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Recent advancement in artificial intelligence (AI) facilitate the development of AI-powered
medical imaging including ultrasonography (US). However, overlooking or misdiagnosis of
malignant lesions may result in serious consequences; the introduction of AI to the
imaging modalities may be an ideal solution to prevent human error. For the development
of AI for medical imaging, it is necessary to understand the characteristics of modalities on
the context of task setting, required data sets, suitable AI algorism, and expected
performance with clinical impact. Regarding the AI-aided US diagnosis, several
attempts have been made to construct an image database and develop an AI-aided
diagnosis system in the field of oncology. Regarding the diagnosis of liver tumors using US
images, 4- or 5-class classifications, including the discrimination of hepatocellular
carcinoma (HCC), metastatic tumors, hemangiomas, liver cysts, and focal nodular
hyperplasia, have been reported using AI. Combination of radiomic approach with AI is
also becoming a powerful tool for predicting the outcome in patients with HCC after
treatment, indicating the potential of AI for applying personalized medical care. However,
US images show high heterogeneity because of differences in conditions during the
examination, and a variety of imaging parameters may affect the quality of images; such
conditions may hamper the development of US-based AI. In this review, we summarized
the development of AI in medical images with challenges to task setting, data curation,
and focus on the application of AI for the managements of liver tumor, especially for
US diagnosis.
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INTRODUCTION

Artificial intelligence (AI) is generally considered as the intelligence performed by compactional
statistics, where machine learning is a subset of AI. Recently, AI is emerging as a major constituent
in the field of medicine and healthcare. In particular, AI can be easily applied to imaging data
because these data are electronically organized, and AI excels at recognizing unique and complex
features of images and facilitates quantitative assessments in an automated fashion. This
characteristic of AI is ideal in the constrained clinical setting wherein medical staff must
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interpret large image datasets based on their visual perception
with uncertainty, in which human errors are inevitable. For
example, AI is a powerful tool in radiomics where extracting a
large number of features form medical images is required. Based
on this advantage, AI have been applied for classification of
lesions, such as liver tumors, and prediction of the prognosis
using image data from computed tomography and magnetic
resonance imaging (MRI) (1). In addition, AI-based image
processing techniques have also introduced in the field of
ultrasonography (US). This review shows the recent progress
in AI for medical imaging, especially for an AI-aided diagnosis
for the detection, characterization, subsequent monitoring, and
prediction of outcomes in patients with liver cancer, especially in
the field of US diagnosis.
HISTORY AND RECENT PROGRESS OF AI
IN MEDICAL IMAGING

The application of pattern recognition in medical issues has been
proposed in the early 1960s. In the 1980s, the prevalence of
computers induced the development of medical AI in radiology
using a quantitatively computable domain. After the emergence
of deep neural network, the rate at which AI is evolving radiology
is rapidly growing that is proportional to the growth of data
volume in medical image and computational power (2).

For the image analysis, a convolutional neural network (CNN) is
commonly applied, which is a class of deep neural networks using
pixel value and assembling complex patterns to smaller and simpler
patterns (2). The algorism contains multiped hidden layer with
multiple convolutional and pooling layers. A trained CNN-based AI
model using ≥120,000 retinal fundus images has been demonstrated
to show high performance comparable to that of an experienced
ophthalmologist for detecting referable diabetic retinopathy, which
is expected to effectively assist ophthalmologists in the clinical
workflow (3). Assessment of AI models for detecting lymph node
metastasis of breast cancer based on whole microscopic slide images
showed the superior performance of AI for detecting cancer cells in
specimens to that of pathologists (4). A pre-trained CNN-based AI
model for the diagnosis of skin cancer achieves performance on
par with that by expert dermatologists in terms of the
discrimination of skin cancers from corresponding benign
lesions on dermography (5). AI models for the detection of
pediatric pneumonia on chest radiography images and for the
discrimination of diabetic macular edema from age-related
macular degeneration on optical coherence tomography images
are also reported with high performance, comparable to that of
human experts (6). An AI-based colonoscopy system has been
shown to accurately differentiate neoplastic lesions from non-
neoplastic lesions on stained endocytoscopic images and
endocytoscopic narrow-band images in endoscopic evaluation
of small colon polyps (7). The application of AI for US-based
diagnosis has been mainly reported for the diagnosis of
malignant tumors, such as mammary and thyroid cancers (8–
11). Le et al. reported an AI model for the diagnosis of thyroid
cancer pre-trained with 312,399 B-mode US images of cancer
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and healthy controls (12). The model’s diagnostic performance
was validated in three test datasets with AUCs of 0.908–0.947.
The AI model showed higher specificity in identifying thyroid
cancer and comparable sensitivity to those corresponding to
experienced radiologists. Another report described a real-time
detection system of thyroid tumors based on real-time images
using the “You Only Look Once” (YOLO) algorithm. This model
achieved a similar sensitivity, positive predictive value, negative
predictive value, and accuracy for the diagnosis of malignant
thyroid tumors with higher specificity compared to those
corresponding to experienced radiologists (12, 13). For the
detection of breast cancer, Kumar et al. reported a real-time
segmentation model of breast tumors using a CNN (14). This
system can reportedly segment tumor images in real-time,
suggesting its potential for clinical applications. Collectively,
diagnostic accuracy of well-trained AI model for medical
image is, at least, on par with human experts with much
quicker output, suggesting the higher efficiency for diagnosis in
clinical setting.

