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Abstract
In most dynamic vibration absorbers (DVAs) used in practical applications, polymeric materials that have both
restoring capabilities and damping effects are used instead of coil springs as spring elements. It is known that the
damping force for such polymeric materials has hysteretic characteristics and varies in proportion to the relative
displacement rather than the relative velocity between objects. This paper proposes an optimal design formula for
a double-mass hysteretically damped DVA with two masses connected in series. For the design of the DVA in
this study, the stability maximization criterion, which attenuates the free-vibration response of the primary system
in the shortest time, was adopted. It was found that the optimal design expression for installing the series-type
double-mass DVA on an undamped primary system can be expressed by a very simple formula. The maximized
stability, which determines the speed of vibration convergence, of the double-mass DVA was 1.7 times that of
the corresponding single-mass DVA. When there is damping in the primary system, the optimal design condition
for the DVA cannot be expressed with such a simple formula, but an equation to calculate it is presented in this
paper. The equation can be easily solved numerically, and the results show that the stability of the system is further
increased compared to the undamped primary system.

Keywords : Vibration, Optimal design, Transient vibration, Hysteretically damped dynamic vibration absorber,
Series-type double-mass absorber, Stability maximization criterion, Damped primary system

1. Introduction

The dynamic vibration absorber (DVA), which is a small vibration suppression device, is said to have been first
devised to reduce the rolling vibrations of ships (Watts, 1883). Since then, several criteria have been proposed for the
optimal design of DVAs, which are now used in various structures such as buildings, railroad vehicles, automobiles, and
vibration isolators. Typical design criteria for DVA proposed so far include the H∞ optimization criterion for minimizing
the height of the resonant point of a system in steady-state vibration under periodic excitation (Ormondroyd and Den
Hartog, 1928), the H2 optimization criterion for minimizing the total kinetic energy over the entire frequency range rather
than just at the resonant point (Crandall and Mark, 1963), and the stability maximization criterion for minimizing the
convergence time of the free-vibration response instead of the steady-state response (Nishihara and Matsuhisa, 1997).

Recently, to improve the performance and robustness of DVAs, multi-mass DVAs, in which two or more DVA masses
are combined, have been studied (Iwanami and Seto, 1984; Yasuda and Pan, 2003). The present authors have also worked
on the optimization of the double-mass DVA and have confirmed that its performance is significantly better than that of
the single-mass DVA, especially when the two masses are connected in series (Asami, 2019; Asami and Yamada, 2020).
The results of these DVA optimization studies were obtained under the assumption that the vibratory system is viscously
damped. The analytical model is shown in Fig. 1(b).
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Most DVAs in practical use do not consist of a coil spring, dashpot, and mass, as shown in Fig. 1(b), but are manu-
factured by combining masses with polymer materials that have both restoring capabilities and damping effects. Experi-
mentally, the damping force for this polymer material is known to vary roughly in proportion to the relative displacement
between objects rather than their relative velocity (Shibata et al., 1993). This type of damping force is called hysteretic
damping and is often modeled mathematically as shown in Fig. 1(a). Note that even in viscously damped systems, the
load-displacement curve follows a hysteresis loop, but the shape of this loop is affected by the frequency, whereas in
hysteretically damped systems it is not affected by the frequency (Asami et al., 2020). In many cases, the damping of
the primary system is the result of internal damping within the materials that make up the primary system and of struc-
tural damping due to the friction of the contacting parts. These attenuation characteristics are also better modeled with
hysteretic damping than with viscous damping.

There have been few studies on the optimization of the hysteretically damped DVA shown in Fig. 1(a), and the
present authors previously studied the case of hysteretic damping in a single-mass DVA (Asami et al., 2020). This work is
a continuation of that study and proposes an optimal design formula for a series-type double-mass hysteretically damped
DVA. In the previous study, the optimal solution was derived for all three DVA design criteria described above, but in the
present study, the DVA was optimized only for the stability maximization criterion because the other two criteria could
not be algebraically solved.

As in the case of the viscously damped DVA, the performance of the hysteretically damped DVA is significantly
improved with the use of a series-type double-mass DVA instead of a single-mass DVA. The stability of the double-mass
DVA was found to be approximately 1.7 times that of the single-mass DVA with respect to the typical mass ratio of
the DVA to the primary system. Moreover, when there is no damping in the primary system, the formula that gives the
optimal design values for the DVA is very simple. In contrast, when the primary system has damping, the optimal DVA
design conditions cannot be obtained without solving a higher-order algebraic equation. In this paper, the equation and the
optimal design values for the DVA obtained by solving it numerically are presented. From these solutions, it is shown that
the stability can be further increased when damping is present in the primary system. Finally, the free-vibration responses
of a primary system and two DVAs connected in series are presented and their vibration suppression effect is visualized.

