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The carotenoids produced by extremely halophilic archaeon Haloarcula japonica were
extracted and identified by their chemical, chromatographic, and spectroscopic charac-
teristics (UV-Vis and mass spectrometry). The composition (mol%) was 68.1% bacteri-
oruberin, 22.5% monoanhydrobacterioruberin, 9.3% bisanhydrobacterioruberin, <0.1%
isopentenyldehydrorhodopin, and trace amounts of lycopene and phytoene. The in vitro
scavenging capacity of a carotenoid, bacterioruberin, extracted from Haloarcula japonica
cells against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was evaluated. The antioxidant
capacity of bacterioruberin was much higher than that of β-carotene.
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INTRODUCTION
Carotenoids are yellow to red pigments, which originate from the
terpenoid biosynthetic pathway. They are synthesized by plants,
algae, some fungi, bacteria, and archaea. They are involved in
photosynthesis as accessory pigments, and function as antioxi-
dants, light protection pigments, and membrane stabilizers. Their
antioxidant properties are closely related to their chemical struc-
ture, including aspects such as the number of conjugated double
bonds (CDB), the type of structural end-group, and oxygen-
containing substituents (Albrecht et al., 2000). Carotenoids are
efficient scavengers of reactive nitrogen species, reactive oxy-
gen species (ROS), especially singlet oxygen species, and non-
biological radicals (Burton, 1989; Di Mascio et al., 1989; Miller
et al., 1996; Chisté et al., 2011).

Extremely halophilic archaea generating red-colored colonies
produce phytoene, lycopene, β-carotene, acyclic C50 bacte-
rioruberin (BR), and its precursors, such as isopentenylde-
hydrorhodopin (IDR), bisanhydrobacterioruberin (BABR), and
monoanhydrobacterioruberin (MABR) (Goodwin, 1980). A
halophilic archaeon, Halobacterium salinarum, grows chemoorgan-
otrophically in the dark. In the light, they can utilize light
energy, even though they still depend on organic nutrients as a
carbon source. The molecule responsible for their light utiliza-
tion is bacteriorhodopsin, which functions as a proton pump
to generate ATP through cis-trans isomerization of the chro-
mophore retinal, an end product of carotenoid biosynthesis.
In the early steps of the carotenoid and retinal biosynthetic
pathways, two geranylgeranyl pyrophosphate (GGPP) molecules
are condensed to form a C40 carotenoid, phytoene, which

undergoes a series of desaturation reactions to form the red
carotenoid lycopene (Kushwaha et al., 1976). For retinal synthe-
sis, lycopene is cyclized to β-carotene, and then cleaved to a
C20 retinal cofactor (Peck et al., 2002). Alternatively, lycopene
may be used as a precursor for BR, which is a C50-xanthophyll
functioning to increase membrane rigidity and provide protec-
tion against UV light (Lazrak et al., 1998; Shahmohammadi et al.,
1998).

Haloarcula japonica, the extremely halophilic archaeon, has flat
red cells that are predominantly triangular in shape (Takashina
et al., 1990; Otozai et al., 1991), suggesting this organism might
produce carotenoids. This organism, which requires 2.6–4.3 M
NaCl for growth, has a large amount of glycoprotein (CSG) on
its cell surface (Nakamura et al., 1992; Nishiyama et al., 1992;
Horikoshi et al., 1993). By using flash-induced fluorescence spec-
troscopic analysis, a bacteriorhodopsin-like retinal protein was
identified on the cell envelope vesicles of Haloarcula japonica
(Yatsunami et al., 1997). These results suggest that Haloarcula
japonica has both carotenoids and retinal biosynthetic path-
ways. Recently, the draft genome sequence of Haloarcula japonica
has been determined (Nakamura et al., 2011). However, the
carotenoid composition and both carotenoids and retinal biosyn-
thetic pathways of Haloarcula japonica have not been identified
yet.