On the other hand, recently, Skrede et al. reported the use of
AI for the prediction of outcomes after colorectal cancer
resection using a pre-trained CNN-based model with
pathological images (15). They discriminated the cases of poor
prognosis from those of good prognosis, indicating the potential
of medical AI for the management of cancer, such as the
identification of patients who would benefit from adjuvant
treatment after resection.
PROCESS FOR DEVELOPING AI MODELS
FOR IMAGING DIAGNOSIS

Setting Tasks for AI in Medical Imaging
For the development of AI in medical imaging, it is important to
select tasks that reflect important needs at clinical sites. For
example, large-volume screening of medical images requires
extensive effort, which is time consuming and invites human
errors. In this setting, AI should be a powerful tool for clinicians
because of its advantageous for precise detection of subtle
features of lesions, segmentation, and quick output. AI models
that can estimate the risk of disease may contribute to avoiding
invasive examinations, representing an attractive task (16).

Data Sets for Developing AI Models
for Medical Images
Generally, three independent datasets are required for
developing medical AI (17). A training set is required for the
training of AI models, which contains many images to update
model parameters. A tuning set is for the selection of a model’s
hyperparameters that are necessary for the best expected output.
A test set is for the final assessment of the performance of AI
models. The splitting of curated data must be clean, and each
dataset should be completely independent without any overlap
with respect to lesions to avoid overfitting the output.

For disease classification, such as that corresponding to
diagnosis, the data volume in each subclass should be similar
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because imbalances in data volumes among subclasses may lead
to overfitting of the output, which may limit the performance of
an AI model. For the image of rare diseases, the AI-based image
created through generative adversarial networks might also
be applicable.

AI Algorithm
During training, AI models automatically detect specific features
of images through the fitting of model parameters, which
improves the performance. CNNs are commonly applied for
AI algorithm of imaging data (2). However, US examinations
require real-time output, and an algorithm that requires many
mathematical operations might not be appropriate for analyzing
US images. The YOLO-based algorithm is suitable for the real-
time detection and classification of lesions with high-speed
processing. The process of selecting a model’s architecture and
training essentially involves a balance between model
underfitting and overfitting (17). Underfitting occurs when a
low-capacity model is used relative to the problem complexity
and data size. Overfitting indicates that the evaluation
overestimates the model’s performance on previously
unencountered data, in which case low performance on the
test set is observed. Because there is a large diversity among
US images in terms of the conditions of the examination and
image parameter settings, larger volumes of data are required
compared to those required for the development of other
medical imaging AI.

Evaluation of Performance and
Potential Impact
One of the major categories of evaluation of AI-aided imaging
diagnosis is the ability to discriminate the lesions, such as benign
or malignant. The area under the receiver operating characteristic
curve (AUC) is commonly used as a threshold-free discriminative
metric. Evaluation may also be based on other metrics, such as
sensitivity (recall), specificity, and precision (positive predictive
value); these are threshold-dependent. On the other hand,
calibration, which evaluates how effectively the predicted
probability matches the actual diagnosis should also be
estimated (17). In addition, variability in the probability in the
same lesion may also need to be analyzed because there can be
variations among US images even within the same lesion, which is
attributed to differences in parameter settings. Validation for
accuracy is a critical process in the transitional process of
medical AI. The performance of AI models must be evaluated
using independent test cohorts and be compared with an
experienced human control in real-world scenarios.
CURRENT AI MODELS FOR MEDICAL
IMAGING OF LIVER LESIONS

AI Using Medical Image for the
Management of Liver Tumors
Recently, many reports have described the development of AI
models for the detection and diagnosis of liver tumors; some
Frontiers in Oncology | www.frontiersin.org 3
studies have aimed to predict outcomes after treatments, which
may be applicable for the personalized management of patients
(18, 19).

