB − 10ζ2

2ζ
2
3µ

2
B + ≪ 55055 terms ≫ − ζ2

2ζ
2
3µ

6µ5
Bν

12ν16
B = 0

f5 = − ζ2
2ζ

2
3 − 5ζ2

2ζ
2
3µB − 10ζ2

2ζ
2
3µ

2
B + ≪ 55038 terms ≫ − ζ2

2ζ
2
3µ

6µ5
Bν

12ν16
B = 0.


(28)

In H2 optimization, the number of simultaneous equations is one fewer than that in H∞ optimization. It is impossible to
solve these equations algebraically, but they can be solved numerically by the Newton–Raphson method starting from a
suitable initial value.

6.2. H2 optimization for motion excitation system
Subsequently, optimization of the DVA attached to the motion excitation system shown in Fig. 2(b) was performed.

As in the force excitation system, the evaluation index Ia for the H2 criterion can be calculated as follows:

Ia =
1

2π

∫ ∞
−∞

∣∣∣∣ x1

x0

∣∣∣∣2 dλ =
IaNum

IaDen

IaNum = ζ2ζ3 + 4ζ2
1ζ2ζ3 + 3ζ2ζ3µB + ≪ 4596 terms ≫ + ζ2ζ3µ4µ3

Bν
8ν8B

IaDen = 4(ζ1ζ2ζ3 + 3ζ1ζ2ζ3µB + 3ζ1ζ2ζ3µ2
B + ≪ 3276 terms ≫ + ζ1ζ2ζ3µ4µ3

Bν
8ν8B).

 (29)
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Only the numerator IaNum of the evaluation index sets this equation apart from the corresponding equation for the force
excitation system. In the same way as above, the following simultaneous equations can be obtained:

f1 = ζ3
2ζ

2
3 + 4ζ2

1ζ
3
2ζ

2
3 + 4ζ3

2ζ
2
3µ

2
B + ≪ 119177 terms ≫ − 8ζ4

1ζ2ζ
2
3µ

5µ3
Bν

14ν16
B = 0

f2 = − ζ3
2ζ

2
3 − 4ζ2

1ζ
3
2ζ

2
3 − 5ζ3

2ζ
2
3µB + ≪ 158994 terms ≫ − 4ζ4

1ζ2ζ
2
3µ

5µ4
Bν

14ν16
B = 0

f3 = − ζ3
2ζ

2
3 − 4ζ2

1ζ
2
2ζ

3
3 − 5ζ2

2ζ
3
3µB + ≪ 114438 terms ≫ − 4ζ4

1ζ
2
2ζ3µ

6µ5
Bν

14ν14
B = 0

f4 = − ζ2
2ζ

2
3 − 4ζ2

1ζ
2
2ζ

2
3 − 5ζ2

2ζ
2
3µB + ≪ 95009 terms ≫ − 4ζ4

1ζ
2
3µ

5µ4
Bν

14ν16
B = 0

f5 = − ζ2
2ζ

2
3 − 4ζ2

1ζ
2
2ζ

2
3 − 5ζ2

2ζ
2
3µB + ≪ 95009 terms ≫ − 4ζ4

1ζ
2
2µ

6µ5
Bν

14ν14
B = 0.


(30)

These simultaneous equations can be solved numerically by the Newton–Raphson method.

6.3. Optimal values of design parameters of dynamic vibration absorber
The H2-optimal solution for the DVA obtained by numerical analysis is shown in Fig. 13. The solution at ζ1 = 0 is

consistent with that for the undamped primary system reported in a previous paper (Asami et al., 2018). Although the
optimal solution for the force excitation system changes little with increasing primary system damping, that for the motion
excitation system begins to change significantly from approximately ζ1 = 0.1. As shown in Fig. 13(a), as ζ1 increases,
µBopt reaches a maximum and then suddenly decreases. In contrast, νBopt and ζ2opt suddenly increase after progressing
through local maximum and minimum values, as shown respectively in panels (c) and (d) of Fig. 13.

Of particular interest among the optimized design parameters is the optimal mass ratio µB shown in Fig. 13(a). As
described in Section 2, because the larger DVA of the two is defined as DVA-A, the value of µB is initially less than one.
As the primary system damping ζ1 increases, this optimal mass ratio reaches a region where it suddenly increases and
reaches its maximum value of approximately two. The relationship between the sizes of the two DVAs is reversed near
this maximum value. Among the three optimization criteria, H2 optimization achieves the smallest damping ratio for the
DVA. However, an unexpected result was that the optimal damping ratio ζ3opt for DVA-B takes a large value.