2. Analytical model and definition of dimensionless parameters

Figure 1(a) shows the hysteretically damped three-degree-of-freedom (3-DOF) system considered in this study. In
this figure, P is the primary system to be suppressed, and DVA-A and DVA-B are two vibration absorbers connected in
series. The springs connecting the three masses have hysteretic damping characteristics, which are expressed by the loss
factors ηi, (i = 1–3). Figure 1(b) shows a 3-DOF viscously damped system, which is assessed for comparison with the
hysteretically damped system. The optimal values of the DVA for reducing the free-vibration response of these vibratory
systems and the differences in the free and steady-state responses of the systems are discussed in this paper.

The response of the system can be fully expressed by the following dimensionless parameters:

µ =
m2 + m3

m1
, µB =

m3

m2
, ν =

ω2

ω1
, νB =

ω3

ω2
, λ =

ω

ω1
, τ = ω1t, ζ1 =

c1

2m1ω1
, ζ2 =

c2

2m2ω2
, ζ3 =

c3

2m3ω3
, (1)

Fig. 1 Analytical models of 3-DOF vibratory systems. Representation of
hysteretically damped systems using the imaginary unit i is a convenient
method of calculating the steady-state response for systems subjected
to periodic external forces, but a serious contradiction arises in the
calculation of the free-vibration response to initial disturbances.
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Fig. 2 Characteristic roots of a viscously damped
3-DOF system. The real part of the char-
acteristic roots represents the speed of
vibration decay, and the imaginary part
represents the damped natural angular
frequency. The stability Λ describes how
quickly the free vibration decays.
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where ω1, ω2 and ω3 are the undamped angular natural frequencies of each vibratory system and are defined as

ω1 =
√

k1/m1, ω2 =
√

k2/m2, ω3 =
√

k3/m3. (2)

3. Stability maximization criterion

In this study, the stability maximization criterion for the design of a DVA was adopted. In this approach, the free-
vibration response of the primary system is made to converge in the shortest possible time (for this purpose, the periodic
excitation force shown in Fig. 1 is replaced by an impulse input). Figure 2 shows the characteristic roots of a viscously
damped 3-DOF system plotted in the complex plane. The imaginary part of the characteristic root represents the damped
natural angular frequency, indicating that the system has three natural frequencies. The real part of the characteristic
root, which is negative in a stable system, indicates the speed of convergence of each natural vibration. The rightmost
characteristic root (s1 and s2 in this figure) determines the speed of convergence of the free vibration. The horizontal
distance between the rightmost characteristic root and the imaginary axis is called the stability of the system, which is
defined as (Nishihara and Matsuhisa, 1997)

Λ = −max(Re[si]). (3)

Maximizing the value of Λ is the goal of DVA design by the stability maximization criterion.
As described in our previous paper (Asami, et al., 2020), in the hysteretically damped system shown in Fig. 1(a), the

complex conjugate roots shown in Fig. 2 do not appear. Instead, a second characteristic root appears at a point-symmetric
position about the coordinate origin from the first characteristic root appearing in the second quadrant in the complex
plane. Since the real part of this characteristic root is positive, the vibratory system is inevitably unstable. This happens
because the properties of the hysterically damped system are expressed using the imaginary unit i (resulting in a positive
phase shift in the output relative to the input). Such a representation is not problematic when applied to the calculation
of the steady-state response (forced-vibration response) if a periodic input is applied to the system. However, a serious
discrepancy arises when calculating the free vibration after an impulse is input to the system. In this study, the stable free
vibration response was calculated by a method proposed by one of the authors (Yamada, 2020), i.e., by the superposition
of the forced vibration response.

4. Design of hysteretically damped double-mass vibration absorbers based on stability criterion
4.1. Derivation of characteristic equations using triple roots

The characteristic equation for the vibratory system shown in Fig. 1(a) is

(1 + µB) S 6 + (a1 + i b1) S 4 + (a2 + i b2) S 2 + (a3 + i b3) = 0. (4)

The characteristic root s shown in Fig. 2 has units of angular frequency, whereas the parameter S (= s/ω1) shown here
represents the dimensionless characteristic root. The parameters used in Eq. (4) are given as follows with respect to the
dimensionless parameters defined in Eq. (1):

a1 = (1 + µB)(1 + ν2) + µν2 + (1 + µB)2ν2ν2B
b1 = η1(1 + µB) + η2(1 + µ + µB)ν2 + η3(1 + µB)2ν2ν2B
a2 = (1 + µB)ν2{1 + [1 + µB + (1 − η2η3)(1 + µ)ν2]ν2B − η1[η2 + η3(1 + µB)ν2B]}
b2 = (1 + µB)ν2{η1[1 + (1 + µB)ν2B] + η2[1 + (1 + µ)ν2ν2B] + η3[1 + µB + (1 + µ)ν2]ν2B}
a3 = (1 − η1η2 − η2η3 − η3η1)(1 + µB)ν4ν2B
b3 = (η1 + η2 + η3 − η1η2η3)(1 + µB)ν4ν2B.


