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Estimating immunity with mathematical models for
SARS-CoV-2 after COVID-19 vaccination
Yoshifumi Uwamino1,2,9, Kengo Nagashima 3,9, Ayumi Yoshifuji4,5, Shigeru Suga6, Mizuho Nagao6, Takao Fujisawa6,
Munekazu Ryuzaki4,5, Yoshiaki Takemoto5, Ho Namkoong2, Masatoshi Wakui1, Hiromichi Matsushita 1, Naoki Hasegawa2,
Yasunori Sato3,7✉ and Mitsuru Murata1,8

Tools that can be used to estimate antibody waning following COVID-19 vaccinations can facilitate an understanding of the current
immune status of the population. In this study, a two-compartment-based mathematical model is formulated to describe the
dynamics of the anti-SARS-CoV-2 antibody in healthy adults using serially measured waning antibody concentration data obtained
in a prospective cohort study of 673 healthcare providers vaccinated with two doses of BNT162b2 vaccine. The datasets of 165
healthcare providers and 292 elderly patients with or without hemodialysis were used for external validation. Internal validation of
the model demonstrated 97.0% accuracy, and external validation of the datasets of healthcare workers, hemodialysis patients, and
nondialysis patients demonstrated 98.2%, 83.3%, and 83.8% accuracy, respectively. The internal and external validations
demonstrated that this model also fits the data of various populations with or without underlying illnesses. Furthermore, using this
model, we developed a smart device application that can rapidly calculate the timing of negative seroconversion.
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INTRODUCTION
Two mRNA vaccines for SARS-CoV-2, BNT162b2 (Pfizer-BioNTech)
and mRNA-1273 (Moderna), have demonstrated significant effec-
tiveness after only two doses of vaccine1,2. Since the waning of
immunogenicity was reported during the time course3,4, the
administration of booster doses was accelerated worldwide. For
example, the Center for Disease Control and Prevention (USA)
recommended that people who have received two doses of
BNT162b2 receive a third dose at least 5 months after receiving
the second dose5. The recommended timing of booster dose
administration was determined primarily based on the results of
studies assessing vaccine effectiveness during the time course6–8.
However, conducting population-based vaccine effectiveness
studies might be practically difficult in certain countries because
the researchers must track the occurrences of infection within a
large population of vaccinated people for a long time. Antibody
concentrations (titers) and antispike protein immunoglobulin G
(IgG) are related to protection against the infection9,10; therefore,
measuring the concentration of antibodies in vaccinated people
would be helpful in developing public health policies about
vaccination and infection control. However, repetitive testing is
expensive. Therefore, models for estimating the future dynamics
of antibodies are required. In addition, it is difficult for the general
population to perceive the waning of immunity following
vaccination, which might be one of the reasons for unwillingness
to take the booster dose11. The development of digital tools for
estimating individual antibody dynamics might lead to a better
understanding of waning immunity following vaccination, imply-
ing the need for an increased rate of booster vaccination, which
remains low in several countries12.

In this study, using the vaccinated cohort data, we develop and
validate a mathematical model for estimating antibody waning
following vaccination. Hence, we establish a prototype smart
phone application to estimate the future waning of antibodies
based on a single measurement of a SARS-CoV-2 antibody titer.

RESULTS
Existing Data
Figure 1 depicts semi-logarithmic plots of antibody titers for
healthy medical workers at Keio University Hospital (N= 657) after
two doses of the BNT162b2 vaccine. Figure 1a indicates that the
antibody titer increased after two doses and subsequently
decreased from 3 to 26 weeks. The rate of decrease was similar
from 3 to 13 weeks and slightly lower after 13 weeks. Figure 1b–d
indicate the average antibody titer stratified by groups defined by
antibody titer at week 3, age, and sex. The characteristics differed
for each group, but the rates of decrease were not different. The
differences in the antibody titers were the largest when the data
were grouped by antibody titer at week 3.

