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Abstract
There are three criteria typically used in the design of dynamic vibration absorbers (DVAs): H∞ optimization, H2

optimization, and stability maximization. Recently, interest has shifted to the optimization of multi-mass DVAs,
but in fact, in even the most basic single-mass DVA, the effect of primary system damping on the optimal solution
is still not fully understood with respect to the H∞ criterion. The author has recently reported an exact H∞-
optimal solution for a series-type double-mass DVA attached to a damped primary system. This article presents
the application of this H∞ optimization method developed for a double-mass DVA to the optimization of a single-
mass DVA. In the H∞ optimization of the mobility transfer function, a highly accurate numerical solution was
successfully obtained by solving a single sixth-order algebraic equation. In the case of the optimization of the
compliance and accelerance transfer functions, it is shown that a highly accurate numerical solution can be obtained
by solving ternary systems of simultaneous algebraic equations. It should be noted that the equations presented
in this paper can be factorized into simpler equations when there is no damping in the primary system. It is also
demonstrated herein that the factorized expressions yield the previously published H∞-optimal solutions.
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1. Introduction

The dynamic vibration absorber (DVA) was devised by Watts in 1883 as a vibration control device (Watts, 1883) and
was first patented by Frahm in 1909 and 1911 (Frahm, 1911). The design criteria for DVA optimization can be obtained
with one of three approaches: H∞ optimization, H2 optimization, or stability maximization (Asami et al., 2002). Of these,
H∞ optimization was the first to be proposed and remains the most widely adopted approach in the design of DVAs. This
approach involves minimizing the height of the resonance points of the primary vibratory system. Ormondroyd and Den
Hartog (1928) proposed an approximate method for H∞ optimization called the fixed-point method. Using this method, a
solution that optimizes the tuning ratio for a single-mass DVA in the case of an undamped primary system was derived by
Hahnkamm (1932), and the damping ratio of the DVA was later optimized by Brock (1946); details of this solution can be
found in a book by Den Hartog (1956). The approximate optimal solution they derived was a solution to the minimization
of the compliance transfer function (absolute displacement response) for a primary system subjected to force excitation.
Approximate optimal solutions for the mobility and accelerance transfer functions (absolute velocity and acceleration
responses, respectively) have also been found, as outlined in a specialized book (Korenev, 1993).

A method for deriving an exact solution for the H∞ optimization of the DVA was proposed by Nishihara and col-
leagues around the turn of the century (Nishihara and Matsuhisa, 1997a; Nishihara and Asami, 2002). At this time,
the optimal solution for the compliance transfer function was also presented, and it was confirmed that the accuracy of
the approximate solution obtained by the fixed-point method was very high. After that, exact solutions for the mobility
and accelerance transfer functions were also derived using Nishihara’s method (Asami and Nishihara, 2003). The exact
solutions are all special-case solutions where there is no damping in the primary vibratory system.
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Before this significant advancement, many H∞-optimal solutions considering the influence of damping in the pri-
mary system were proposed. However, all of them were numerical solutions (Ikeda and Ioi, 1978; Randall et al., 1981;
Thompson, 1981; Soom and Lee, 1983; Sekiguchi and Asami, 1984) or perturbation-approximate solutions (Asami et al.,
2002), and to date, there have been no algebraic solutions reported in the literature. In contrast, for the H2 optimization
criterion (Crandall and Mark, 1963) and the stability maximization criterion (Nishihara and Matsuhisa, 1997b), exact
algebraic solutions can be obtained even if there is damping in the primary system (Asami et al., 2002; Nishihara and
Matsuhisa, 1997b).

Recently, research interest has shifted to the optimization of multi-mass DVAs for the purpose of improving perfor-
mance and robustness (Iwanami and Seto, 1984; Kamiya et al., 1996; Yasuda and Pan, 2003; Pan and Yasuda, 2005).
The discovery of the exact H∞-optimal solution (Asami, 2019) for a series-type double-mass DVA attached to a damped
primary system has led to the hope of discovering the H∞-optimal solution for a single-mass DVA. The solution found
at that time was for the mobility transfer function, which was obtained by solving a quartic algebraic equation derived
using a Jacobian matrix (Gradshteyn and Ryzhik, 2000) to search for the multiple root condition of a set of simultaneous
equations. In the present study, when this method was applied to the H∞ optimization of a single-mass DVA, a single
sixth-order algebraic equation was derived for the mobility transfer function. Although this equation cannot be solved
algebraically, a numerical solution can be easily obtained (for example, with the command NSolve in Mathematica).
This method of obtaining the optimal solution greatly outperforms conventional numerical solutions that do not use math-
ematical formulas, in terms of both speed and accuracy. This article presents this sixth-order algebraic equation, which is
shown to be a relatively simple equation.

Furthermore, for the compliance and accelerance transfer functions, ternary systems of simultaneous higher-order
algebraic equations were derived. As with the sixth-order equation, these cannot be solved algebraically but can be solved
numerically with the abovementioned command NSolve. This command outputs many sets of numerical solutions, but
there is only one set with positive real roots. The simultaneous equations are also simple equations and are introduced
here. Finally, the H∞-optimal solutions for these three types of transfer functions and the steady-state response of the
optimized primary system are discussed.