(5)

In studies on the optimization of series-type double-mass DVAs for viscously damped systems (Asami, 2017; Asami
et al., 2018), it has been found that the damping ratio ζ2 for DVA-A (Fig. 1(b)) should be smaller. Therefore, zero is the
optimal value because a negative damping ratio cannot be achieved with non-active elements. Furthermore, it is known
that the real parts of the characteristic roots are in a trade-off relationship and must be equal to maximize the system
stability Λ (Asami et al., 2018). The imaginary parts of the characteristic roots are then equal as well. In other words, the
stability is maximized when the system has a triple root. If the coordinate of this triplet is denoted as

√
a0 + i b0, Eq. (4)

can then be expressed as

(1 + µB)(S −
√

a0 + i b0)3(S +
√

a0 + i b0)3 = 0. (6)
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Expanding Eq. (6) and equating the real and imaginary parts with Eq. (4), we can derive the following system of six
simultaneous algebraic equations:

f1 = (1 + 3a0)(1 + µB) + (1 + µ + µB)ν2 + (1 + µB)2ν2ν2B = 0
f2 = 3b0 + η1 + η3(1 + µB)ν2ν2B = 0
f3 = −3(a2

0 − b2
0) + ν2 + (1 + µ)ν4ν2B + (1 + µB)(1 − η1η3)ν2ν2B = 0

f4 = −6a0b0 + η1ν
2 + η1(1 + µB)ν2ν2B + η3[1 + µB + (1 + µ)ν2)]ν2ν2B = 0

f5 = a0(a2
0 − 3b2

0) + (1 − η1η3)ν4ν2b = 0
f6 = b0(3a2

0 − b2
0) + (η1 + η3)ν4ν2b = 0,


(7)

where η2 was set to zero. Equation (7) is a set of simultaneous equations with six unknowns (µB, ν, νB, η3, a0, b0) because
µ and η1 are given. Therefore, the solution can be obtained by ordinary algebraic manipulation.

4.2. Derivation of the optimal solution for an undamped primary system
As a special case, if there is no damping in the primary system, i.e., η1 = 0, the solution to Eq. (7) is obtained as

follows:

µB =
8µ(1 + µ)
(1 − µ)2 , ν =

1 + 3µ
(1 + µ)

√
1 − µ

, νB =
(1 − µ)

√
(1 + µ)(1 − 9µ)

(1 + 3µ)2 , η3 =
3(1 − µ)

√
3µ

1 − 9µ

a0 = −
1

1 + µ
, b0 = −

√
3µ

1 + µ
.

 (8)

This solution is confirmed to be the only real root of Eq. (7). If the coordinates of the dimensionless characteristic roots
are denoted as S 1(x1, y1) and S 2(x2, y2), then by the method presented in our previous paper (Asami, et al., 2020), these
coordinates can be calculated using a0 and b0 in Eq. (8) as follows:

x1 = −

√
−1 +

√
1 + 3µ

2(1 + µ)
, y1 = i

√
1 +
√

1 + 3µ
2(1 + µ)

(9)

and

x2 =

√
−1 +

√
1 + 3µ

2(1 + µ)
, y2 = −i

√
1 +
√

1 + 3µ
2(1 + µ)

. (10)

The characteristic roots in the viscously damped system appear as complex conjugates, as shown in Fig. 2, whereas in the
hysteretically damped system, the two complex roots S 1(x1, y1) and S 2(x2, y2) are point-symmetric about the coordinate
origin. Among these two roots, the root S 2 is unstable. Therefore, the free-vibration response of the hysteretically damped
system cannot be calculated using the usual method. Because what appears in the forced vibration is the characteristic
root S 1, if we collectively display the solution of the stability criterion of DVA for an undamped primary system, noting
that Λ = −x1, we find that

Fig. 3 Optimal solution for a series-type double-mass hysteretically damped DVA in an undamped primary
system based on the stability criterion. The region in which the characteristic equations can take a triple
root is limited to µ < 1/9. The solid pink line shows the maximized stability of the system with the
double-mass DVA, Λmax. This stability is 1.7 times higher than that of the system with a single-mass DVA
(dashed pink line).
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µBopt =
8µ(1 + µ)
(1 − µ)2 , νopt =

1 + 3µ
(1 + µ)

√
1 − µ

, νBopt =
(1 − µ)

√
(1 + µ)(1 − 9µ)

(1 + 3µ)2

η2opt = 0, η3opt =
3(1 − µ)

√
3µ

1 − 9µ
, Λmax =

√
−1 +

√
1 + 3µ

2(1 + µ)
.