Model Selection
We constructed three candidate models with the objective of
developing a mathematical model to describe and predict
individual antibody titers following two doses: (1) one-
compartment model, (2) two-compartment model, and (3) double
exponential model. We selected (1) and (2) as the candidate
models to represent the elimination of antibodies generated in
the body as they transition between compartments. We selected
(3) as a nonlinear model to describe the change in the antibody
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titer (that is, the responses) over time. Further details on the
model structures and hyperparameters are provided in the
Methods section. We fitted the three candidate models to data
obtained from participants at Keio University Hospital (N= 657)
and found that model (2) demonstrated the smallest leave-one-
out cross-validation information criterion (LOOIC) and best-fit (see
Table 1). This result was consistent with the trend of the rate of
decrease, as depicted in Fig. 1 (a constant rate of decrease from 3
to 13 weeks, with a slightly lower rate after 13 weeks). For the
best-fit model, the convergence of the Markov chain Monte Carlo
samplers was achieved and sufficient quality was demonstrated
(see Supplementary Figs. 1–4 and Supplementary Table 2).

Model validation
We applied a further test of the prediction performance of the
two-compartment model through 10-fold cross-validation on the
dataset from the participants at Keio University Hospital and
obtained an accuracy of 97.0% (95% confidence interval (CI):
95.2%–98.1%), RMSE of 0.430, and Pearson’s correlation coefficient
of 0.841 (Table 2). We defined accuracy as follows: accuracy= ((no.
of patients whose 95% prediction interval included the actual
value)/(no. patients)) × 100 [%].
Furthermore, we verified the prediction performance of the

model using external data. We found that, at 24 weeks, the
model demonstrated a prediction accuracy of 98.2% (95% CI:
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Fig. 1 Semi-logarithmic plots of SARS-CoV-2 spike antibodies after two doses of BNT162b2 vaccine. a Box plots of all available cases
(N= 657; cases for which data were available only at week zero were excluded); logarithmic means stratified by b antibodies at week 3, c age
group, and d sex. Error bars indicate 95% confidence intervals. b The cutoffs for antibodies at week 3 were determined based on the 25th,
50th, and 75th percentiles. All the demonstrated antibody titers were anti-receptor-binding domain IgG.
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94.4%–99.5%), RMSE of 0.508, and Pearson’s correlation coefficient
of 0.709 for healthcare workers from the Mie National Hospital
(N= 165) with 3.5 weeks of input data; prediction accuracy of
94.5% (95% CI: 89.9%–97.5%), RMSE of 0.484, and Pearson’s
correlation coefficient of 0.819 for healthcare workers from the
Mie National Hospital (N= 165) with 12 weeks of input data;
prediction accuracy of 83.3% (95% CI: 77.1%–88.2%), RMSE of
0.924, and Pearson’s correlation coefficient of 0.721 for dialysis
patients from the Infection Control Committee of the Japanese
Society for Dialysis Therapy (JSDT; N= 192); and prediction
accuracy of 83.3% (95% CI: 75.0%–90.3%), RMSE of 0.979, and
Pearson’s correlation coefficient of 0.553 for nondialysis elderly
patients from JSDT (N= 100) (Table 2). For the participants in the
JSDT cohort whose predictions failed, most of the predicted values
were higher than the actual values.

Prediction results
Figure 2 presents the prediction results from fitting the two-
compartment model to three selected participants from Keio
University Hospital. We randomly selected participants whose
antibody titer increased to ~2500 BAU/mL (Fig. 2a, c) and
3500 BAU/mL (Fig. 2b) after two vaccinations. The predicted
results for the participants with higher antibody titers at 3 weeks
suggested that they maintained higher antibody titers (Fig. 2a, b).
The two-compartment model fitted well, as the change in the rate
of decrease in the antibody titers from 3 and 13 weeks and after
13 weeks was accurately modeled (Fig. 2a, b).
Because we used a hierarchical Bayes model, we could obtain

prediction results for the participants with only one measurement
point owing to missing data or a new participant (see Fig. 2c and
Supplementary Figs. 5–7). The time instants are indicated when
the lower limit of the 95% prediction interval and the median

value fall below the 154 BAU/mL threshold for classification as a
protective antibody titer (Fig. 2a–c). The subjects with higher
antibody titers in the third week crossed the classification
threshold later than those with lower antibody titers at the third
week. As the participant indicated in Fig. 2c had only one point of
data, the width of the prediction interval was wide, reflecting the
small amount of information available.
Figure 3 depicts the distribution of the time points at which the

lower limit of the 95% prediction interval for each participant fell
below the protective classification threshold. Participants with
high antibody titers at week 3 had a delayed fall below the
protective threshold. This result was consistent with the trend in
the group differences indicated in Fig. 1b. Comparing the groups
with the lowest and highest antibody titers at week 3, we see that
the distribution peak differs by ~25 weeks.