6.4. Minimized H2 performance index
In Fig. 14, panels (a) and (b) show the values of the minimized evaluation index Iamin for the force and motion

excitation systems, respectively. In the force excitation system, Iamin decreases monotonically as the primary system
damping ζ1 increases because the primary system is mounted on an immovable foundation. In contrast, for the motion
excitation system, Iamin takes a minimum value at a certain value of ζ1 and then begins to increase. In these figures, the
curve for µ = 0 shown in gray is the value of the evaluation index for the vibratory system with no DVA attached.

6.5. Frequency response of the primary system with a parallel-type dynamic vibration absorber optimized by the
H2 criterion
Figure 15 shows the frequency response function for the primary system in the force excitation system shown in

Fig. 2(a)．The two panels of Fig. 15 show the response of the primary system when DVAs of different sizes are attached.
A comparison of these results with those shown in Fig. 12, which represents the response of a system with the series-type
DVA, reveals that the system with the parallel-type DVA has higher resonance points.

7. Stability maximization of series-type dynamic vibration absorber

In the optimization by the stability criterion, the DVA is designed to maximize the stability of the system, defined by
the following formula (Asami et al., 2018):

Λ = −max(Re[si]). (31)

The following algebraic exact solution has already been obtained for the series-type DVA (Asami, 2019):

µBopt = 4ζ2
1 + 5µ + 3q1/3

3 + 3µ(8ζ2
1 + µ)q

−1/3
3 , νopt =

√
1 + µBopt, νBopt =

1
1 + µBopt

ζ2opt = 0, ζ3opt =
ζ1 +

√
3(µ − ζ2

1 + µBopt)

2νopt
, Λmax =

3ζ1 +
√

3(µ − ζ2
1 + µBopt)

6

q3 = µ
[
8ζ4

1 + 8ζ1(ζ2
1 − µ)3/2 + 20ζ2

1µ − µ2
]
.


(32)
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8. Stability maximization of parallel-type dynamic vibration absorber
8.1. Optimization procedure

The characteristic equation for the system shown in Fig. 2 is

s6 + a1s5 + a2s4 + a3s3 + a4s2 + a5s + a6 = 0, (33)

a1 = 2ζ1 + 2ζ2
(

1 +
µ

1 + µB

)
ν + 2ζ3

(
1 +

µµB

1 + µB

)
ννB

a2 = 1 +
(

1 +
µ

1 + µB

)
ν2 +

(
1 +

µµB

1 + µB

)
ν2ν2B + 4ζ1ζ2ν + 4ζ1ζ3ννB + 4ζ2ζ3(1 + µ)ν2νB

 (34)
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Fig. 13 H2-optimal solutions for the parallel-type DVA; (a) Optimal mass ratio µBopt; (b) Optimal tuning ratio
νopt; (c) Optimal tuning ratio νBopt; (d) Optimal damping ratio ζ2opt; (e) Optimal damping ratio ζ3opt
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Fig. 14 Minimized evaluation index for primary systems fitted with the parallel-type DVA optimized by the H2
criterion; (a) Evaluation index Iamin for the force excitation system; (b) Evaluation index Iamin for the
motion excitation system
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Fig. 15 Optimal responses of a force excitation primary system fitted with the parallel-type DVA optimized by
the H2 criterion; (a) Mass ratio µ = 0.05; (b) Mass ratio µ = 0.1

a3 = 2ν[ζ1ν(1 + ν2B) + ζ2(1 + ν2ν2B + µν
2ν2B) + ζ3(1 + ν2 + µν2)νB + 4ζ1ζ2ζ3ννB]

a4 = ν
2[1 + (1 + ν2 + µν2)ν2B + 4ζ1ζ2νν2B + 4ζ1ζ3ννB + 4ζ2ζ3νB]

a5 = 2ν3νB(ζ1ννB + ζ2νB + ζ3), a6 = ν
4ν2B.

 (35)

From previous research (Asami et al., 2018), it is known that when the stability Λ of a three-degree-of-freedom system is
maximized, the characteristic equation has a triple root. In this case, Eqs. (34) and (35) can be factored as

D(s) = [s − (xr + iyr)]3[s − (xr − iyr)]3, (36)

where (xr, yr) are the coordinates of the complex conjugate root in the complex plane. Expanding Eq. (36), rearranging it
by the power of s, and comparing the coefficients with those in Eqs. (34) and (35) yields the following six identities:

f1 = 3xr(1 + µB) + ζ1(1 + µB) + ζ2(1 + µ + µB)ν + ζ3[1 + (1 + µ)µB]ννB = 0

f2 = (1 − 15x2
r − 3y2

r )(1 + µB) + ν2{1 + µ + µB + [1 + (1 + µ)µB]ν2B} + 4ζ1ζ2(1 + µB)ν + 4ζ1ζ3(1 + µB)ννB