 (11)

For comparison, the solution based on the stability criterion for a hysteretically damped single-mass DVA in an undamped
primary system is as follows (Asami, et al., 2020):

νopt, single =

√
1 − µ

1 + µ
, η2opt, single =

2
√
µ

1 − µ , Λmax,single =

√√√√1
2

(√
1

1 + µ
− 1

1 + µ

)
. (12)

Equations (11) and (12) are plotted against the mass ratio µ of the DVA to the primary system in Fig. 3 with solid and
dashed lines, respectively. For a hysteretically damped double-mass DVA system, the region in which the characteristic
equation takes a triple root is restricted to the narrow range of µ < 1/9. In contrast, it is clear from Eq. (12) that the region
in which the system with a hysteretically damped single-mass DVA takes a double root has µ < 1. The optimal solution
for the DVA based on the stability criterion should exist for all values of µ, but the derivation of the solution in the region
beyond the range of this figure is a subject for future work. As shown in Fig. 3, it is noteworthy that the stability of the
system with a double-mass DVA is much higher (approximately 1.7 times) than that of the system with a single-mass
DVA in the case of hysteretically damped systems. The effect of this increase in stability on the free-vibration response
of the system will be explained in Section 4.6.

4.3. Derivation of the optimal solution for a damped system
In the case of a damped primary system, the optimal solution cannot be expressed by a simple equation like Eq. (11).

The simplest equation available at the moment is presented below.
First, the last parameter b0 in Eq. (8) was computed as a root of the following higher-order equation:

fb = d0 b12
0 + d1 b11

0 + d2 b10
0 + d3 b9

0 + d4 b8
0 + d5 b7

0 + d6 b6
0 + d7 b5

0 + d8 b4
0 + d9 b3

0 + d10 b2
0 + d11 b0 + d12 = 0

d0 = 432(1 + µ)6

d1 = 864 η1(1 + µ)5(5 + µ)
d2 = −144(1 + µ)4[ 9µ − η2

1(136 + 67µ + 4µ2)]
d3 = −16 η1(1 + µ)3[ 27µ (23 + 7µ) − η2

1 (3322 + 2895µ + 525µ2 + 8µ3)]
d4 = −72 η2

1(1 + µ)2[ µ (467 + 374µ + 35µ2) − η2
1 (1334 + 1775µ + 620µ2 + 51µ3)]

d5 = −288 η3
1(1 + µ)2[ µ (229 + 104µ + 3µ2) − η2

1 (422 + 365µ + 74µ2 + 3µ3)]
d6 = −24 η2

1 [ 9µ2(1 − 6µ + µ2) + 2η2
1 µ (4 + µ)(431 + 856µ + 403µ2 + 2µ3)

− η4
1 (4592 + 11344µ + 9131µ2 + 2674µ3 + 227µ4 + 4µ5)]

d7 = −72 η3
1 [ µ2(13 − 54µ + 5µ2) + 2η2

1 µ (480 + 1021µ + 522µ2 + 53µ3)
− η4

1 (1000 + 2144µ + 1283µ2 + 214µ3 + 3µ4)]
d8 = −9 η4

1 [ µ2(181 − 518µ + 21µ2) + 2η2
1 µ (2152 + 4557µ + 1778µ2 + 93µ3)

− η4
1 (3728 + 7024µ + 2683µ2 + 86µ3 − 21µ4)]

d9 = −6 η5
1 [ µ2(241 − 474µ + 5µ2) + 2η2

1 µ (1192 + 2633µ + 734µ2 + 13µ3)
− η4

1 (1808 + 3056µ + 447µ2 − 86µ3 − 5µ4)]
d10 = −9 η4

1 [ µ3 + η2
1 µ

2 (76 − 101µ) + η4
1 µ (368 + 888µ + 163µ2) − η6

1 (256 + 400µ − 44µ2 − 9µ3)]
d11 = −9 η5

1 [ µ3 + 3η2
1 µ

2(6 − 5µ) + 3η4
1 µ (16 + 44µ + 5µ2) − η6

1 (32 + 48µ − 18µ2 + µ3)]
d12 = −η6

1 [ 2µ3 + 3η2
1 µ

2(5 − 2µ) + 6η4
1 µ (4 + 13µ + µ2) − η6

1 (4 − µ)2(1 + 2µ)].