Development of smart device application
The prototype of an iOS-based smart device application was built
using the proposed model. The user was required to input the
date of their second BNT162b2 vaccine dose, the date of their
antibody titer measurement, the type of reagent used for the
antibody titer measurement, and the antibody titer. Subsequently,
the antibody dynamic was simulated by the model built into the
application, and the estimated date on which the antibody titers
would become lower than 154 BAU/mL, which was the protective
antibody threshold proposed by Goldblatt et al.13, was displayed
(Fig. 4 and Supplementary video). The protective antibody
threshold was still to be fixed; it could be variable based on the
epidemic variants. Therefore, the administrator could freely adjust
the threshold based on advice from public health authorities.

DISCUSSION
Although mathematical models are commonly used for estimating
drug concentration in pharmacodynamics, their application in
estimating antibody dynamics following vaccination is rare. Our
model successfully simulated the individual waning curves of
antibody titers following the administration of mRNA COVID-19
vaccine, which was verified by various datasets. We applied the
pharmacodynamic model to understand the dynamics of
antibody-titer-induced humoral immunity. This model was origin-
ally designed to estimate the concentration of an administered
compound or its metabolites. Therefore, it is interesting that it can
be used for estimating the antibody titer produced by vaccination,
which is neither the administered compound (the vaccine itself)
nor its metabolites (RNA). In the generation of antibodies

Table 1. Results of model comparison.

LOOIC

(1) One-compartment model 44350.3

(2) Two-compartment model 38810.6

(3) Double exponential model 43491.4

LOOIC (leave-one-out cross-validation information criterion) is a measure
of the goodness of fit of a model, with smaller values indicating a better fit.
The two-compartment model LOOIC was the smallest and emphasized,
therefore, the best fit.
Bold means the best fit with the minimum value.

Table 2. Results of internal and external validations.

Data Accuracy (95% CI) RMSE Pearson’s correlation
coefficient

Internal validation Cross-validation: healthy medical workers (N= 657) 97.0% (95.2%, 98.1%) 0.430 0.841

External validation Mie National Hospital: healthy medical workers
(input data for 3.5 weeks; N= 165)

98.2% (94.4%, 99.5%) 0.508 0.709

External validation Mie National Hospital: healthy medical workers
(input data for 12 weeks; N= 165)

94.5% (89.9%, 97.5%) 0.484 0.819

External validation JSDT: hemodialysis patients (N= 192) 83.3% (77.1%, 88.2%) 0.924 0.721

External validation JSDT: nondialysis elderly patients (N= 100) 83.8% (75.0%, 90.3%) 0.979 0.553

Accuracy= ((no. of patients whose 95% prediction interval included the actual value)/(no. of patients)) × 100 [%], and RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 log Yit � log median Ŷit

� �� �� �2q
.

The RMSE and Pearson’s correlation coefficient between log Yit and log median Ŷit
� �� �

at 26 weeks were indicated for cross-validation, and RMSE and Pearson’s
correlation coefficient at 24 weeks were indicated for Mie National Hospital and JSDT.
JSDT The Japanese Society for Dialysis Therapy.
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following vaccination, far more complicated processes such as
transcription, antigen presentation, and antigen-specific immune
cell inductions are included than in the kinetics of other
medications, such as antibiotics.
Regarding the application of pharmacodynamic models to

antibody dynamics, Favresse et al.14 discussed the suitability of the
one-compartment model for antibody waning over 3 months after
BNT162b2 vaccination. However, the present study demonstrated
better predictability using the two-compartment model as
compared with the one-compartment one.
Two-compartment models are often used as pharmacodynamic