Hamm et al. reported the classification of 6 types of liver
tumors by a pre-trained CNN using MRI data of 494 lesions from
334 cases (20). After data augmentation of the images for training,
the established AI model demonstrated 90% sensitivity and 98%
specificity for the test cohort. The average sensitivity and
specificity for the radiologist were 82.5 and 96.5%, respectively.
For the diagnosis of hepatocellular carcinoma (HCC), the
sensitivities were 90% for the AI model and 60–70% for the
radiologists. Considering the short processing time (only 6.6 ms)
for output, the pre-trained AI model showed superior
performance compared to that of the human radiologists.

On the other hand, AI is also useful for the detection of
specific radiological features that may reflect histopathological
characteristics associated with the biological behavior of a tumor.
From this point of view, the development of AI for the prediction
of outcomes after treatment, including tumor recurrence after
surgery, may be possible. If pathological diagnosis is applied for
constructing an AI model for medical imaging, it may be a non-
invasive substitute for biopsy, which may significantly impact the
management of cancer. Fent et al. reported a preoperative
prediction model for microvascular invasion in patients with
resectable HCC who do not show macroscopic vascular invasion
through training using gadolinium-ethoxybenzyl (EOB)-
diethylenetriamine-enhanced MRI data (21). The AI model
selected ten specific features of EOB-enhanced MRI data to
predict microvascular invasion. The performance of the AI
model showed an AUC of 0.83 with 90.0, 75.0, and 84.0%
sensitivity, specificity, and accuracy, respectively, which were
much better than those of human radiologists. Kim et al.
reported an AI model for the prediction of early and late
recurrence of tumors after surgery using EOB-MRI data from
solitary HCC cases (22). They established their AI model using a
random survival forest to predict disease-free survival and found
that peritumoral image features 3 mm outside the tumor border
are important for the prediction of early recurrence after
curative surgery.

AI Using Histopathological Images
for Diagnosis and Management
of Liver Cancers
It has also been reported that an AI model pre-trained with
histopathological images of liver cancer using transfer learning
can distinguish cancerous tissue from healthy liver tissue (23).
Saillard et al. showed that a deep-learning model of
histopathological images predicts survival after resection of
HCC (24). They developed two kinds of AI models pre-trained
with supervised image data, which was annotated based on the
tumor portion in the slide images by pathologists, and non-
supervised data without human annotations. The concordance
indices for survival prediction were 0.78 and 0.75 for the pre-
trained AI models with supervised and non-supervised data,
respectively. Reportedly, these histopathological AI models
showed a higher discriminatory power than that derived from
December 2020 | Volume 10 | Article 594580
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a combination of known clinical risk factors. Some pathological
findings, including vascular space, a macrotrabecular pattern of
tumor cell architecture, a high degree of cytological atypia, and
nuclear hyperchromasia, effectively predicted poor survival, and
immune infiltrates and fibrosis in tumor and non-tumor tissues
were associated with a low risk of short survival. These studies
indicate that histopathological images yield useful training data
for the prediction of prognosis in HCC cases (25).
AI-Aided Diagnosis for Liver Tumors
in Ultrasonography
Generally, US images are heterogeneous because of the multiple
image parameters and conditions of examination compared to
other kind of medical images. Such heterogeneity of image data
makes it difficult to develop the AI for US diagnosis, especially
for liver tumors (18).