(13)

Although there are 12 solutions to Eq. (13) including complex roots, it was found that the optimal solution is the negative
minimum real root. Substituting one of the solutions obtained in this way into the following equation yields the other
solutions of Eq. (7):

a0 = −
3b2

0(1 + µ) + b0η1(4 + 3µ) + η2
1(1 + µ)

3b2
0(1 + µ)2 + 2b0η1(1 + µ)(2 + µ) + η2

1(1 + 2µ)
µBopt = µBN/µBD

νopt =
√
ν2N/ν2D

νBopt =
√
νB2N/νBD

η3opt = η3N/η3D,


(14)
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where

µBN = 27b4
0 (1 + µ)2 + 9b3

0 η1(1 + µ)(5 + 7µ) − 3b2
0 [3(1 + µ) − η2

1(10 + 28µ + 19µ2) + 6a0(1 + µ)
+ 3a2

0(1 + µ)2] − 3b0η1{(3 + 4µ)[1 − η2
1(1 + 2µ)] + 2a0(3 + 4µ) + 3a2

0(1 + µ)2}
− η2

1 [3 + 4µ − η2
1(1 + 2µ)2 + 6a0(1 + µ) + 3a2

0(1 + µ + µ2)]
µBD = [3(1 + 2a0)b0 + (2 + 3a0)η1]2(1 + µ)
ν2N = −27b4

0 (1 + µ)2 − 9b3
0η1(1 + µ)(5 + 7µ) − 3b2

0η
2
1 (10 + 28µ + 19µ2)

− 3b0η1[1 + η2
1(1 + 2µ)(3 + 4µ)] − η2

1[1 + η2
1(1 + 2µ)2]

− 6a0[η2
1(1 + µ) + b0η1(4 + 3µ) + 3b2

0(1 + µ)] − 3a2
0 [η2

1(2 + 2µ − µ2) + 3b0(b0 + η1)(1 + µ)(3 − µ)]
ν2D = [3(1 + 2a0)b0 + (2 + 3a0)η1](1 + µ)[η1(1 + 2µ) + 3b0(1 + µ)]
νB2N = [3(1 + 2a0)b0 + (2 + 3a0)η1]2(1 + µ)[η1(1 + 2µ) + 3b0(1 + µ)]{−9b3

0 (1 + µ) − 3b2
0η1(4 + 5µ)

+ 3b0[1 − η2
1(2 + 3µ) + a0(3 + µ) + 3a2

0(1 + µ)] + η1[1 − η2
1(1 + 2µ) + 3a0(1 + µ) + 3a2

0 (1 + 2µ)]}
νBD = 27b4

0 (1 + µ)2 + 9b3
0 η1(1 + µ)(5 + 7µ) + 3b2

0 η
2
1(10 + 28µ + 19µ2)

+ 6a0[3b2
0 (1 + µ) + b0η1(4 + 3µ) + η2

1 (1 + µ)] + η2
1 [1 + η2

1(1 + 2µ)2]
+ 3a2

0 [3b0(b0 + η1)(1 + µ)(3 − µ) + η2
1 (2 + 2µ − µ2)] + 3b0η1[1 + η2

1 (1 + 2µ)(3 + 4µ)]
η3N = −(3b0 + η1)[3(1 + 2a0)b0 + (2 + 3a0)η1](1 + µ)
η3D = 9b3

0 (1 + µ) + 3b2
0 η1(4 + 5µ) − 3b0 [1 − η2

1(2 + 3µ) + a0(3 + µ) + 3a2
0 (1 + µ)]

− η1[1 − η2
1 (1 + 2µ) + 3a0(1 + µ) + 3a2

0 (1 + 2µ)].



(15)

Furthermore, the coordinates of the characteristic triple roots can be calculated as

x1 = −
√

1
2

(
a0 +

√
a2

0 + b2
0

)
, y1 = i

√
1
2

(
−a0 +

√
a2

0 + b2
0

)
. (16)

4.4. Trajectories of the characteristic root when the solution takes a multiple root
Figure 4(a) shows a plot of the coordinates S 1(x1, y1) of the triple characteristic root calculated by Eq. (16), and