2. Analytical model and definition of dimensionless parameters

Figure 1(b) shows the analytical model of the two-degree-of-freedom (2-DOF) viscously damped system considered
in this study. The m1–k1 system is the primary system P, and the m2–k2 system is the DVA. A harmonic excitation force
acts on the primary system, and the DVA is designed to minimize the steady-state vibration of the primary system caused
by this force. Figure 1(a) shows a single-degree-of-freedom (SDOF) system without a DVA. In this study, the calculation
was conducted using the following dimensionless parameters:

µ = m2/m1, ν = ω2/ω1, λ = ω/ω1, ζ1 = c1/(2m1ω1), ζ2 = c2/(2m2ω2), (1)

where ω1 and ω2 are undamped natural angular frequencies defined as

ω1 =
√

k1/m1, ω2 =
√

k2/m2. (2)

Additionally, m1, k1, and c1 are the mass, spring constant, and damping coefficient of the primary system, respectively; m2,
k2, and c2 are the same respective parameters of the DVA; and ω is the angular excitation frequency. These dimensionless
parameters are the mass ratio µ, the tuning ratio ν, the excitation frequency ratio λ, the primary system damping ratio ζ1,
and the DVA damping ratio ζ2. The excitation frequency ratio λ was varied from zero to infinity. For a given value of µ
and ζ1, the optimization problem involves finding the optimal values of ν and ζ2 that give the desired spring constant k2

and damping coefficient c2 for the DVA.
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Fig. 1 Analytical model of viscously damped systems
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3. Three evaluation criteria in H∞ optimization and exact solutions for an undamped primary system

In this study, the H∞ optimization of a DVA was performed with the following three transfer functions: compliance,
mobility, and accelerance transfer functions. The transfer functions are presented here, along with the exact solution for
the case of an undamped primary system.

3.1. Compliance transfer function
The compliance transfer function represents the ratio of the absolute displacement response x1(t) to the external

force f (t) applied to the system. The H∞ norm, which represents the maximum value of the function, is expressed in the
following dimensionless form:

hmax =

∣∣∣∣ x1

f /k1

∣∣∣∣
max
. (3)

Minimizing hmax is the goal with H∞ optimization for the compliance transfer function, and the minimum value of hmax

is denoted as hmin.

3.2. Mobility transfer function
The mobility transfer function represents the ratio of the absolute velocity response ẋ1(t) to the external force f (t)

applied to the system. The H∞ norm in this case is expressed in the following dimensionless form:

hmax2 =

∣∣∣∣ ẋ1

ω1 f /k1

∣∣∣∣
max
=

∣∣∣∣ λx1

f /k1

∣∣∣∣
max
. (4)

Minimizing hmax2 is the goal of H∞ optimization with the mobility transfer function, and the minimum value of hmax2 is
again denoted as hmin.

3.3. Accelerance transfer function
The accelerance transfer function represents the ratio of the absolute acceleration response ẍ1(t) to the external force

f (t) applied to the system. The H∞ norm in this case is expressed in the following dimensionless form:

hmax3 =

∣∣∣∣ ẍ1

ω2
1 f /k1

∣∣∣∣
max
=

∣∣∣∣λ2x1

f /k1

∣∣∣∣
max
. (5)

Minimizing hmax3 is the goal of H∞ optimization with the accelerance transfer function, and the minimum value of hmax3

is also denoted as hmin.

3.4. Exact H∞ solutions for an undamped primary system
For the case where there is no damping in the primary system, the exact H∞-optimal solutions of the DVA have

already been obtained for all of the above transfer functions (Asami and Nishihara, 2003). Because these solutions
represent the starting point for our research, they are summarized here.

First, the H∞-optimal solution for the compliance transfer function is

νopt =
2

1 + µ

√
2
3

16 + 23µ + 9µ2 + 2(2 + µ)
√

4 + 3µ
64 + 80µ + 27µ2 , ζ2opt =

1
4

√
8 + 9µ − 4

√
4 + 3µ

1 + µ

hmin =
1

3µ

√
(8 + 9µ)2(16 + 9µ) − 128(4 + 3µ)3/2

3(32 + 27µ)
.

 (6)

Next, for the mobility transfer function, the solution is

νopt =
1

1 + µ

√
−(1 + µ) +

√
2(1 + µ)(2 + µ), ζ2opt =

√
1
2
− 1√

2(1 + µ)(2 + µ)

hmin =

√√√√1
µ

[
2 + µ

2(1 + µ)
+

√
2 + µ

2(1 + µ)

]
.


(7)

Finally, for the accelerance transfer function,

νopt =
2

8 + 5µ

√
2
3

(16 + 7µ + c0), ζ2opt =
1

8 + 5µ

√
64 + 88µ + 33µ2

2
− (4 + 3µ)c0

hmin =
8

3µ

√
16 + 25µ − 2c0

3(32 + 27µ)
; where c0 =

√
64 − 16µ − 26µ2.

 (8)
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Fig. 2 H∞-optimal solutions for a DVA attached to an undamped primary system (ζ1 = 0). The results
demonstrate that there is no great difference between the three optimal solutions. For the compliance
and accelerance transfer functions, hmin is never less than 1. For the accelerance transfer function, it
becomes exactly 1 at µ = 1.291, and no optimal solution exist for any greater value of µ.

These optimal solutions are plotted in Fig. 2. Note that because hmin is larger than the other two plotted parameters
(ν and ζ2), it is scaled down by a factor of 5 to bring all three into the same range. In the case of the compliance and
accelerance transfer functions, hmin is never less than 1. For the accelerance transfer function, it becomes exactly 1 at
µ = 1.291, and no optimal solution exist for any greater value of µ, whereas for the compliance transfer function, it
asymptotically approaches 1 much more slowly. At µ = 1.291, the parameter c0 in Eq. (8) becomes an imaginary number.
The frequency responses of the primary system for each optimized transfer function are shown in Figs. 4, 6, and 8 below.