models that have two different distribution areas, such as plasma

and target organs, for medication with various metabolizations.
Although the reason that the two-compartment model demon-
strated better predictability is unclear, we hypothesized that two
different types of IgG production kinetics mimic two different
distribution areas, which we named “two immunological compart-
ments.” The first “compartment” refers to IgG production by
immature memory B cells stimulated by the second dose of the
vaccine. Immature memory B cells specific to SARS-CoV-2 spike
proteins are differentiated after the first dose of the vaccine.
Following the second dose, the SARS-CoV-2 spike-protein-specific
immature memory B cells rapidly produce IgG for SARS-CoV-2
spike proteins with low avidity. These immature memory B cells
are not long-lasting; therefore, the antibody titer in this
compartment declines rapidly. The second “compartment” is IgG
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Fig. 2 Prediction results. Prediction results from fitting the best-fit model to three selected participants from Keio University Hospital. The
area to the right of the vertical reference line displays the predicted results. Data and predicted results of antibody titers (anti-receptor-
binding domain IgG) for a participant whose antibody titer increased to approximately 2500 BAU/mL (a) and 3500 BAU/mL (b) after two
vaccination doses. c Data and predicted results for a participant with only one measurement available (week 3) owing to missing data. Time
instants are shown when the lower limit of the 95% prediction interval and the median value falls below the 154 BAU/mL threshold, the
horizontal reference line, for classification as a protective antibody titer. The vertical axis represents the logarithmic scale.
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Fig. 3 Empirical distribution functions of predicted results of time
instants at which antibody titers fall below the positive threshold.
Empirical distribution functions of the lower limit of the 95% pre-
diction interval for each participant falling below the 154 BAU/mL
threshold for classification as a protective antibody titer, stratified by
antibodies (anti-receptor-binding domain IgG) at week 3 (N= 657).
The cutoffs for antibodies at week 3 were determined based on the
25th, 50th, and 75th percentiles.

Fig. 4 Prototype of antibody simulation application using model.
Screen image of the iOS application named “COVID Vaccine Navi.”
Information about the date of vaccination singly measured antibody
titer, and estimated date of negative seroconversion is presented. A
demonstration video is available in the supplementary material.
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production by plasma cells. Some of the immature memory B cells
specific to SARS-CoV-2 spike proteins are selected and matured in
the germinal center through the stimulation of antigen-peptide-
translated mRNA from the second dose and differentiated into
long-term memory and plasma cells. The plasma cells can
continuously produce high-avidity IgG specific to SARS-CoV-2
spike proteins without antigen stimulation. The IgG produced by
the plasma cells is long-lasting; therefore, the antibody titer in this
compartment declines slowly. Although further investigation is
essential for validating this hypothesis, the “two immunological
compartments” approach, consisting of memory B cells and long-
lived plasma cells, might contribute to research on the suitability
of two-compartment models15–17. Although simpler antibody
kinetics were demonstrated through the mathematical modeling
study of antibody kinetics following vaccinia virus vaccine
administration when compared with the proposed model18, it is
difficult to compare humoral immunity generated by mRNA-based
SARS-CoV-2 vaccines and live-attenuated vaccinia virus vaccines,
which are considered to induce life-long immunity. In addition,
the observation periods in our study were much longer than in the
study of the vaccinia virus.
The data obtained in this study suggest that antibody titers

differ more considerably between individuals rather than based
on factors such as age and gender. We confirmed through internal
and external validations that a hierarchical Bayesian model can
account for individual differences and be used for predictions with
a high accuracy rate. The hierarchical Bayesian model can also
predict changes in future antibody titers based on a single point
of measurement data.
The datasets used for building the models and for external

validation provided by Mie National Hospital consisted mostly of
data from healthy young or middle-aged people. However, the
JSDT cohort consisted of 192 elderly dialysis patients receiving
hemodialysis (HD) and 100 elderly patients with some underlying
diseases such as diabetes and hypertension. Although insufficient
antibody production was reported among HD, diabetic, and
hypertensive patients19–22, our external validation demonstrated
as high as 80% accuracy, suggesting that the proposed model is
effective, even in groups with underlying diseases.
Our study had three limitations: First, all the participants in the

study were administered the BNT162b2 vaccine. Therefore, it is
uncertain whether our model can be used for people who were
administered other types of COVID-19 vaccines and were younger
than the participants in the selected cohorts, that is, children and
juveniles. Second, the proposed model could only be validated for
up to 26 weeks based on the available data. Therefore, it is unclear
how accurate the estimates will be in later time instances. Finally,
the model cannot estimate the antibody titer after the adminis-
tration of the booster dose. As a large number of people are being
administered booster doses worldwide, the modification and
validation of the proposed model using a dataset of antibodies
from people who have received various types of COVID-19
vaccines and those who have received booster doses are
warranted.
In conclusion, the anti-SARS-CoV-2 antibody dynamics of

healthy adults vaccinated with two doses of BNT162b2 vaccine
were described accurately using a mathematical model based on
the two-compartment model.