Fig. 4(b) shows the coordinates for a system with a hysteretically damped single-mass DVA when the characteristic equa-
tion takes a double root (Asami et al., 2020). In this case, we show the trajectory of the double roots in the range of
0 ≤ µ ≤ 1 and 0 ≤ η1 ≤ 1.2. It should be noted that the scales of the coordinate axes in Fig.4 (a) and (b) are different
because the region in which the characteristic equation can take a triple root is limited to a very small range of µ and η1.
These characteristic roots exist in the second quadrant of the complex plane. In the hysteresis decay system modeled as
in Fig. 1(a), another characteristic root S 2(x2, y2) exists in the fourth quadrant, taking the form of the Fig. 4 rotated 180◦

about the coordinate origin (0, 0).
One of the characteristics of the hysteretically damped system is that the damped natural frequencies are larger

than the undamped ones. This can be understood from the fact that the curve of constant µ rises to the left, which is
the opposite of what happens in the viscously damped system. In contrast, the curve for constant η1 falls to the left in

Fig. 4 Trajectories of the characteristic root when a hysteretically damped system takes a multiple root. In a
hysteretically damped system, the region in which there is a triple root is very narrow. The gray curve
(indicated by µ = 0) is the trajectory of the characteristic root of the system without a DVA, and, in
contrast to the viscously damped system, the higher the damping of the hysteretically damped system, the
higher the natural angular frequency. The curve η1 = 0 in (a) represents Eq. (9) and is considerably shifted
to the left in comparison with that in (b).
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Fig. 4(b); however, as shown in Fig. 4(a), the curve rises to the left when η1 is large. This means that in a system with
a DVA optimized by the stability criterion, the damped natural frequency can be increased by installing a larger DVA.
Furthermore, this figure demonstrates that the characteristic equation takes a triple root only up to µ = 1/9 for η1 = 0 but
the area in which the roots exist becomes narrower with increasing η1.

4.5. Optimal solutions and maximized stability criterion
Figure 5(a)–(d) illustrates the optimal design conditions for the hysteretically damped series-type double-mass DVA

calculated from Eqs. (13) and (14). The design parameter η2 of the DVA is zero. In addition, Fig. 5(e) shows the stability

Fig. 5 Dimensionless parameters for a hysteretically damped double-mass DVA attached to a hysteretically
damped primary system optimized with the stability criterion. The optimal tuning ratio νBopt of DVA-
B to DVA-A is exactly zero for a certain loss factor η1 of the primary system. At this moment, the optimal
loss factor η3opt of DVA-B diverges to infinity. (e) indicates that the stability of the system increases with
the mass of the DVA system and the loss factor of primary system.
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of the vibratory system calculated from the first formula in Eq. (16) (with Λmax = −x1). In Fig. 5, the optimal values of
η1 = 0 are consistent with those calculated from Eq. (11). As shown in Fig. 5(a)–(d), the design parameters for the DVA
only monotonically increase or decrease as the loss factor η1 of the primary system increases. In particular, the undamped
natural angular frequency ratio of DVA-B to -A is zero for a certain value of η1. At this time, the optimal value of the loss
factor of DVA-B, η3opt, is infinite. Although the optimal design condition for the DVA may exist after the point where
νBopt = 0, it is not possible to search for this method using the “condition that the characteristic equation takes a triple
root” adopted in this paper. As shown in Fig. 5(e), the maximum value of the stability of the vibrating system, Λmax,
increases with the mass of the DVA and the loss factor for the primary system. In particular, the large difference between
the curves for µ = 0 and µ = 0.005 shows that even a small DVA has a great effect on the stability of the vibratory system.

4.6. Free-vibration responses of optimized vibratory system
Figure 6(a) and (b) show the free-vibration response of a vibratory system with a hysteretically damped double-mass

DVA with µ = 0.05 and 0.1, respectively. In the calculation of the results, including Figs. 7 and 8, it was assumed that the
primary system is undamped (η1 = ζ1 = 0). In addition, the initial conditions for these calculations are as follows:

x1(0) = 0, ẋ1(0) = υ0, x2(0) = 0, ẋ2(0) = 0, x3(0) = 0, ẋ3(0) = 0. (17)

That is, the initial velocity υ0 is applied only to the primary mass, and the initial displacement and velocity are zero for
both DVA-A and -B. As shown in Fig. 6(a) and (b), the kinetic energy given to the primary mass is transferred from the
primary system to DVA-A, and then from DVA-A to DVA-B, and the energy is gradually lost (i.e., dissipated as thermal

Fig. 6 Free-vibration responses of a 3-DOF vibratory system optimized by the stability criterion. The three
curves show the responses of the primary system, DVA-A, and DVA-B after an initial velocity is applied to
the primary system. A system with a DVA optimized by the stability criterion is characterized by the fact
that the kinetic energy flows in one direction from the primary system to the DVA and does not cause back-
vibration. The major difference between hysteretically ((a) and (b)) and viscously ((c) and (d)) damped
systems is the relationship between the magnitude of the responses of DVA-A and -B.
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energy) by the internal damping of the connecting springs. Because there is no energy backflow from DVA-A to the
primary system, the DVAs act like a damper, and the vibrations converge monotonically with time, just like the free
vibration of a damped single-degree-of-freedom (SDOF) system. Figure 6(c) and (d) shows the free-vibration response
of a system with a viscously damped DVA optimized by the stability criterion. The response of this primary system is not
much different from that of the hysteretically damped system, but there is a significant difference between the relationships
of the magnitudes of the responses of DVA-A and -B in the hysteretically and viscously damped systems.