3.5. Difference from the approximate solution of a dynamic vibration absorber
As mentioned in the introduction, for the H∞ optimization criterion, an approximate solution based on the fixed-point

method has conventionally been used for a long time. The solution is expressed as follows (Den Hartog, 1956):

νopt =
1

1 + µ
, ζ2opt =

√
3µ

8(1 + µ)
. (9)

These solutions almost agree with the solutions for the compliance transfer function, plotted as solid lines in Fig. 2.
For example, the exact solution shown in Eq. (6) calculated for a mass ratio of µ = 0.1 yields νopt = 0.909058 and
ζ2opt = 0.185470, whereas in the approximate solution shown in Eq. (9), the calculated results are νopt = 0.909091 and
ζ2opt = 0.184637 (Asami, 2017). Thus, the approximate solution returns a value in the immediate vicinity of the exact
solution; however this fixed-point method cannot be applied when there is damping in the primary system.

Traditionally, Eq. (9) has been used for the optimal design of the DVA for any purpose, but in the future it would
be preferable to select a solution from Eqs. (6)–(8) depending on the purpose of the DVA installation. For example, the
optimization of the mobility transfer function (Eq. (7)) should be used to reduce noise generated by mechanical vibrations
(Asami et al., 2018), whereas the optimization of the acceleration transfer function (Eq. (8)) would be better applied to
improve the ride quality of railroad vehicles and automobiles (Ohno, 1997; Takei and Ishiguro, 1995).

4. H∞ optimization with the compliance transfer function

This section presents the H∞ optimization of the compliance transfer function for a DVA attached to a damped
primary system obtained by applying the Jacobian matrix (Gradshteyn and Ryzhik, 2000). For more details, please refer
to Nishihara (2017) and Asami et al., (2018). The expressions in Eqs. (6)–(8) represent the H∞-optimal solutions derived
by Nishihara’s method (Nishihara and Asami, 2002); however, at that time, the Sylvester matrix (Akritas, 1993) was
used instead of the Jacobian matrix to search for the double root of simultaneous equations. As described below, when
Nishihara’s method is applied to the H∞ optimization of a single-mass DVA, a binary system of simultaneous algebraic
equations is first derived. Using the Sylvester matrix to find the double root of this system of equations imposes the
constraint that the system of equations must be combined into a single equation. If there is no damping in the primary
system, the Sylvester matrix can be applied because this integrated equation is at most a quartic equation; however, if
damping is present in the primary system, the equation takes on a much higher order of at least eight. As a result,
the Sylvester matrix is virtually inapplicable when searching for the double root. In previous work by the author and
colleagues (Asami et al., 2018; Asami, 2019; Asami and Yamada, 2020), the H∞ optimization of a double-mass DVA was
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performed. The first equation to be obtained was a ternary system of simultaneous equations, and this system could not
be integrated into a single equation even in the case of no damping in the primary system. Therefore, the H∞-optimal
solution for the series-type double-mass DVA was obtained using the Jacobian matrix instead of the Sylvester matrix to
find the triple root of the equation.

The compliance transfer function for the primary system for the vibratory system shown in Fig. 1(b) is expressed as∣∣∣∣ x1

f /k1

∣∣∣∣ =
√

Num1
Den1

Num1 = (λ2 − ν2)2 + (2ζ2λν)2

Den1 = {λ4 − λ2[1 + 4ζ1ζ2ν + (1 + µ)ν2] + ν2}2 + 4λ2{ζ1(λ2 − ν2) − ζ2[1 − λ2(1 + µ)]ν}2.

 (10)

When the parameters of the vibratory system are varied, the heights of the two resonance points appearing in the system
can be adjusted to be equal. The height of the resonance point is set to hmax and the following function fn is defined:

fn = Den1 − Num1
h2

max
= λ8 + b1λ

6 + b2λ
4 + b3λ

2 + b4

b1 = −2 + 4ζ2
1 + 8ζ1ζ2µν − 2(1 + µ)[1 − 2ζ2

2 (1 + µ)]ν2

b2 = r2 + ν2[2(2 + µ) + (1 + µ)2ν2 − 8ζ2
1 (1 − 2ζ2

2 ) − 8ζ2
2 (1 + µ)]

b3 = −2ν2[r2(1 − 2ζ2
2 ) + (1 − 2ζ2

1 + µ)ν
2], b4 = r2ν4,


(11)

where

r =

√
1 − 1

h2
max

(12)

is a parameter introduced to eliminate fractional expressions in Eq. (11). With this parameter transformation, the problem
of minimizing hmax is replaced by the problem of minimizing r, and the minimum value of r is hereafter written as rmin.
As shown in Eq. (11), the function fn is a quartic expression with respect to λ2, and fn = 0 yields the double root at the
two resonance points. From that, the following two identities can be derived (Nishihara and Asami, 2002):

b1
√

b4 − b3 = 0
(b1/2)2 − 2

√
b4 − b2 = 0.

