LETTER TO THE EDITOR

RESEARCH STUDIES

Relationship between age-related hearing loss and consumption of coffee and tea

Dear Editor,

Age-related hearing loss (ARHL) is a common problem in older individuals, characterized by deterioration of speech understanding, and leading to communication difficulties that might contribute to social isolation, depression and dementia. ${ }^{1,2}$ Previous studies have suggested various controversial risk factors for ARHL, including noise exposure, smoking, diabetes, dyslipidemia, cardiovascular disease and dietary patterns. ${ }^{3,4}$ Here, we investigated lifestyle factors associated with ARHL, focusing on beverage consumption, such as coffee and tea, as a source of anti-oxidants in daily diets.

The data for the present cross-sectional study were obtained from the 18 K TMM CommCohort Study carried out by Tohoku University Tohoku Medical Megabank Organization. ${ }^{5}$ Overall, 17123 individuals were included between April 2013 and April 2016. Those excluded were: aged >80 years, aged <60 years and with a history of chronic otitis media. We evaluated whether participants heard a 30-dB HL signal at 1000 Hz and a $40-\mathrm{dB}$ HL signal at 4000 Hz using an audiometer (AA-H1; RION) and a soundproof booth (AT-66; RION), which are levels designated by the Japanese Industrial Safety and Health Law for workers' health examinations. We also excluded participants with hearing laterality and those that could hear a 4000 Hz signal rather than a 1000 Hz signal. The normal group comprised those that heard both 1000 and 4000 Hz signals in both ears, and the hearing loss group comprised those that did not hear 4000 Hz signals in both ears.

The Ethical Research Committee of the Tohoku University Graduate School of Medicine approved this study (2022-1-010).

The differences between the normal hearing and hearing loss groups in the univariate analyses were evaluated using $\chi^{2}-$ tests (Table S1). Subsequently, we carried out a multivariate logistic regression analysis using participants without missing data. Explanatory variables were selected based on clinically essential factors from previous studies, factors showed significant differences in the univariate analysis, and factors associated with beverage consumption. ${ }^{2,3}$ We confirmed these covariates were not correlated with each other (Table S2). All statistical analyses were carried out using R Statistical Software version 4.2.1 (The R Foundation for Statistical Computing, Vienna, Austria), and a two-tailed $P<0.05$ was considered statistically significant.

Overall, 5413 participants (1746 men and 3667 women) were included in the multivariate analyses (Table 1). Significant associations were found for the following factors: the male hearing loss group was older, had more family history for hearing loss, more occupations with noise exposure, higher Center for Epidemiologic Studies Depression Scale scores, fewer remaining teeth, a lower percentage of drinkers, less coffee consumption and more black
tea consumption; the female hearing loss group was older, had a family history of hearing loss and fewer remaining teeth.

The proportion of participants with high coffee consumption was significantly lower in the male hearing loss group, which is consistent with those of previous reports. ${ }^{6,7}$ Considering that coffee is a major source of anti-oxidant compounds in diets, antioxidants from coffee might reduce oxidative stress and preserve hearing. ${ }^{7}$ However, the exact amount of coffee, mode of coffee intake (such as instant, brewed) and accompanying factors (such as sugar and sugar substitutes) were not analyzed. Further detailed studies are required to elucidate the association between coffee consumption and ARHL.

Green, oolong and black teas are obtained from tea leaves collected from Camellia sinensis. These teas have anti-oxidant properties, due to the presence of polyphenols. A large prospective cohort study reported an inverse association between green tea consumption and total mortality. ${ }^{8}$ We evaluated the association between green tea consumption and ARHL for the first time, and found no significant association in the multivariable analysis. As the present study did not analyze the precise amount of tea consumed and accompanying factors, including the addition of sugar and foods served with tea, prospective studies are needed to determine the causal relationship between tea consumption and ARHL.