Figures 6–8 show the free-vibration responses calculated as the superposition of the forced-vibration response using
a method developed by one of the authors (Yamada, 2020). The analytical model presented in Fig. 1(a) is based on the
assumption that periodic external forces act on the system. Therefore, by decomposing the applied impulse into a Fourier
series expansion and calculating the steady-state response at each frequency, the free-vibration response of the system to
the impulse can be calculated by superimposing them.

For simplicity, this method is illustrated in a viscously damped SDOF system. The equation of motion is

mẍ1 + cẋ1 + kx1 = f . (18)

Here, the excitation force f is considered to be an impulse, and its Fourier series expansion is expressed by

f = Pmδ(t) =
a0

2
+
∞∑

k=1
(ak cosωkt + bk sinωkt), where ωk =

kπ
T
, (19)

where a0, ak, and bk are the Fourier coefficients. Finding these Fourier coefficients for the applied impulse and substituting
them into Eq. (18) gives

mẍ1 + cẋ1 + kx1 =
Pm

2T
+
∞∑

k=1

Pm

T
cosωkt. (20)

Because this is a linear equation, the responses x1 at different frequencies can be calculated and superimposed to obtain
the free-vibration response to the applied impulse. If the free vibrations are represented by the superposition of forced
vibrations, the same formula can be used to calculate the response of the system regardless of whether the system is
under-damped, critically-damped or over-damped.

The following equations were used to calculate the free-vibration responses shown in Figs. 6(a) and 6(b) for the
hysteretically damped 3-DOF system.

x1 =
Pm

2Tk1
+

Pm

Tk1

∞∑
k=1

Num1
Den

eiωkt, x2 =
Pm

2Tk1
+

Pm

Tk1

∞∑
k=1

Num2
Den

eiωkt, x3 =
Pm

2Tk1
+

Pm

Tk1

∞∑
k=1

Num3
Den

eiωk t, (21)

where

Num1 = −(1 + µB){λ4
k − ν2[1 + (1 + iη3)(1 + µB)ν2B]λ2

k + (1 + iη3)ν4ν2B}
Num2 = (1 + µB)ν2[λ2

k − (1 + iη3)ν2ν2B], Num3 = −(1 + µB)(1 + iη3)ν4ν2B
Den = (1 + µB)λ6

k − {1 + µB + (1 + iη3) µ2
Bν

2ν2B + µBν
2[1 + 2(1 + iη3)ν2B] + ν2[1 + µ + (1 + iη3)ν2B]}λ4

k

+ (1 + µB)ν2{1 + (1 + iη3) [1 + µB + (1 + µ)ν2]ν2B}λ2
k − (1 + µB)(1 + iη3)ν4ν2B.

(22)

Fig. 7 Free-vibration responses of a viscously damped 3-DOF system optimized by the H∞ and H2 criteria. In a
vibratory system with DVAs designed with these criteria, the initial vibration decay of the primary system
is fast, but the slow vibration decay of the DVA causes energy backflow, that is, it introduces vibration
back to the primary system. As a result, the final convergence of the vibrations is slow.
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Here, the values of η1 and η2 are set to zero. Then, by expressing Eq. (21) in a dimensionless form, and replacing the
infinity symbol by a finite value of n, we obtain

ω1

υ0
x1 =

1
2Tω1

+
1

Tω1

n∑
k=1

Num1
Den

eiτk ,
ω1

υ0
x2 =

1
2Tω1

+
1

Tω1

n∑
k=1

Num2
Den

eiτk ,
ω1

υ0
x3 =

1
2Tω1

+
1

Tω1

n∑
k=1

Num3
Den

eiτk . (23)

The symbols λk = ωk/ω1 and τk = ωkt (where ωk = kπ/T ) used in Eqs. (22) and (23) denote the discretized dimensionless
frequency and time, respectively. Finally, a physically meaningful solution can be obtained by extracting the real part of
Eq. (23). Figures 6(a) and 6(b) show the results for the dimensionless quantities Tω1 = 200 and n = 10, 000.