}
(13)

Substituting Eq. (11) for the parameters b1–b4 in Eq. (13) and rearranging with respect to r yields the following simulta-
neous equations:

f1 = a0r2 + a1r + a2 = 0, f2 = c0r2 + c1r + c2 = 0
a0 = 1 − 2ζ2

2 , a1 = −1 + 2ζ2
1 + 4ζ1ζ2µν − (1 + µ)[1 − 2ζ2

2 (1 + µ)]ν2, a2 = (1 + µ − 2ζ2
1 )ν2

c0 = 1, c1 = −2ν2, c2 = 4ζ2
2 (1 + µ)3[1 − ζ2

2 (1 + µ)]ν4 + 8ζ1ζ2µ(1 + µ)[1 − 2ζ2
2 (1 + µ)]ν3

+ {2 − 4ζ2
1 [1 − µ − 2ζ2

2 (1 + µ)(1 − 3µ)] − 4ζ2(1 − µ2)}ν2 + 8ζ1(1 − 2ζ2
1 )ζ2µν − (1 − 2ζ2

1 )2.

 (14)

Equation (14) describes the conditions to make the heights of the two resonance points in a 2-DOF system equal.
Next, a condition to minimize the height of the resonance peaks (i.e., minimize hmax or r) is added to the conditions

given in Eq. (14). This condition is satisfied by the total differential of r with respect to the two parameters ν and ζ2 to be
optimized equaling zero, as given by

dr =
∂r
∂ν

dν +
∂r
∂ζ2

dζ2 = 0. (15)

Because the parameter r is contained in the two functions f1 and f2, its total derivative dr can be rewritten as dr

dr

 =

∂r
∂ f1

0

0
∂r
∂ f2



∂ f1
∂ν

∂ f1
∂ζ2

∂ f2
∂ν

∂ f2
∂ζ2


 dν

dζ2

 =
 0

0

 . (16)

The second matrix in the center of Eq. (16) is called the Jacobian matrix. In Eq. (16), for ν and ζ2 to have non-trivial
solutions, this Jacobian matrix must have rank deficiency (Nishihara, 2017). That is,∣∣∣∣∣∣∣∣

∂ f1
∂ν

∂ f1
∂ζ2

∂ f2
∂ν

∂ f2
∂ζ2

∣∣∣∣∣∣∣∣ = 0. (17)

5



2
© 2020 The Japan Society of Mechanical Engineers

Asami, Mechanical Engineering Journal, Vol.7, No.5 (2020)

[DOI: 10.1299/mej.20-00250]

Equation (17) can be used to find the multiple root of the set of simultaneous equations given in Eq. (14). From this
equation, the third expression required for the H∞-optimal solution search can be obtained as

f3 = d0r3 + d1r2 + d2r + d3 = 0
d0 = ζ2ν

d1 = −ζ2(1 + µ)2[1 + 4ζ2
2 (1 + µ) − 4ζ4

2 (1 + µ)2]ν3 − ζ1µ[1 + 6ζ2
2 (1 + µ) − 12ζ4

2 (1 + µ)2]ν2

− ζ2{1 − 2ζ2
2 (1 − µ2) − 2ζ2

1 [1 − µ − 2ζ2
2 (1 + µ)(1 − 3µ)]}ν − 2ζ1(1 − 2ζ2

1 )ζ2
2µ

d2 = [ζ2(1 + µ)4ν3 + ζ1µ(1 + µ)2ν2 + ζ2(1 + µ − 4ζ2
1 )µ(1 + µ)ν + ζ1µ(2 + µ − 4ζ2

1 )]ν2

d3 = (1 + µ − 2ζ2
1 ){−ζ2(1 + µ)3[1 − 2ζ2

2 (1 + µ)]ν3 − ζ1µ(1 + µ)[1 − 6ζ2
2 (1 + µ)]ν2

+ ζ2(1 + µ)[1 − µ − 2ζ2
1 (1 − 3µ)]ν − ζ1(1 − 2ζ2

1 )µ}ν2.


(18)

Equations (14) and (18) build a ternary system of simultaneous equations containing three unknowns: ν, ζ2, and r. This
system of equations can be solved using the command NSolve in the formula manipulation software Mathematica with
the desired values of the remaining parameters µ and ζ1 input into the equations. In this way, a large number of solution
sets are obtained (14 sets of real roots and 56 sets of complex roots for a given set of µ and ζ1 values), among which only
one is the positive real root set.

In the special case where the primary system damping ζ1 is zero, the expressions in Eqs. (14) and (18) can be further
factorized, and the algebraic solution shown in Eq. (6) can be derived from the simplified equation (see the Appendix for
this derivation). As a practical matter, it is recommended that the Newton–Raphson method (the FindRoot command
in Mathematica) is used to solve Eqs. (14) and (18) with initial values computed from Eq. (6), rather than solving them
directly with the NSolve command.

Figure 3 shows the optimal tuning and damping ratios νopt and ζ2opt for the DVA and the minimized resonance
amplitude hmin for the primary system, obtained as the solution to the simultaneous equations given in Eqs. (14) and (18),
plotted against the primary system damping ratio ζ1 for various mass ratios µ. In this figure, all curves are plotted in the
range of ζ1 = 0 to 1/

√
2 = 0.7071. As is well known, the compliance transfer function for the viscously damped SDOF

system shown in Fig. 1(a) starts from 1 at zero frequency and decays monotonically with increasing frequency beyond a
damping ratio ζ1 of 0.7071. Therefore, optimal values of the DVA parameters exist only up to ζ1 = 0.7071. As shown in
Fig. 3, the optimal tuning ratio decreases monotonically to zero as ζ1 approaches 0.7071, whereas the optimal damping
ratio increases monotonically. The resonance amplitude hmin decreases with both the mass of the DVA and the primary
system damping and is equal to 1 at ζ1 = 0.7071 regardless of the mass ratio. The gray curve in Fig. 3(c) representing the
case of µ = 0 shows the resonance amplitude ratio for a SDOF system without a DVA. The large difference between this
curve and the µ = 0.02 curve indicates that even a small DVA is able to significantly reduce the resonance amplitude.