Oral health has been the focus of significant attention, because many studies have shown the relationship between the number of healthy teeth and longevity. ${ }^{9}$ A recent study emphasized that a higher degree of tooth loss was associated with an increased prevalence of hearing loss, which is consistent with the present results. ${ }^{10}$ Although the underlying mechanisms have not been elucidated, the peripheral deafferentation of the stomatognathic system caused by tooth loss might reorganize the sensory and motor cortex, resulting in the triggering and aggravation of neurodegeneration. ${ }^{11}$ Considering that the number of teeth is affected by oral health, general condition, and individual concepts of health and hygiene, multifaceted studies are required to clarify the causal relationship between ARHL and the number of remaining teeth.

The present study had several limitations. First, as the study design was cross-sectional, causal relationships could not be discussed. Second, we could not evaluate the hearing loss severity, because threshold determination was not carried out. Finally, because we recruited volunteers, we cannot deny the possibility that well-concerned participants were selected. Prospective studies with threshold determination are required for more detailed and accurate evaluations.

In conclusion, various factors, including lower coffee consumption and fewer remaining teeth, were associated with ARHL. We found no significant association between green tea consumption and ARHL.
Table 1 Factors associated with age-related hearing loss

	Male					$n=1746$	Female					$n=3667$
	Univariate				Multivariate		Univariate				Multivariate	
	No. normal cases (\%)	No. hearing loss cases (\%)	Odds ratio $(95 \% \mathrm{CI})$	P-value	Odds ratio (95\% CI)	P-value	No. normal cases (\%)	No. hearing loss cases (\%)	Odds ratio (95\% CI)	P-value	Odds ratio (95\% CI)	P-value
Age (years)												
60-64	402 (80.4\%)	98 (19.6\%)	1.00	-	1.000	-	1422 (97.5\%)	36 (2.5\%)	1.00	-	1.000	-
65-69	500 (74.7\%)	169 (25.3\%)	1.39 (1.04-1.86)	0.027*	1.44 (1.07-1.92)	0.014*	1268 (94.4\%)	75 (5.6\%)	2.34 (1.54)	<0.01**	2.23 (1.48-3.37)	<0.01**
70-74	238 (58.5\%)	169 (41.5\%)	2.91 (2.14-3.96)	<0.01**	2.84 (2.08-3.88)	<0.01**	579 (87.7\%)	81 (12.3\%)	5.52 (3.64-8.52)	<0.01**	5.23 (3.45-7.94)	<0.01**
75-79	76 (44.7\%)	94 (55.3\%)	5.06 (3.43-7.50)	<0.01**	4.51 (3.04-6.70)	<0.01**	162 (78.6\%)	44 (21.4\%)	10.7 (6.52-17.7)	<0.01**	9.54 (5.83-15.61)	<0.01**
History of cardiovascular disease												
No	1041 (70.7\%)	431 (29.3\%)	1.00	-	1.000	-	3208 (93.9\%)	208 (6.1\%)	1.00	-	1.000	-
Yes	175 (63.9\%)	99 (36.1\%)	1.37 (1.03-1.80)	0.026*	1.21 (0.90-1.62)	0.2	223 (88.8\%)	28 (11.2\%)	1.94 (1.23-2.96)	<0.01**	1.52 (0.98-2.35)	0.06
Family history												
No	1164 (70.2\%)	493 (29.8\%)	1.00	-	1.000	-	3257 (93.9\%)	212 (6.1\%)	1.00	-	1.000	-
