論文

査読有り 国際誌
2012年8月21日

Interactive cueing with Walk-Mate for hemiparetic stroke rehabilitation.

Journal of neuroengineering and rehabilitation
  • Takeshi Muto
  • ,
  • Barbara Herzberger
  • ,
  • Joachim Hermsdoerfer
  • ,
  • Yoshihiro Miyake
  • ,
  • Ernst Poeppel

9
1
開始ページ
58
終了ページ
58
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1186/1743-0003-9-58
出版者・発行元
BMC

BACKGROUND: Many techniques that compensate for locomotion problems in daily life using externally controlled stimulation have recently been reported. These techniques are beneficial for effortlessly supporting patients' locomotive functions, but the users of such devices must necessarily remain dependent on them. It is possible that some individuals with gait impairment may be prevented recovering locomotive function. From a rehabilitation viewpoint, it may therefore be supposed that ideally, devices that can be used in daily life to improve the locomotive functions of the body itself should be proposed. METHODS: We evaluate the effectiveness of Walk-Mate, which has been used mainly as a gait compensation device, as a gait rehabilitation training device by analyzing improvement in locomotion before, during and after rehabilitation in hemiparetic patients and comparing it with a previous gait training method. Walk-Mate generates a model walking rhythm in response to a user's locomotion in real time, and by indicating this rhythm using auditory stimuli, provides a technology that supports walking by reducing asymmetries and fluctuations in foot contact rhythm. If patients can use the system to learn a regulated walking rhythm, then it may also be expected to fulfil the functions of a gait rehabilitation training device for daily life. RESULTS: With regard to asymmetry, significantly improvements were seen for compensatory movement during training using Walk-Mate, but improvements were not retained as rehabilitative results. Regarding fluctuations in the foot contact period, significant improvement was observed for compensatory movement during training and these significant improvements were retained as rehabilitative results. In addition, it became clear that such improvement could not be adequately obtained by the previously proposed training technique utilizing constant rhythmic auditory stimulation. CONCLUSIONS: Walk-Mate effectively compensated for locomotion problems of hemiparetic patients by improving gait rhythm both during and after training, suggesting that locomotive function can be effectively recovered in some patients. The interactive mechanism of Walk-Mate may be capable of simultaneously achieving the aims of gait compensation and gait rehabilitation training methods previously developed under individual frameworks. Walk-Mate is a promising technology for assisting the reintegration of disabled persons into society.

リンク情報
DOI
https://doi.org/10.1186/1743-0003-9-58
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/22909032
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480930
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000310269700001&DestApp=WOS_CPL
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84865099873&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84865099873&origin=inward
ID情報
  • DOI : 10.1186/1743-0003-9-58
  • ISSN : 1743-0003
  • eISSN : 1743-0003
  • PubMed ID : 22909032
  • PubMed Central 記事ID : PMC3480930
  • SCOPUS ID : 84865099873
  • Web of Science ID : WOS:000310269700001

エクスポート
BibTeX RIS