Figure 4 shows the compliance transfer function for a primary system with an optimally tuned and damped DVA for
representative mass ratios ranging from µ = 0.05 to 0.2. As shown in this figure, a greater primary system damping yields
a curve with a lower resonance height that is closer to the response curve of the SDOF system (ζ1 = 0.7071) shown in
gray. Furthermore, this figure provides some insight into why the H∞-optimal solution for the DVA that minimizes the
compliance transfer function exists only up to ζ1 = 0.7071.

5. H∞ optimization with the mobility transfer function

A ternary system of simultaneous algebraic equations was obtained for the mobility transfer function in the same way
as before. Here, some of the expressions making up the simultaneous equations can be solved algebraically, eventually
leading to the problem of solving the following single sixth-order algebraic equation with respect to ν2:

fn = a0ν
12 + a1ν

10 + a2ν
8 + a3ν

6 + a4ν
4 + a5ν

2 + a6 = 0

ζ2opt =
−ζ1µν3opt +

√
ζ2

1µ
2ν6opt + (1 − ν2opt)[1 − (1 + µ)ν2opt][1 − 2ν2opt + (1 + µ)2ν4opt]

1 − 2ν2opt + (1 + µ)2ν4opt

hmin =
1
2

√
1 − ν2opt

[ζ1(1 + µ) + ζ2opt(1 + νopt + µνopt)][ζ1(1 − µ) − ζ2opt(1 − νopt − µνopt)]

a0 = (1 + µ)6, a1 = (1 + µ)4[(1 + µ)(3 − µ) − ζ2
1 (9 − µ)]

a2 = −(1 + µ)[2(1 + µ)2(3 + 3µ + 2µ2) − ζ2
1 (1 + µ)(21 + 18µ + 13µ2) + 8ζ4

1µ
2]

a3 = −2[(1 + µ)2(5 + 2µ + µ2) + ζ2
1 (1 + µ)(5 + 4µ − 3µ2) + 4ζ4

1µ
2]

a4 = (3 + µ)(7 + 9µ + 4µ2) − 2ζ2
1 (3 + 2µ + µ2), a5 = −(3 + µ)2 + 3ζ2

1 (1 − µ), a6 = ζ
2
1 .



(19)
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Because the first expression in Eq. (19) is a sixth-order function of ν2, solving this equation yields six roots. The
equation has several positive real roots, one of which is the optimal tuning ratio νopt. Substituting this solution into
the second expression yields the optimal damping ratio ζ2opt. At this point, if the optimal tuning ratio νopt is selected
incorrectly, the optimal damping ratio ζ2opt becomes a negative real number or a complex number. Finally, with these
optimal solutions substituted into the third expression, the value of minimized resonance amplitude hmin can be calculated.

If the primary damping ζ1 is zero, the first expression of Eq. (19) can be factorized as follows:

fn = ν2(ν2 − 1)[(1 + µ)3ν4 + 2(1 + µ)2ν2 − (3 + µ)]2 = 0. (20)

The quadratic equation for ν2 in the last factor of this equation contains the optimal solution νopt. The solution agrees with
the first expression in Eq. (7).

Fig. 3 Optimization of the compliance transfer function for
a damped primary system by the H∞ criterion. All
optimal values for the DVA parameters exist only up
to ζ1 = 1/

√
2 = 0.7071. At the value of ζ1 = 0.7071,

hmin takes a minimum value of 1.

Fig. 4 Optimized compliance transfer functions for a damped
primary system based on the H∞ criterion. A greater
primary system damping yields a curve with a lower
resonance height that is closer to the response curve of
the SDOF system (ζ1 = 0.7071) shown in gray.
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The optimal solutions and minimized resonance amplitude calculated by Eq. (19) are shown in Fig. 5. A comparison
of this figure with the optimal solutions for the compliance transfer function shown in Fig. 3 reveals that the optimal values
vary slowly and almost linearly with the primary damping ζ1. The optimal solutions shown in Fig. 5(a) and (b) exist for
ζ1 → ∞. The mobility transfer function starts from zero at λ = 0 and converges to zero as λ approaches∞. Therefore, the
value of hmin shown in Fig. 5(c) may be less than 1. It should be noted that the parameter r defined in Eq. (12) is imaginary
when the resonance amplitude hmax is less than 1, demonstrating that the parameter r can produce valid solutions even if
it takes on an imaginary value. Instead of Eq. (12), the variable transformation r4 =

√
4 − 1/h2

max or r10 =
√

10 − 1/h2
max

can be used to derive the same expression as the third expression in Eq. (19).
Figure 6 shows examples of optimal mobility transfer functions optimized at some representative mass ratios µ. In

the force excitation system shown in Fig. 1, the vibratory system is mounted on a fixed foundation, and the vibration
decreases to zero as the primary damping ζ1 is increased.

Fig. 5 Optimization of the mobility transfer function for
a damped primary system by the H∞ criterion. The
mobility transfer function starts from zero at λ = 0
and converges to zero as λ approaches∞. Therefore,
the value of hmin may be less than 1.

