Hajime Nagoya

J-GLOBAL         Last updated: Dec 17, 2019 at 12:07
Hajime Nagoya
Kanazawa University
School of Mathematics and Physics
Job title
Associate Professor
Research funding number
Twitter ID

Research Areas


Academic & Professional Experience

Oct 2015
Associate Professor, School of Mathematics and Physics, Kanazawa University
Apr 2013
Sep 2015
Assistant Professor, Department of Mathematics, Rikkyo University

Published Papers

Yuya, Matsuhira, Hajime Nagoya
SIGMA   15(074)    Sep 2019   [Refereed]
Hajime Nagoya
Proceedings of the Meeting for Study of Number Theory, Hopf Algebras and Related Topics   105-124   2019   [Refereed]
O. Lisovyy, H. Nagoya, J. Roussillon
Journal of Mathematical Physics   59    2018   [Refereed]
Michio Jimbo, Hajime Nagoya, Hidetaka Sakai
Journal of Integrable Systems   2(1)    Sep 2017   [Refereed]
Hajime Nagoya, Yasuhide Numata
Josai Mathematical Monographs   19 81-95   Apr 2017   [Refereed]
In this note, we give a combinatorial formula for a particular three-point irregular conformal block of rank one using the Littlewood-Richardson numbers and propose a conjectural formula for the general three-point irregular conformal block of ran...
Hajime Nagoya
J. Math. Phys.   56    Dec 2015
We develop the theory of irregular conformal blocks of the Virasoro algebra.
In previous studies, expansions of irregular conformal blocks at regular
singular points were obtained as degeneration limits of regular conformal
blocks; however, such e...
Hajime Nagoya
Contemporary Mathematics   651 39-64   2015   [Refereed]
Hajime Nagoya
Publ. Res. Inst. Math. Sci   49(4) 651-678   2013   [Refereed]
Hajime Nagoya and Yasuhiko Yamada
Ann.Henri Poincar¥'e      2014   [Refereed]
Hajime Nagoya
Lett. Math. Phys.   102(3) 297-321   2012   [Refereed]

Research Grants & Projects

Ministry of Education, Culture, Sports, Science and Technology: Grants-in-Aid for Scientific Research(基盤研究(C))
Project Year: 2007 - 2009    Investigator(s): Koji HASEGAWA
Panleve equations are second order nonlinear ordinary differential equations with certain good properties discovered in early 1900s. They are nonautonomous Hamiltonian systems allowing affine Weyl group symmetry, arise from monodromy preserving eq...


Apr 2001
Mar 2006
Mathematical Institute, Tohoku University
Apr 1999
Mar 2001
Department of Mathematics, The University of Tokyo