Figure 7 shows the free-vibration responses of a viscously damped 3-DOF system designed by optimization criteria
other than the stability criterion: the H∞ and H2 criteria. Figure 6 indicates that the free-vibration responses of the primary
system do not differ significantly between the hysteretically and viscously damped systems. Therefore, because the H∞
and H2 optimal solutions for the hysteretically damped 3-DOF system are not currently available, we compare the free-
vibration responses for viscously damped systems designed by these optimization criteria with each other. A comparison
of Figs. 7 and 6(d) demonstrates that the final convergence of the vibrations is considerably faster if the DVA is designed by
the stability criterion. In addition, expressing the free-vibration response by superimposing forced vibrations is especially
convenient when the characteristic equation take a multiple root.

In Figs. 7, 6(c) and 6(d), the optimal DVA parameters are calculated using the following equations (Asami, 2019).
For the H∞ optimization criterion:

µBopt =
(
1+
√

2
)
µ, νopt =

√
1 +

(
1 +
√

2
)
µ, νBopt =

1
1 +

(
1 +
√

2
)
µ
, ζ2opt = 0, ζ3opt =

√√√√1
2

(
1 +
√

2
)
µ

1 +
(
1 +
√

2
)
µ
. (24)

For the H2 optimization criterion:

Fig. 8 Free-vibration responses of a hysteretically damped 2-DOF system optimized by the H∞, H2 and stability
criteria. The vibrations converge more slowly than in Fig. 6, which represents the free-vibration response
of the system with a double-mass DVA installed. When the DVA is optimally designed with the stability
criterion, the initial decay of the primary system is gradual, but the vibration converges most quickly in
the end because there is no back-vibration.
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µBopt = 2µ, νopt =
√

1 + 2µ, νBopt =
1

1 + 2µ
, ζ2opt = 0, ζ3opt =

1
2

√
3µ

1 + 2µ
. (25)

For the stability maximization criterion:

µBopt = 8µ, νopt =
√

1 + 8µ, νBopt =
1

1 + 8µ
, ζ2opt = 0, ζ3opt =

3
2

√
3µ

1 + 8µ
. (26)

Figure 8 shows the free-vibration responses of systems with hysteretically damped single-mass DVAs optimally
designed by the three different optimization criteria. As shown in this figure, when the DVA is designed by the stability
criterion, the initial vibration decay of is slow. However, the vibration convergence was most rapid at the end because of
the absence of energy backflow from the DVA to the primary system. A comparison of Figs. 8(c) and 6(b) reveals that the
vibration convergence is even faster when two DVAs are used.

4.7. Steady-state responses of the optimized vibratory system
Figure 9 shows the steady-state responses of the primary system for a hysteretically damped 3-DOF (primary system

+ series-type double-mass DVA) and 2-DOF (primary system + single-mass DVA) systems with an applied periodic
external force. Figure 9(a) and (b) shows the calculation results for the 3-DOF system with different values of µ, only
up to η1 = 0.25 and η1 = 0.04, respectively. When the DVA is designed based on the stability criterion, the damping
magnitude (loss factor) of the DVA is designed to be quite large, so that the steady-state response of the multi-degree-of-
freedom system will necessarily have a single resonant point, as if it is a SDOF system. A comparison of the heights of
the resonant points in the 3- and 2-DOF systems, reveals that the resonant point of the 3-DOF system is lower than that of
the 2-DOF system for the same mass ratio µ and primary system loss factor η1.

Fig. 9 Steady-state responses of a hysteretically damped 3- and 2-DOF systems optimized by the stability
criterion. Because the DVA designed with the stability criterion is given a fairly large damping, only
one resonant point appears in the optimized response. These plots show that the stability increase also
contributes to reducing the height of the resonant point in the steady-state response. The range of loss
coefficients for the primary system is narrower in (a) and (b) because the region in which the characteristic
equations can take a triple root is quite narrow.
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5. Conclusion

This paper is a continuation of our previously published paper (Asami et al., 2020). In this previous paper, we
discussed the optimal design method for a hysteretically damped single-mass DVA, where the DVA was designed using
three optimization criteria: H∞ optimization, H2 optimization and stability maximization. In this study, two DVAs were
connected in series to improve their performance, and were optimized by the stability maximization criterion. The results
of this study are summarized as follows:

( 1 ) If there is no damping in the primary system, the four design parameters of the DVA (five if η2 is included) can
be optimized by a very simple formula. In contrast, if there is damping in the primary system, the optimal solution can be
calculated numerically using Eqs. (13)–(15).

( 2 ) The stability of the vibratory system was approximately 1.7 times greater than that with a single-mass DVA when
the optimized series-type double-mass DVA was installed.

( 3 ) As the stability of the system increases, the free-vibration response converges faster and the height of the resonant
point in the steady-state response decreases.
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