AI models are trained using cropped images of regions of
interest that specifically focus on tumors for applying neural
network and can be evaluated using cross-validation methods for
small sample cohorts. The studies regarding the application of B-
mode US images on machine learning for the diagnosis of liver
tumor are summarized in Table 1. Virmani et al. reported the
machine learning for discriminating HCC and metastatic liver
tumor using support vector machine (SMV), where overall
accuracy was 91.6 %; sensitivity of 90% for HCC and 93.3% for
metastatic tumor were achieved (26). Hwang et al. tried to extract
textural features of liver tumors including cysts, hemangiomas,
and malignant lesions for the diagnosis; they examined the
accuracy of two-class discriminations for cyst vs. hemangioma,
cyst vs. malignant tumor, and hemangioma vs. malignant tumor,
demonstrating the accuracy of more than 95% for each
comparison (28). On the other hand, the study using artificial
neural network (ANN) show 4-class discrimination for normal
liver, cyst, hemangioma, and HCC: accuracy of almost 90%, and
similar levels of sensitivity, and specificity are reported (29).
Generally, these early studies failed to show the superiority of
neural network for the diagnostic accuracy of liver tumors
compared to the conventional machine learning because of the
small size of learning cohort. Schmauch et al. reported the
performance of an AI model for the diagnosis of liver tumors
from B-mode US images (30). They reported an AI model for
lesion detection and diagnosis from whole-liver US images using
a 50-layer residual network. Despite the relatively small volume
of training data, the performance for tumor detection and 5-class
discrimination (HCC, metastatic tumors, hemangiomas, cysts,
and focal nodular hyperplasia) achieved considerable AUCs
(0.953 and 0.916) for tumor detection and discrimination,
respectively, by cross validation. To reduce the heterogeneity of
the US images, they cropped the images maximally to remove the
black borders and standardize the aspect ratio. They also
performed rescaling of the image intensity for normalization
based on the intensity of the abdominal wall.

In addition to the gray scale B-mode US, doppler US,
contrast-enhanced US (CEUS), shear wave elastography (SWE)
and three-dimensional US images are also applicable for the
Frontiers in Oncology | www.frontiersin.org 4
training of AI models. Still image of contrast-enhanced US
(CEUS) was applied for the learning data for more accurate
discrimination of liver tumors. Streba et al. applied ANN for 4-
class discrimination of liver tumor with 94.5, 94.2, and 89.7% for
accuracy, sensitivity and specificity, respectively, for the
discriminaton (31). Gatos et al. and Kondo et al. reported the
4-class classification of benign tumors, hepatocellular carcinoma,
and metastatic tumors using SMV pretrained with CEUS images
(32, 33). A contrast agent, Sonazoid, was used and, reportedly,
sensitivity, specificity, and accuracy that discriminate malignant
lesions from benign were 94.0, 87.1, and 91.8%, respectively (33).
Another report applied a pretrained SMV using CEUS images
and achieved the accuracy, sensitivity, and specificity of 90.4,
93.6, and 86.9%, respectively, for the different diagnosis of benign
and malignant liver tumors (34). Discrimination of benign and
malignant lesions is a critical task for the management of patients
with liver tumors, and CEUS images yield attractive data for the
development of AI models to detect malignant tumors.

On the other hand, because of the development of new
treatments in HCC, management of this type of cancer is
becoming complex (39). Recently, in addition to detection and
diagnosis, AI model regarding the management of HCC, such as
prediction of microvascular invasion, pathological grading, and
treatment outcomes have been reported. Hu et al. proposed US-
based radiomics score consisted of six selected features was an
independent predictor of microvascular invasion in HCC (35).
On the other hand, model for predicting pathological grading of
HCC before surgery was also reported using ultrasomics of
CEUS images (36). Liu et al. developed an AI model for the
prediction of responses to transarterial chemoembolization in
patients with HCC through training with B-mode US and CEUS
images (37). They reported AUCs of 0.93 and 0.81 for the AI
based on CEUS and B-mode US images, respectively, indicating a
higher performance of the model pre-trained with CEUS images
than that with B-mode US images. They also reported AI models
for predicting outcomes in patients with HCC after two types of
treatment—radiofrequency ablation (RFA) and liver resection—
from radiomics information based on CEUS images (38). For the
prediction of two-year progression-free survival (PFS), both
models provided high prediction accuracy. Interestingly, the
models showed that some patients who underwent RFA and
surgery should swap their treatments, so that a higher probability
of increased 2-year PFS would be achieved. In addition, another
report showed radiomic signature from grayscale US images of
gross-tumoral region had potential for prediction of microvascular
invasion of HCC before surgery, suggesting the potential of
radiomic approach for the prediction of outcome (40). Such AI
prediction models using radiomic signature may be applicable for
personalized medicine in HCC treatment.