Fig. 6 Optimized mobility transfer functions for a damped
primary system based on the H∞ criterion. In the
force excitation system shown in Fig. 1, the vibratory
system is mounted on a fixed foundation, so the
vibration decreases to zero as ζ1 is increased.
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6. H∞ optimization with the accelerance transfer function

A ternary system of simultaneous algebraic equations was also obtained for the accelerance transfer function. First,
the condition that the heights of the two resonance points are equal yields

f1 = a0r2 + a1r + a2 = 0
f2 = c0r4 + c1r3 + c2r2 + c3r + c4 = 0
a0 = (1 − 2ζ2

2 )2, a1 = −1 + 2ζ2
2 − (1 + µ − 2ζ2

1 )ν2, a2 = 1 − 2ζ2
1 − 4ζ1ζ2µν + (1 − 4ζ2

2 )µν2 − 2ζ2
2µ

2ν2

c0 = −4ζ2
2 (1 − ζ2

2 )ν4, c1 = 2ν2, c3 = 0, c4 = [1 − 2ζ2
1 − 4ζ1ζ2µν + (1 − 4ζ2

2 )µν2 − 2ζ2
2µ

2ν2]2

c2 = −1 − 2[1 + µ − 2ζ2
1 (1 − 2ζ2

2 ) − 2ζ2
2 (1 + 2µ)]ν2 − 8ζ1ζ2(1 − 2ζ2

2 )µν3 − µ[µ + 4ζ2
2 (3 + µ) − 8ζ4

2 (2 + µ)]ν4.


(21)

Fig. 7 Optimization of the accelerance transfer function for
a damped primary system by the H∞ criterion. The
region in which the optimal solution exists narrows as
µ increases. This is because the minimized amplitude hmin
reaches its minimum value of 1 at a small value of ζ1.

Fig. 8 Optimized accelerance transfer functions for a damped
primary system. The red curve represents the shape
of the transfer function in the limit where an optimal
solution is present, and the gray curve shown by the
arrow ζ1 = 0.7071 corresponds to the SDOF system.
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Then, the condition for minimizing the heights of the two equally adjusted resonance points is fulfilled by

f3 = d0r5 + d1r4 + d2r3 + d3r2 + d4r + d5 = 0
d0 = ζ2ν

5, d1 = −ζ2ν3{1 − 4ζ4
2 + (1 + µ − 2ζ2

1 )ν2 + 2ζ2
2 [2 − (1 + µ − 2ζ2

1 )ν2]}
d2 = ν[ζ1µν3 + ζ2 − ζ2µν2 + 2ζ2µ(2 + µ)ν4]
d3 = −ζ2[1 + µ − 2ζ2

1 (1 − 2ζ2
2 ) − 2ζ2

2 (1 + 2µ)]ν − ζ1(1 + 6ζ2
2 − 12ζ4

2 )µν2

− ζ2[1 + µ − 2ζ2
1 (2 + 3µ) + 4ζ4

1 − 4ζ2
2µ(3 + µ) + 8ζ4

2µ(2 + µ)]ν
3

− ζ1(1 + µ − 2ζ2
1 )(1 − 6ζ2

2 )µν4 − ζ2(1 + µ − 2ζ2
1 )[3 + µ − 4ζ2

2 (2 + µ)]µν5

d4 = µν
2{ζ1[2 + µ + µ(2 + µ)ν2] − 4ζ3

1 + ζ2ν[2 + 2µ + µ2 + µ(2 + µ)2ν2] − 4ζ2
1ζ2(1 + µ)ν}

d5 = −2ζ1(1 − 2ζ2
2 )ζ2

2µ + µ{ζ2 − ζ3
2 (2 + µ) − 2ζ2

1ζ2[1 − 2ζ2
2 (2 + 3µ)]}ν

− ζ1µ[1 + µ − 2ζ2
1 (2 + µ) + 4ζ4

1 + 6ζ2
2µ − 12ζ4

2µ(2 + µ)]ν
2

− ζ2µ[2 + 2µ + µ2 − 2ζ2
1 (4 + 6µ + 3µ2) + 4ζ4

1 (2 + 3µ) + 4ζ2
2µ(2 + µ) − 4ζ4

2µ(2 + µ)
2]ν3

− ζ1µ2(1 + µ − 2ζ2
1 )[1 − 6ζ2

2 (2 + µ)]ν4 − ζ2µ2(2 + µ)(1 + µ − 2ζ2
1 )[1 − 2ζ2

2 (2 + µ)]ν5.



(22)

The set of simultaneous equations given by Eqs. (21) and (22) can also be factorized and solved algebraically for a primary
damping ζ1 of zero. The solution is confirmed to be consistent with Eq. (8). If the primary damping is not zero, it can be
solved with the command NSolve in Mathematica; the results are shown in Fig. 7.

As is evident from Fig. 7(a), in the accelerance transfer function, the optimal tuning ratio νopt increases with increas-
ing damping ratio ζ1. In addition, unlike for the other two transfer functions, the region in which the optimal solution
exists for the accelerance transfer function narrows as the mass ratio µ increases. This is because the minimized resonance
amplitude hmin reaches its minimum value of 1 at a small value of ζ1, as shown in Fig. 7(c).

Further details can be understood from the optimized accelerance transfer functions shown in Fig. 8. In each plot in
Fig. 8, the red curve represents the shape of the transfer function in the limit where an optimal solution is present, and the
gray curve is the response curve in the case of ζ1 = 0.7071, which corresponds to the SDOF system shown in Fig. 1(a).