METHODS
Antibody-titer datasets for model construction
To construct the mathematical models, we obtained consecutively
measured antibody titers from a prospective cohort study of
BNT162b2-vaccinated healthcare providers. The study included
673 participants who had received two doses of BNT162b2
vaccine at Keio University Hospital (Tokyo, Japan) (Supplementary

Table 1). Five serum samples were collected from each participant
before vaccination and then 3 weeks, 8 weeks, 3 months, and 6
mo after the administration of the two doses. The IgG antibody
titers for the receptor-binding domain of the SARS-CoV-2 spike
proteins were measured using Alinity SARS-CoV-2 IgG II reagents
and an Alinity analyzer (Abbott; IL, USA). The study protocol was
approved by the Ethics Committee of Keio University School of
Medicine (approval No. 20210301), and written informed consent
was obtained from all the participants. The measured antibody
titers in the original AU/mL units were converted into BAU/mL
using the conversion formula 1 BAU/mL= 0.142 AU/mL, following
the manufacturer’s instructions.

Antibody datasets for external validation
To externally validate the model, antibody titer data were
obtained from 165 healthy healthcare providers who had received
two doses of BNT162b2 vaccine at the National Health Organiza-
tion Mie National Hospital (Mie, Japan). The IgG antibody titer for
SARS-CoV-2 spike proteins of consecutively obtained serum
samples was measured using an enzyme-linked immunoassay-
based kit (Denka Co. Ltd, Tokyo, Japan), which has been certified
by WHO international standard serum samples. Four serum
samples were collected from each subject before vaccination
and then 3.5 weeks, 3 months, and six 6 months after the
administration of the two doses. The study protocol was approved
by the Ethics Committee of the National Hospital Organization Mie
National Hospital (Approval No. 2021-141), and written informed
consent was obtained from all the participants.
In addition, the antibody titers of nondialysis elderly patients

(N= 100) and HD patients (N= 192) obtained from the JSDT were
measured using the Ortho-Clinical Diagnostics VITROS® Anti-SARS-
CoV-2 IgG Chemiluminescent Immunoassay, which has been
certified by WHO international standard serum samples. Four
serum samples were collected from each subject before vaccina-
tion and then 2 weeks, 3 months, and 6 months after the
administration of the two doses. This study was approved by the
Ethics Committee of the JSDT (Approval Nos 1–10), and written
informed consent was obtained from all the participants
(Supplementary Table 1).

Model development
To describe and predict individual antibody titers after two doses
of BNT162b2 vaccine, we constructed three hierarchical Bayes
models: (1) one-compartment model, (2) two-compartment
model, and (3) double exponential model. A compartmental
model, such as (1) and (2), is a type of differential equation model
used to describe how materials transition among the compart-
ments of a system. To represent the elimination of antibodies, we
selected (1) and (2) as candidate models of the antibodies
transitioning among compartments. Model (3) is a Weibull-type
model used to model dose and time responses, and it was
selected as a nonlinear model to describe the change in antibody
titers (that is, response) over time. We also considered other
models, including other Weibull-type models, and age and/or sex
as covariates, but these models did not converge as well. We
subsequently determined the best-fit model among the three
candidate models and evaluated the internal and external
validities of the best model.
Let Yit denote the observation vector for the ith subject (i= 1,

2, …, n) at time t, where t is the number of weeks following the
second vaccine dose (t= 3, 8, 13, 26). We used the following
hierarchical Bayes models:

log Yit � N log f jð Þ t θij

		� �
; σ2Y

� �
;

θij � N μj;Σj
� �

;
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where f(j) denotes a nonlinear regression function and θij
represents the parameter vector of the ith subject, which specifies
the nonlinear regression function. We define f(j) and θij for each
model as follows:

(1) One-compartment model:

f 1ð Þ t θi1jð Þ ¼ exp ai1ð Þ exp �bi1tð Þ;

θi1 ¼ ai1; bi1ð Þ;

μ1 ¼ μa; μbð ÞT ;

Σ1 ¼
σ2
a ρσaσb

ρσaσb σ2
b

 !
;

(2) Two-compartment model:

f 2ð Þ t θi2jð Þ ¼ exp ai2ð Þ exp �bi2tð Þ þ exp ci2ð Þ exp �di2tð Þ;

θi2 ¼ ai2; bi2; ci2; di2ð Þ;

μ2 ¼ μa; μb; μc; μdð ÞT ;