+ 4ζ2ζ3(1 + µ)(1 + µB)ν2νB = 0

f3 = 2xr(5x2
r + 3y2

r ) + ζ1ν2(1 + ν2B) + ζ2ν[1 + (1 + µ)ν2ν2B] + ζ3ν[1 + (1 + µ)ν2]νB + 4ζ1ζ2ζ3ν2νB = 0

f4 = − 3(x2
r + y

2
r )(5x2

r + y
2
r ) + ν2[1 + ν2B + (1 + µ)ν2ν2B] + 4ζ1ζ2ν3ν2B + 4ζ1ζ3ν3νB + 4ζ2ζ3ν2νB = 0

f5 = 3xr(x2
r + y

2
r )2 + ζ1ν

4ν2B + ζ2ν
3ν2B + ζ3ν

3νB = 0, f6 = − (x2
r + y

2
r )3 + ν4ν2B = 0.


(37)

Equation (37) is not a complete system of simultaneous equations, but it contains equations that can be solved separately.
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From the first and sixth equations, the following solutions are obtained:

ζ3opt =
− 3xr(1 + µB) − ζ1(1 + µB) − ζ2(1 + µ + µB)ν

[1 + (1 + µ)µB]ννB
(38)

and

νBopt = (x2
r + y

2
r )3/2/ν2. (39)
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Fig. 16 Optimal solutions based on the stability criterion for the parallel-type DVA; (a) Optimal mass ratio µBopt;
(b) Optimal tuning ratio νopt; (c) Optimal tuning ratio νBopt; (d) Optimal damping ratio ζ2opt; (e) Optimal
damping ratio ζ3opt
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These can be substituted into the fifth equation of Eq. (37) to obtain

µBopt = µBNum/µBDen

µBNum = 3xr[ν2 − (x2
r + y

2
r )2]ν − (x2

r + y
2
r )3(ζ1ν + ζ2) + ν3[ζ1 + (1 + µ)ζ2ν]

µBDen = 3xr(x2
r + y

2
r )2(1 + µ)ν − 3xrν

3 + (x2
r + y

2
r )3(ζ1ν + ζ2)(1 + µ) − ν3(ζ1 + ζ2ν).

 (40)
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Fig. 17 Maximized stabilities of vibratory systems fitted with double-mass DVAs; (a) Maximized stability Λmax
for the series-type DVA; (b) Maximized stability Λmax for the parallel-type DVA
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Fig. 18 Optimal responses of a force excitation primary system fitted with the series-type DVA optimized by the
stability criterion; (a) Mass ratio µ = 0.05; (b) Mass ratio µ = 0.1

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

λ

|
1
/(
f/
k

1
)|

ζ1 = 0
       0.05
       0.1
       0.2
       0.3
       0.4
       0.5
       0.6

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

λ

|
1
/(
f/
k

1
)|

ζ1 = 0
       0.05
       0.1
       0.2
       0.3
       0.4
       0.5
       0.6

Fig. 19 Optimal responses of a force excitation primary system fitted with the parallel-type DVA optimized by
the stability criterion; (a) Mass ratio µ = 0.05; (b) Mass ratio µ = 0.1
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Furthermore, the following solution can be derived by substituting the fourth equation into the third equation:

ζ2opt = νζ2Num/ζ2Den

ζ2Num = 2xr(5x2
r + 3y2

r )2ν2 − 3xr(x2
r + y

2
r )2(1 + ν2 + µν2) − (x2

r + y
2
r )3ζ1(1 + 2ν2 + 2µν2)

+ 3(x2
r + y

2
r )(5x2

r + y
2
r )ζ1ν2 + 12x2

r (x2
r + y

2
r )2ζ2

1ν
2 + 4(x2

r + y
2
r )3ζ3

1ν
2

ζ2Den = (x2
r + y

2
r )3 − ν4.


(41)

In the stability optimization of the parallel-type double-mass DVA, the number of parameters to be optimized is five.
In addition to this, it is necessary to find the coordinates (xr, yr) of the pole in the stability maximization criterion, meaning
there are a total of seven unknowns. However, the number of equations given in Eq. (37) is only six, necessitating the
derivation of another equation. At this stage, the remaining equations in Eq. (37) can be expressed as follows:

f2 = x25
r + 36x23

r y
2
r + 198x21

r y
4
r + ≪ 8590 terms ≫ + 3xrν

16 + ζ1ν
16 = 0

f4 = x18
r + 9x16

r y
2
r + 36x14

r y
4
r + ≪ 777 terms ≫ + y6

rµν
10 + ν12 = 0.