Both of these curves have a maximum value of 1, but the red curve begins to decrease after it peaks, and then
increases again and approaches 1, whereas the gray curve monotonically increases towards 1. That is, in the compliance
transfer function shown in Fig. 4, the optimal value approaches the curve of ζ1 = 0.7071, corresponding to the SDOF
system, but the optimal value in the accelerance transfer function shown in Fig. 8 does not approach this curve.

7. Conclusion
Despite the fact that research on the H∞ optimization of a single-mass viscously damped DVA has been going on

for more than 90 years, many questions remained unanswered. The optimal solution for the DVA when viscous damping
is present in the primary vibratory system had previously been obtained only in the form of an incomplete numerical or
approximate solutions; the author believes that this paper puts an end to this long search. The H∞ optimization of the
viscously damped DVA for three representative transfer functions (compliance, mobility, and accelerance) for the primary
system was carried out, and the following conclusions were obtained.

( 1 ) For the mobility transfer function, the optimal tuning condition for the DVA can be obtained by solving a single
sixth-order algebraic equation, and the optimal solutions were numerically obtained; these solutions are not inferior to
the exact solution. Solving the equation with the Mathematica command NSolve yields six solutions, but there is only
one positive real root for the optimal damping ratio. Therefore, it is easy to identify the optimal solution among the six
solutions.

( 2 ) For the compliance and accelerance transfer functions, the derivation of the optimal solution reduces to the
problem of solving a ternary system of simultaneous algebraic equations. This system of equations can also be solved
with the command NSolve, and out of the approximately 70 sets of solutions obtained with this approach, there is only
one optimal solution. Here again, there exists only one set of positive real roots, simplifying the selection of the correct
solution.

( 3 ) The above single sixth-order equation or sets of simultaneous equations can be further simplified by factorization
when the primary damping is zero, and the algebraic solutions of these equations yield the same exact solutions as
previously reported.

Acknowledgment
The general-purpose math processing software Mathematica Ver.12.0 was used for the execution of this research.

This work was supported by a Grant-in-Aid (19K04276) for Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology of Japan. The author would like to express their gratitude for this support.

10



2
© 2020 The Japan Society of Mechanical Engineers

Asami, Mechanical Engineering Journal, Vol.7, No.5 (2020)

[DOI: 10.1299/mej.20-00250]

Appendix: Derivation of the undamped solution for the compliance transfer function from the corre-
sponding solution with damping

From the ternary system of simultaneous equations obtained in this study, the exact solutions shown in Sec. 3.4
(Asami and Nishihara, 2003) can be derived for the special case in which no damping is present in the primary system. In
this appendix, one method for the derivation process is explained using the compliance transfer function as an example.

If the primary system damping ζ1 is set to zero in Eqs. (14) and (18), the simultaneous equations become

f1 = a0r2 + a1r + a2 = 0, f2 = c0r2 + c1r + c2 = 0, f3 = d0r3 + d1r2 + d2r + d3 = 0
a0 = 1 − 2ζ2

2 , a1 = −1 − (1 + µ)[1 − 2ζ2
2 (1 + µ)]ν2, a2 = (1 + µ)ν2

c0 = 1, c1 = −2ν2, c2 = 4ζ2
2 (1 + µ)3[1 − ζ2

2 (1 + µ)]ν4 + 2[1 − 2ζ2(1 − µ2)]ν2 − 1
d0 = 1, d1 = −(1 + µ)2[1 + 4ζ2

2 (1 + µ) − 4ζ4
2 (1 + µ)2]ν2 − 1 + 2ζ2

2 (1 − µ2)
d2 = (1 + µ)4ν4 + µ(1 + µ)2ν2, d3 = −(1 + µ)4[1 − 2ζ2

2 (1 + µ)]ν4 + (1 + µ)2(1 − µ)ν2.


(23)

First, f1 = 0 is solved for ζ2, which gives

ζ2
2 =
−(1 − r)[r − (1 + µ)ν2]

2r[r − (1 + µ)2ν2]
. (24)

Substituting Eq. (24) into the formulas in Eq. (23) and removing unnecessary factors after factorization yields

f2 = c0r5 + c1r4 + c2r3 + c3r2 + c4r + c5 = 0, f3 = d0r5 + d1r4 + d2r3 + d3r2 + d4r + d5 = 0
c0 = (1 + µ)6ν8, c1 = −(1 + µ)4ν6[4 − (1 + µ)2ν2], c2 = 2(1 + µ)2ν4[3 + µ − 2(1 + µ)2ν2]
c3 = −2(1 + µ)ν2[2 − (1 + µ)(3 + µ)ν2], c4 = 1 − 2(2 + 2µ + µ2)ν2, c5 = 1
d0 = (1 + µ)8ν8, d1 = −(1 + µ)6ν6[4 − (1 + µ)2ν2], d2 = 2(1 + µ)4ν4[3 − 2(1 + µ)2ν2]
d3 = −2(1 + µ)2ν2[2 − 3(1 + µ)2ν2], d4 = (1 + µ)[1 − µ − (1 + µ)(4 − µ2)ν4], d5 = 1.


(25)

In this way, two quintic equations with respect to r are obtained.
Next, the order of r is incrementally reduced by performing four arithmetic operations on these expressions. There

are two approaches to selecting these operations: one is to eliminate the highest-order terms of the equation and the
other is to remove the lowest-order terms. Finally, two linear equations with respect to r are obtained. With the equation
obtained by the former operation expressed as f7 = 0 and that obtained by the latter operation expressed as g7 = 0, they
are given by

f7 = c0r + c1 = 0, g7 = d0r + d1 = 0
c0 = 32 − 8(16 + 23µ + 9µ2)ν2 + (1 + µ)2(96 + 119µ + 40µ2)ν4

c1 = −(1 + µ)2ν2[16 − 2(32 + 45µ + 17µ2)ν2 + 3(1 + µ)2(16 + 19µ + 6µ2)ν4]
d0 = 16 − 2(32 + 45µ + 17µ2)ν2 + 3(1 + µ)2(16 + 19µ + 6µ2)ν4, d1 = µ(1 + µ)2ν4[4 − 3(1 + µ)2ν4].