Σ2 ¼
Σ21 0

0 Σ22


 �
¼

σ2a ρ1σaσb 0 0

ρ1σaσb σ2b 0 0

0 0 σ2c ρ2σcσd

0 0 ρ2σcσd σ2d

0
BBB@

1
CCCA;

(3) Double exponential model:

f 3ð Þ t θi3jð Þ ¼ exp exp ai3ð Þ exp �bi3tð Þf g � 1;

θi3 ¼ ai3; bi3ð Þ;

μ3 ¼ μa; μbð ÞT ;

Σ3 ¼
σ2
a ρσaσb

ρσaσb σ2
b

 !
;

We used weak informative priors as follows:
μa; μb; μc; μd � N 0; 1002ð Þ, σa; σb; σc; σd � HalfCauchy 0; 50ð Þ, and
Σ1; Σ21;Σ22;Σ3 � LJKCorr 1ð Þ. We assumed that there was no
correlation between the various compartments.
We used models that consider individual differences through a

hierarchical structure for describing and predicting individual
profiles.
The four candidate models were fitted using Stan in R, software

version 4.1.2 (R Foundation for Statistical Computing, Vienna,
Austria)23. We used a Hamiltonian Monte Carlo algorithm to
generate samples from the posterior distributions of the
parameters. We then evaluated the sampling convergence using
trace plots and the Gelman–Rubin statistic, R̂24, which was
confirmed to be >1.01 for all parameters. The predictive
performances of the models were compared using the LOOIC25.
Fig. 5 depicts the best-fit model, that is, the two-compartment
model. We estimated the posterior predictive distributions for the
prediction of antibody titers with 95% prediction intervals for each
time instant. We derived the time instants at which each
participant’s lower limit of the 95% prediction interval falls below
the 154 BAU/mL threshold for classification as a positive sample.

Internal validation
We used grouped 10-fold cross-validation for prediction to assess
the internal validity of the best-fit model described above. First,

we divided the dataset into 10 equal parts and used nine to train
and one to test. Thereafter, we randomly sampled one of the 3-,
8-, and 13-week measurements from each subject in the test
data and used these as inputs to obtain 95% prediction intervals
for Ŷit at 26 weeks. We obtained prediction intervals by fitting a
best-fit model using the nine parts of the training data. We then
assessed whether these 95% prediction intervals included the
actual values of Yit, root mean squared errors (RMSEs), and
Pearson’s correlation coefficient between log Yit and
log median Ŷit

� �� �
at 26 weeks. We repeated this process, in

which each of the ten parts participated in the test once. We
defined the accuracy and RMSE at a time t as follows:
accuracy= ((no. of patients whose 95% prediction interval
included the actual value)/(no. patients)) × 100 [%], and

RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 log Yit � log median Ŷit

� �� �� �2q
.

External validation
We assessed the external validity using three datasets (Mie
National Hospital workers, N= 165; JSDT dialysis patients, N= 192;
JSDT nondialysis elderly patients, N= 100), which were different
from those used in the development of the best-fit model. We
used different assay kits for different target populations and
evaluated these to validate the generalizability of the best-fit
model. Mie National Hospital is located in western Japan, where
the SARS-CoV-2 infection rates were low. The participants from
Mie National Hospital were healthy medical workers. Participants
from JSDT were dialysis and nondialysis elderly patients; therefore,
a different assay kit from that used for the Mie National Hospital
participants was used.
For the Mie National Hospital data, we used measurements for

each subject at 3.5 or 12 weeks as inputs to obtain 95% prediction
intervals for Ŷit at 24 weeks. For JSDT, we used the measurements
for each subject at two weeks as inputs to obtain 95% prediction
intervals for Ŷit at 24 weeks. We performed external validation on
three populations, that is, Mie Hospital workers, dialysis patients at
JSDT, and nondialysis elderly patients at JSDT. We assessed
whether the 95% prediction intervals included the actual values of
Yit, RMSEs, and Pearson’s correlation coefficient at 24 weeks.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Derived data supporting the findings of this study (project name: COVID Vaccine
Navi) are available on request from the corresponding author (Y.S.).

Fig. 5 Diagram of the finally fitted two-compartment model. Each
parameter is defined as follows: ki21 ¼ Ai2di2þCi2bi2

Ai2þCi2
, Ai2 ¼ exp ai2ð Þ,

Ci2 ¼ exp ci2ð Þ, ki10 ¼ bi2di2
ki21

, and ki12 ¼ bi2 þ di2 � ki21 � ki10.
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