Here, we present the carotenoid composition of Haloar-
cula japonica and evaluate the antioxidant potential of an
extracted carotenoid using the 1,1-diphenyl-2-picrylhydrazyl
(DPPH) method and compare its activity with that of β-car-
otene.
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MATERIALS AND METHODS
STRAIN AND CULTIVATION CONDITIONS
Extremely halophilic archaeon Haloarcula japonica strain TR-1
(JCM 7785T) was pre-cultured at 37◦C in the dark with a complex
medium as described previously (Das Sarma and Fleoschmann,
1995). 4 ml of pre-inoculum was transferred to a 2 L Erlenmeyer
flask containing 400 mL of the liquid medium and cultured to
a stationary phase for 10 days under the same conditions. The
cells were harvested by centrifugation at 4,400 × g for 20 min,
washed with a basal salt solution [20% (w/v) NaCl and 4%(w/v)
MgSO4·7H20], and stored at −80◦C until used.

EXTRACTION OF CAROTENOIDS
The extraction of the carotenoids was performed under dim light
as follows. A frozen cell pellet was thawed, and 10 times volume of
acetone/methanol (7:3, v/v) was added. The suspension was son-
icated with a sonic oscillator (VP-5S, Taitec, Koshigaya, Japan)
for several seconds and centrifuged. The supernatant was col-
lected and evaporated. The carotenoids were dissolved in a small
volume of n-hexane/acetone and loaded onto a DEAE-Toyopearl
650 M (Tosoh, Tokyo, Japan) column to remove the polar lipids
(Takaichi and Ishidzu, 1992). The non-adsorption fraction includ-
ing the carotenoids was recovered and evaporated. The carotenoids
were also dissolved in a small volume of n-hexane/acetone and
loaded on a column of silica gel 60 (Merck, Darmstadt, Ger-
many). Separation was achieved by binary graduation elution
using an initial composition of 90% n-hexane and 10% ace-
tone, which was decreased stepwise to 50% n-hexane and 50%
acetone. All fractions were recovered, evaporated, and further ana-
lyzed by HPLC with a μBondapack C18 column (8 × 100 mm,
RCM type, Waters, Milford, MA, USA), as described previously
(Takaichi and Ishidzu, 1992). The elution was performed with
100% methanol at 1.8 ml min−1. The absorption spectra were
recorded with a photodiode-array detector (250–580 nm, 1.3-
nm intervals, MCPD-3600, Otsuka Electronics, Osaka, Japan)
attached to the High-performance liquid chromatography (HPLC)
apparatus as described previously (Takaichi and Shimada, 1992).
The peaks of lycopene and phytoene were collected again, further
separated by HPLC with Novapack C18 column (8 × 100 mm,
RCM type, Waters) and eluted with a mixture of acetonitrile,
methanol, and tetrahydrofuran (58:35:7, v/v) (2.0 ml min−1) as
described previously (Takaichi, 2000). The lycopene and phytoene
were identified by a combination of the HPLC retention times and
the absorption spectra. Other carotenoids, including IDR, BABR,
MABR, and BR were detected with absorbance at 490 nm. To
identify the each elution peak, the relative molecular masses of
the purified carotenoids were measured by field-desorption mass
spectrometry using a double-focusing gas chromatograph/mass
spectrometer equipped with a field-desorption apparatus (M-
2500, Hitachi, Tokyo, Japan) according to the method of Takaichi
(1993). The 500 MHz 1H NMR spectrum of the BR was recorded
in CDCl3 at 25◦C on a Varian VXR-500S spectrometer (Varian
Medical Systems, Palo Alto, CA, USA).

QUANTIFICATION OF CAROTENOIDS
For the quantification of carotenoids, ethyl β-apo-8′-carotenoate
(Wako Pure Chemical, Osaka, Japan) was used as an internal