(26)

Eliminating r from these equations yields the following single equation:

4(1+ν+µν)(1−ν−µν)[1−(3+3µ+µ2)ν2][64−16(16+23µ+9µ2)ν2+3(1+µ)2(64+80µ+27µ2)ν4] = 0. (27)

Setting the final factor in Eq. (27) to zero yields an equation, and solving this equation for ν gives the first optimal solution
νopt of Eq. (6). Substituting this solution into ν in Eq. (26) yields the minimum value rmin of r as follows:

rmin =
8[(4 + 3µ)3/2 − µ]
64 + 80µ + 27µ2 . (28)

Additionally, rmin can be converted to hmin using the relationship given in Eq. (12).
Finally, the optimal damping ratio ζ2opt is obtained from Eq. (24).
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Hahnkamm, E., Die Dämpfung von Fundamentschwingungen bei veränderlicher Erregerfrequenz, Ingenieur Archiv.,

Vol.4 (1932), pp.192-201.
Ikeda, K., and Ioi, T., On the Dynamic Vibration Damped Absorber of the Vibration System, Bull. of the JSME, Vol.21,

No.151 (1978), pp.64-71.
Iwanami, K., and Seto, K., An Optimum Design Method for the Dual Dynamic Damper and Its Effectiveness, Bull. of

JSME, Vol.27, No.231 (1984), pp.1965-1973.
Kamiya, K., Kamagata, K., Matsumoto, S., and Seto, K., Optimal Design Method for Multi Dynamic Absorber, Trans-

actions of the JSME, Ser. C, Vol.62, No.601 (1996), pp.3400-3405, (in Japanese).
Korenev, B. G., and Reznikov, L. M., Dynamic Vibration Absorbers (1993), John Wiley & Suns, New York.
Nishihara, O., and Matsuhisa, H., Design of a Dynamic Vibration Absorber for Minimization of Maximum Amplitude

Magnification Factor (Derivation of Algebraic Exact Solution), Transactions of the JSME, Ser. C, Vol.63, No.614
(1997a), pp.3438-3445, (in Japanese).

Nishihara, O., and Matsuhisa, H., Design and Tuning of Vibration Control Devices via Stability Criterion, Dynamics and
Design Conference ’97, No.97-10-1 (1997b), pp.165-168, (in Japanese).

Nishihara, O., and Asami, T., Closed-Form Solutions to the Exact Optimizations of Vibration Absorbers (Minimizations
of the Maximum Amplitude Magnification Factors), ASME J. Vib. Acoust., Vol.124, No.4 (2002), pp.576-582.

Nishihara, O., Minimization of Maximum Amplitude Magnification Factor in Designing Double-Mass Dynamic Vibra-
tion Absorbers (Application of Optimality Criteria Method to Parallel and Series Types), Transactions of the JSME
(in Japanese), Vol.83, No.849 (2017), DOI:10.1299/transjsme.16-00549.

Ohno, H., Ride Comfort of Railway Vibrations, Noise Control, The Institute of Noise Control Engineering of Japan,
Vol.21, No.1 (1997), pp.17-20, (in Japanese).

Ormondroyd, J., and Den Hartog, J. P., The Theory of the Dynamic Vibration Absorber, ASME Journal of Applied
Mechanics, Vol.50, No.7 (1928), pp.9-22.

Pan, G., and Yasuda, M., Robust Design Method of Multi Dynamic Vibration Absorber, Transactions of the JSME, Ser.
C, Vol.71, No.712 (2005), pp.3430-3436, (in Japanese).

Randall, S. E., Halsted, D. M., and Taylor, D. L., Optimum Vibration Absorbers for Linear Damped System, ASME
Journal of Mechanical Design, Vol.103, No.4 (1981), pp.908-913.

Sekiguchi, H., and Asami, T., Theory of Vibration Isolation of a System with Two Degrees of Freedom, Bulletin of the
JSME, Vol.27, No.234 (1984), pp.2839-2846.

Soom, A., and Lee, M., Optimal Design of Linear and Nonlinear Vibration Absorbers for Damped System, ASME J. Vib.
Acoust., Vol.105, No.1 (1983), pp.112-119.

Takei, K., and Ishiguro, M., Evaluation of Ride Comfort on the Basis of Subjective Judgement, Toyota Central R&D
Labs., Vol.30, No.3 (1995), pp.47-56, (in Japanese).

Thompson, A. G., Optimum Tuning and Damping of a Dynamic Vibration Absorber Applied to a Force Excited and
Damped Primary System, Journal of Sound and Vibration, Vol.77, No.3 (1981), pp.403-415.

Yasuda, M., and Pan, G., Optimization of Two-Series-Mass Dynamic Vibration Absorber and Its Vibration Control
Performance, Transactions of the JSME, Ser. C, Vol.69, No.688 (2003), pp.3175-3182, (in Japanese).

Watts, P., On a Method of Reducing the Rolling of Ship at Sea, Transactions of the Institution of Naval Architects, Vol.24
(1883), pp.165-190.

12