}
(42)

These two simultaneous equations contain three unknowns, xr, yr, and ν. Therefore, another equation is needed to
determine these unknowns. The equation to be added is the condition that the total derivative with respect to yr and ν of
the x coordinates xr of the characteristic roots should be zero; that is,

dxr =
∂xr

∂yr
dyr +

∂xr

∂ν
dν = 0. (43)

Because r is included in the functions f2 and f4, Eq. (43) can be rewritten as dxr

dxr

 =

∂xr

∂ f2
0

0
∂xr

∂ f4



∂ f2
∂yr

∂ f2
∂ν

∂ f4
∂yr

∂ f4
∂ν


 dyr

dν

 =
 0

0

 . (44)

For this equation to be zero, it suffices for the determinant of the 2 × 2 Jacobian matrix in the equation to be zero; that is,

f7 =

∣∣∣∣∣∣∣∣
∂ f2
∂yr

∂ f2
∂ν

∂ f4
∂yr

∂ f4
∂ν

∣∣∣∣∣∣∣∣ = 0. (45)

Expanding and rearranging this determinant gives the following equation:

f7 = 30x37
r − 297x39

r + 123x41
r + 528x35

5 y
2
r + ≪ 59582 terms ≫ + 192y10

r ζ
3
1µ

2ν24 = 0. (46)

Equations (42) and (46) constitute three simultaneous algebraic equations including the three unknowns xr, yr, and ν.
These expressions can be solved by the Newton–Raphson method to obtain numerical solutions for xr, yr, and ν. By
substituting these numerical solutions in Eqs. (41), (40), (39), and (38) in order, the optimal values of all parameters are
obtained.

8.2. Optimal solution of dynamic vibration absorber by stability criterion
Figure 16 shows the stability-optimal design parameters for the DVA obtained by numerical analysis. In comparison

with the optimal solutions for the parallel-type DVA based on the H∞ and H2 criteria discussed above, the stability
criterion has the following two features.

( 1 ) The optimal mass ratio µBopt of the two DVAs is quite small, and it approaches zero as µ increases.
( 2 ) The optimal damping ratios ζ2opt and ζ3opt are large.

8.3. Maximized stability
Figure 17(b) shows the maximized stability Λmax for the primary system to which the parallel-type double-mass

DVA optimized by the stability criterion is attached. For comparison, Fig. 17(a) shows the maximized stability for the
series-type double-mass DVA. A comparison of these figures reveals that the optimized stability of the parallel-type DVA
is much smaller than that of the series-type DVA and the increase in the stability with increasing primary system damping
is also relatively small for the parallel type DVA. In particular, for large ζ1, the reversal phenomenon occurs, which causes
the stability to reduce as the mass ratio µ increases. In these plots, the results for µ = 0 shown in gray indicate the stability
of the primary system when no DVA is attached.
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8.4. Frequency response of a system optimized by the stability criterion
Figures 18 and 19 show the compliance transfer functions of primary systems to which the series- and parallel-type

DVAs are attached, respectively. When designing a DVA using the stability criterion, there is only one resonance point
in the frequency response. The stability of the system with the parallel-type DVA is considerably lower than that of the
system with the series-type DVA, and there are clear differences in the frequency responses of the system in the two cases.

9. Concluding remarks

The inclusion of damping in the primary system makes optimization of a DVA difficult, and even for a single-mass
DVA, an exact optimal solution based on the H∞ criterion has not been obtained. In a previous report (Asami, 2019),
an exact algebraic solution for a series-type double-mass DVA has been reported for three optimization criteria (H∞
optimization, H2 optimization, and stability maximization). However, the present assessment indicates that there are 22
different solutions for the optimization of a double-mass DVA. In the present report, among the three transfer functions,
the compliance transfer function was considered, and optimization of the series- and parallel-type double-mass DVAs was
carried out based on the above three design criteria. Of the 10 different optimal solutions reported herein, almost all were
obtained numerically by solving the exact simultaneous equations, except for two cases that had been reported previously.

In contrast to the optimization problems in which algebraic solutions were obtained, in the DVA optimization prob-
lems for which the simultaneous equations cannot be solved algebraically, changes in the optimal solution with respect to
the primary system damping are drastic and complex. In other words, the optimal parameter values change quasi-linearly
and gradually with respect to the primary system damping in the optimization problems for which algebraic solutions can
be obtained, whereas the numerical solutions obtained in this report do not show similar trends.

The optimal design conditions for the parallel-type double-mass DVA attached to a damped primary system were
first derived alongside those for the series-type DVA. The performance of the parallel-type DVA was found to be inferior
to the series-type DVA under all optimization criteria. Although this performance comparison has already been reported
for an undamped primary system (Asami et al., 2018), it was confirmed that the same can be said when there is damping
in the primary system.
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