Yes	52 (58.4\%)	37 (41.6\%)	1.68 (1.06-2.65)	0.025*	2.09 (1.32-3.31)	<0.01**	174 (87.9\%)	24 (12.1\%)	2.12 (1.29-3.34)	<0.01**	2.66 (1.65-4.27)	<0.01**
Occupations with noise exposure												
No	1101 (70.7\%)	457 (29.3\%)	1.00	-	1.000	-	3275 (93.6\%)	224 (6.4\%)	1.00	-	1.000	-
Yes	115 (61.2\%)	73 (38.8\%)	1.53 (1.10-2.11)	<0.01**	1.74 (1.25-2.43)	<0.01**	156 (92.9\%)	12 (7.1\%)	1.12 (0.56-2.06)	0.825	1.35 (0.72-2.53)	0.35
METs												
Q1	302 (69.6\%)	132 (30.4\%)	1.00	-	1.000	-	791 (93.6\%)	54 (6.4\%)	1.00	-	1.000	-
Q2	326 (73.4\%)	118 (26.6\%)	0.83 (0.61-1.12)	0.236	0.84 (0.62-1.15)	0.28	878 (94.4\%)	52 (5.6\%)	0.87 (0.57-1.31)	0.542	0.91 (0.60-1.36)	0.63
Q3	316 (71.7\%)	125 (28.3\%)	0.91 (0.67-1.22)	0.55	0.92 (0.68-1.26)	0.62	880 (92.9\%)	67 (7.1\%)	1.15 (0.76-1.65)	0.630	1.20 (0.82-1.76)	0.36
Q4	272 (63.7\%)	155 (36.3\%)	1.30 (0.97-1.75)	0.079	1.24 (0.91-1.68)	0.17	882 (93.3\%)	63 (6.7\%)	1.05 (0.71-1.55)	0.889	1.12 (0.76-1.66)	0.57
CES-D												
<16	1079 (71.0\%)	440 (29.0\%)	1.00	-	1.000	-	2683 (93.6\%)	184 (6.4\%)	1.00	-	1.000	-
≥ 16	137 (60.4\%)	90 (39.6\%)	1.61 (1.19-2.17)	<0.01**	1.54 (1.13-2.09)	<0.01**	748 (93.5\%)	52 (6.5\%)	1.01 (0.72-1.40)	0.998	0.94 (0.68-1.32)	0.74
No. teeth												
≥ 20	876 (72.2\%)	337 (27.8\%)	1.00	-	1.000	-	2381 (94.8\%)	131 (5.2\%)	1.00	-	1.000	-
10-19	226 (70.4\%)	95 (29.6\%)	1.09 (0.82-1.44)	0.567	0.96 (0.72-1.27)	0.77	687 (92.3\%)	57 (7.7\%)	1.51 (1.07-2.10)	0.015*	1.31 (0.94-1.84)	0.11
<9	114 (53.8\%)	98 (46.2\%)	2.23 (1.64-3.04)	<0.01**	1.72 (1.25-2.37)	<0.01**	363 (88.3\%)	48 (11.7\%)	2.40 (1.66-3.44)	<0.01	1.73 (1.20-2.50)	<0.01**
Alcohol consumption												
No	217 (60.8\%)	140 (39.2\%)	1.00	-	1.000	-	2022 (92.8\%)	157 (7.2\%)	1.00	-	1.000	-
Yes	999 (71.9\%)	390 (28.1\%)	0.61 (0.47-0.78)	<0.01**	0.74 (0.57-0.96)	0.022*	1409 (94.7\%)	79 (5.3\%)	0.72 (0.54-0.96)	0.026*	0.77 (0.57-1.02)	0.068
Coffee												
≤ 2 times a week	252 (64.1\%)	141 (35.9\%)	1.00	-	1.000	-	630 (93.5\%)	44 (6.5\%)	1.00	-	1.000	-
3-7 times a week	457 (68.5\%)	210 (31.5\%)	0.82 (0.63-1.08)	0.16	0.89 (0.67-1.18)	0.41	1250 (92.8\%)	97 (7.2\%)	1.11 (0.76-1.65)	0.64	1.15 (0.78-1.69)	0.47
≥ 2 times a day	507 (73.9\%)	179 (26.1\%)	0.63 (0.48-0.83)	<0.01**	0.74 (0.55-0.98)	0.034*	1551 (94.2\%)	95 (5.8\%)	0.88 (0.60-1.30)	0.55	1.13 (0.77-1.67)	0.52
Green tea												
≤ 2 times a week	351 (73.4\%)	127 (26.6\%)	1.00	-	1.000	-	653 (94.9\%)	35 (5.1\%)	1.00	-	1.000	-
3-7 times a week	381 (70.3\%)	161 (29.7\%)	1.16 (0.88-1.55)	0.298	1.09 (0.81-1.45)	0.57	888 (94.5\%)	52 (5.5\%)	1.09 (0.69-1.75)	0.778	0.99 (0.63-1.57)	0.98
≥ 2 times a day	484 (66.7\%)	242 (33.3\%)	1.38 (1.06-1.80)	0.015*	1.18 (0.90-1.55)	0.23	2890 (95.1\%)	149 (4.9\%)	0.85 (0.65-1.45)	0.917	1.13 (0.76-1.67)	0.56

Table 1 Continued

Acknowledgements

We thank Editage (www.editage.jp) for the English language editing.