standard. 10 μl of 0.5 mM ethyl β-apo-8′-carotenoate in ethanol
was added to the samples upon extraction. The suspension was dis-
rupted by sonication with a Ultrasonic disruptor UD-201 (Tomy
Seiko, Tokyo, Japan) for several seconds and centrifuged. The
supernatant was collected and evaporated. The carotenoids were
dissolved in a small volume of n-hexane/acetone, analyzed by
HPLC with a μBondapack C18 column (3.9 × 300 mm, 125 Å,
10 μm, Waters). The HPLC system consisted of a SCL-10A chro-
matograph fitted with a photodiode-array detector (SPD-M20A,
Shimadzu, Kyoto, Japan) and controlled with an LC solution
(Shimadzu). The carotenoids were eluted with methanol/water
(9:1) for the first 10 min and then with 100% methanol (1.5 ml
min−1). Detection was performed at 490 nm, and the online
spectra were acquired in the 190–800 nm wavelength range with
1.2 nm resolution. Each carotenoid was identified by the reten-
tion time on the HPLC and the absorption spectrum in the
eluent by a photodiode-array detector. The absorption coeffi-
cients of BR and its derivatives at 490 nm were assumed to be
167 mM−1 cm−1 (Kelly et al., 1970). That of the ethyl β-apo-
8′-carotenoate at 445 nm was assumed to be 100 mM−1 cm−1,
which is the same as that of the β-apo-8′-carotenoic acid
(Isler et al., 1959).

DPPH RADICAL SCAVENGING ASSAY
DPPH radical scavenging activity was measured using an ESR
spectrometer (JES-FA-100, JEOL, Tokyo, Japan). The stable free
radical, DPPH was dissolved in acetone (200 μM). β-Carotene,
a standard antioxidant, was used as a positive control. The
BR and β-carotene were diluted in 100 μl of acetone, yield-
ing concentrations of 0–200 and 0–800 μM, respectively. The
100 μl DPPH solution and the 100 μl carotenoid solution were
mixed, and the DPPH radical was measured after 60 s. The spin
adduct was detected by ESR spectrometer exactly 2 min later.
The ESR measurement conditions were as follows: field sweep,
330.500–340.500 mT; field modulation frequency, 100 kHz; field
modulation width, 0.25 mT; sweep time, 2 min; time constant,
0.1 s; microwave frequency, 9.427 GHz; and microwave power,
4 mW. All the scavenging activities in the present study were cal-
culated using the following equation, in which H and H0 were
the peak areas of the radical signals with and without a sample,
respectively:

Radical scavenging activity (%) = [1−(H/H0)] × 100.

RESULTS
CHARACTERIZATION OF CAROTENOID PROFILES OF Haloarcula
japonica
The carotenoids occurring in Haloarcula japonica were extracted
and identified based on their chemical, chromatographic, and
spectroscopic characteristics (UV-Vis and mass spectrometry).
Figure 1 shows an elution profile on HPLC system that corre-
sponds to the carotenoids obtained from Haloarcula japonica.
Table 1 summarizes the identification for each chromatographic
peak, and Figure 2 shows the corresponding chemical struc-
tures. Peak 1, which was the major carotenoid, was assigned as
all-trans-BR. The UV-Vis spectrum, mass spectrum, CD spec-
trum (data not shown), and NMR spectra (data not shown)
were compatible with those of BR from Haloferax volcanii
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FIGURE 1 | Elution profile of pigments extracted from Haloarcula

japonica. The HPLC system consisted of a reversed-phase μBondapack
C18 column. Absorbance at 490 nm is shown. Peak identification is
revealed inTable 1. St: internal standard of ethyl β-apo-8′-carotenoate.

Table 1 | Characteristics of carotenoids produced by Haloarcula

japonica.

Peaka Carotenoid Retention

time (min)

λmax (nm) in methanol [M]+(m/z)

1 BR 7.0 387, 466, 488, 525 741.0

2 MABR 9.6 369, 385, 465, 492, 524 722.8

3 BABR 12.5 370, 386, 460, 492, 524 704.5

4 IDR 15.3 375, 455, 480, 511 620.7

– Lycopene 19.4 296, 363, 445, 472, 501b not done

– Phytoene 19.4 277, 288, 298b not done

aPeak numbers are based on Figure 1 using μBondapack C18 column.
b λmax in acetonitrile/MeOH/THF (58:35:7) using Novapack C18 column.

(Rønnekleiv and Liaaen-Jensen, 1995). Peaks 2 and 3 were sim-
ilarly identified as MABR and BABR, respectively. Peak 4 was
a minor C45-carotenoid, IDR. In addition to these carotenoids,
two minor C40 carotenoids were also eluted at 19.4 min. They
were identified as phytoene and lycopene using another HPLC
system (date not shown). These carotenoids were also found in
Halobacterium salinarum (Kelly et al., 1970).