The grading of liver fibrosis and steatosis is also an important
task for the management of liver disease because these
backgrounds may confer a risk of liver cancer. Several reports
have described the classification of fibrosis and steatosis based on
disease progression using AI models trained with B-mode US
and SWE images (18, 41). Deep-learning models show hyper-
performance in terms of detection and risk stratification of fatty
December 2020 | Volume 10 | Article 594580
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liver disease compared to that corresponding to conventional
machine-learning models (42). AI models pre-trained with color
images of US-SWE can also discriminate chronic liver disease
from healthy cases (43). Reportedly, the combination of B-mode
US images, raw radiofrequency data, and dynamic contrast-
enhanced microflow is a useful dataset for developing AI
models that classify the stage of liver fibrosis (44), where
datasets involving raw radiofrequency data provide better
Frontiers in Oncology | www.frontiersin.org 5
predictive value than those from conventional US image only.
Therefore, it should be possible that AI using multiparametric
ultrasomics can help improve the performance of the model. For
the development of AI that determine the stage of liver fibrosis
more accurately, Gatos et al. reported a detection algorithm that
excludes unreliable regions on SWE images, which contributes to
a reduction in interobserver variability (45). Applying these AI
models may be an alternative to invasive liver biopsy for
TABLE 1 | Performance for diagnosis of liver tumor based on the machine learning using image of ultrasonography.

Algorism Liver lesions:number of the cases Performance References

Pre-trained AI using B-mode US images
SVM normal liver: 15

cirrhotic liver: 16
HCC: 25

accuracy: 88.8% (26, 27)

SVM HCC: 27
metastatic tumor: 27

overall accuracy: 91.6%
sensitivity:
90% for HCC
93.3% for metastatic carcinoma

(26)

ANN cyst; 29
hemangioma: 37
malignant tumor: 33

cyst vs. hemangioma
accuracy: 99.7%
cyst vs. malignant
accuracy: 98.7%
hemangioma vs. malignant
accuracy: 96.1%

(28)

ANN (sparse
autoencoder)

normal liver: 16
cyst: 44
hemangioma: 18
HCC: 30

accuracy: 90.5%
sensitivity: 91.6%
specificity: 88.5%

(29)

CNN non-tumorus liver: 258
hemangioma: 17
metastatic tumor: 48
HCC: 6
cyst: 30
focal nodular hyperplasia: 8

AUC for tumor detection: 0.935
AUC for tumor discrimination: 0.916 (mean)

(30)

Pre-trained AI using CEUS images
ANN hemangioma: 16

focal fatty liver: 23
HCC: 41
metastatic tumor: 32
hypervascular: 20
hypovascular: 12

accuracy: 94.5%
sensitivity: 93.2%
specificity: 89.7%

(31)

SVM benign tumor: 30
malignant tumor: 22

accuracy: 90.3%
sensitivity: 93.1%
specificity: 86.9%

(32)

SVM benign tumor, HCC, or metastatic
tumor 98

benign vs. malignant
accuracy: 91.8%
sensitivity: 94.0% specificity: 87.1%
benign vs. HCC vs. metastatic carcinoma
accuracy: 85.7%
sensitivity: 84.4% specificity: 87.7%

(33)

SVM (multiple kernel
learning)

benign tumor: 46
malignant tumor: 47

accuracy: 90.4%
sensitivity: 93.6%
specificity: 86.9%

(34)

Logistic regression
analyses

Solitary HCC without macrovascular
invasion: 468

Prediction of microvascular invasion using ultrasomics feature: AUC = 0.731 (35)

SVM HCC: 235
High-grade: 65
Low-grade: 170

Discrimination of HCC pathological grades using ultrasomics and clinical factors:
AUC = 0.785

(36)

CNN HCC before TACE: 130 Prediction of response to TACE: AUC = 0.93 (37)
CNN HCC: 419

patients who underwent RFA; 214
patients who underwent resection; 215

prediction of RFS for 2 years after curative treatment
C-index 0.726 for RFA
C-index 0.726 for resection

(38)
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predicting the progression of liver disease, which may be
associated with a risk of liver cancer.
CONCLUSION

Among the imaging modalities, US is the most commonly used in
clinical practice for detection of liver tumors because of its low-
cost, non-ionizing, and portable point-of-care characteristics
providing real-time images. From this point of view, the AI-
powered US carries more advantage in routine clinical
applications compared to that in CT and MRI (46). Although,
US images involve operator-, patient-, and scanner-dependent
variations, AI-aided US diagnosis is becoming mature that is
attributed to the recent advancement in the US equipment and
increase in computing power to identify the complex imaging
features. In addition to the B-mode image, images from CEUS and
US elastography is becoming promising data applicable in AI-
based diagnosis in the field of liver tumor according to the
prevalence of high-end US equipment (46, 47). These could also
Frontiers in Oncology | www.frontiersin.org 6
be a safeguard for misdiagnosis in the actual workflow. The
development of AI-aided technologies for the detection and
diagnosis of malignant tumors may carry sufficient potential to
reduce cancer-related mortality in the near future.
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