This study was supported by the Food and Health Research Fellowship Program of the Honjo International Scholarship Foundation.

Disclosure Statement

JS received research grants from Honjo International Scholarship Foundation. The other authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Gosuke Watarai, ${ }^{1}$ Jun Suzuki, ${ }^{1}$ (D) Ikuko N Motoike, ${ }^{2}$ Miyuki Sakurai, ${ }^{2}$ Ryoukichi Ikeda, ${ }^{3}$ Tetsuaki Kawase, ${ }^{1,4}$ Kengo Kinoshita, ${ }^{2,5,6}$ Atsushi Hozawa, ${ }^{2}$ Shinichi Kuriyama, ${ }^{2,7}$ Nobuo Fuse, ${ }^{2}$ Masayuki Yamamoto ${ }^{2}$ and Yukio Katori ${ }^{1}$
${ }^{1}$ Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
${ }^{2}$ Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
${ }^{3}$ Department of Otolaryngology-Head and Neck Surgery, Iwate Medical University, Iwate, Japan ${ }^{4}$ Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
${ }^{5}$ Advanced Research Center for Innovations in NextGeneration Medicine, Tohoku University, Sendai, Japan ${ }^{6}$ Department of System Bioinformatics, Tohoku University Graduate School of Information Sciences, Sendai, Japan
${ }^{7}$ International Research Institute of Disaster Science, Tohoku University, Sendai, Japan

References

1 Livingston G, Huntley J, Sommerlad A et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 2020; 396: 413-446.
2 Gates GA, Mills JH. Presbycusis. Lancet 2005; 366: 1111-1120.
3 Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res 2013; 303: 30-38.
4 Curhan SG, Halpin C, Wang M, Eavey RD, Curhan GC. Prospective study of dietary patterns and hearing threshold elevation. Am J Epidemiol 2020; 189: 204-214.
5 Kuriyama S, Yaegashi N, Nagami F et al. The Tohoku Medical Megabank project: design and mission. J Epidemiol 2016; 26: 493-511.
6 Lee SY, Jung G, Jang MJ et al. Association of coffee consumption with hearing and tinnitus based on a national population-based survey. Nutrients 2018; 10: 1429.
7 Machado-Fragua MD, Struijk EA, Yévenes-Briones H, Caballero FF, Rodríguez-Artalejo F, Lopez-Garcia E. Coffee consumption and risk of hearing impairment in men and women. Clin Nutr 2021; 40: 34293435.

8 Saito E, Inoue M, Sawada N et al. Association of green tea consumption with mortality due to all causes and major causes of death in a Japanese
population: the Japan Public Health Center-based Prospective Study (JPHC Study). Ann Epidemiol 2015; 25: 512-518.
9 Watanabe Y, Okada K, Kondo M, Matsushita T, Nakazawa S, Yamazaki Y. Oral health for achieving longevity. Geriatr Gerontol Int 2020; 20: 526-538.
10 Tanaka K, Okada M, Kato H et al. Higher number of teeth is associated with decreased prevalence of hearing impairment in Japan. Arch Gerontol Geriatr 2021; 97: 10450.
11 Jou YT. Dental deafferentation and brain damage: a review and a hypothesis. Kaohsiung J Med Sci 2018; 34: 231-237.

Supporting Information

Additional supporting information may be found in the online version of this article at the publisher's website:

Table S1. Characteristics of the study population and results of univariate analyses.

Table S2. Correlation matrix among variables.

How to cite this article: Watarai G, Suzuki J, Motoike IN, et al. Relationship between age-related hearing loss and consumption of coffee and tea. Geriatr. Gerontol. Int. 2023;1-4. https://doi.org/10.1111/ggi. 14589