QUANTITATIVE ANALYSIS OF CAROTENOIDS
The total carotenoid content was 335 μg g−1 of dry mass, although
the contents in Halobacterium salinarum and Halococcus morrhuae
were 89 and 45 μg g−1, respectively (Mandelli et al., 2012). This
contents were about four and seven times compared to that of
Halobacterium salinarum and Halococcus morrhuae, respectively.
BR was the major pigment, accounting for up to 68.1% of the total
carotenoids (mol%). Therefore, it was the main one responsible
for the red color of this organism. The BR content in Haloarcula

FIGURE 2 | Structure of carotenoids produced by Haloarcula japonica.

japonica was similar to those in other halophilic archaea (Man-
delli et al., 2012). Other major pigments were MABR (22.5%)
and BABR (9.3%), and IDR was found at a lower level (<0.1%).
These results suggest that BR is produced as a final product in
Haloarcula japonica and is synthesized from other C50 carotenoids,
such as IDR, BABR, and MABR as well as other halophilic
archaea.

ANTIOXIDANT CAPACITY
An ROS formed under photo-oxidation stress can react with
macromolecules like lipids and proteins and cause a cellular dam-
age. Antioxidants are substances that have the ability to reduce
ROS and prevent macromolecules from oxidation (Klein et al.,
2012). DPPH method was carried out to evaluate the antioxidant
capacity of the carotenoid extracted. ESR spin trapping provides
a sensitive, direct, and accurate means of monitoring reactive
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species (Guo et al., 1999). DPPH is a stable free radical donor,
which is widely used to test the free radical scavenging effect
of natural antioxidants. DPPH method involves the scavenging
of a performed stable radical by an electron transfer mechanism
from the carotenoid to the radical, generating a carotenoid rad-
ical cation (Huang et al., 2005). The scavenging capacity of the
reactive species was dependent on the carotenoid concentration.
Figure 3 shows that the scavenging capacity of BR was much higher
than that of β-carotene. The oxidant capacity seems to relate to
both the length of the CDB and the presence of the function
group. The antioxidant capacity of the carotenoids increases with
increased extension and maximum overlap of the CDB molecu-
lar orbitals (Albrecht et al., 2000; Tian et al., 2007). BR molecule
contains 13 CDB, which are much more than the nine CDB of
the β-carotene. Therefore, the BR would be a good DPPH radical
scavenger.

DISCUSSION
In the present study, we extracted the carotenoid pigments occur-
ring in Haloarcula japonica and identified them. This is the first
report concerned with the carotenoids produced by the extremely
halophilic archaeon Haloarcula japonica. The production of
carotenoids from Haloarcula japonica is very attractive. Previ-
ous data suggested that the C50-carotenoids found in halophilic
archaea may be incorporated in membranes due to their length,
and that their two polar end-groups may facilitate the adjust-
ment to such membranes; moreover, it has been reported that
baterioruberin reinforces the lipid membrane of Halobacterium
spp.(Ourisson and Nakatani, 1989).

In addition, the carotenoids synthesized by these microorgan-
isms have a function to protect their cells against the lethal actions
of ionizing radiation, UV radiation, and hydrogen peroxide (Shah-
mohammadi et al., 1998). Saito et al. (1997) have extracted BR

FIGURE 3 | Radical scavenging activities of BR and β-carotene against

DPPH radicals. White bars, β-carotene; Black bars, BR.

from Rubrobacter radiotoleranse. They studied the OH scaveng-
ing effect using a system of thymine degradation and compared
with that of β-carotene. These results have shown that the OH
radical scavenging ability of BR was much higher than that of
β-carotene. In this work, the scavenging capacity of BR extracted
from Haloarcula japonica toward DPPH free radicals was mea-
sured. BR exhibited higher DPPH free radical scavenging than
β-carotene. The present result was consistent with the previous
study.

Since the carotenoids produced by halophilic archaea can play
both roles of membrane stabilization and protection against oxi-
dizing agents, these compounds are essential for the survival of
such microorganisms. In order to clarify the function of BR in vivo,
further studies using of BR-deficient Haloarcula japonica mutant
were needed.
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