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Abstract

Background Ultrasonography (US) is widely used for the

diagnosis of liver tumors. However, the accuracy of the

diagnosis largely depends on the visual perception of

humans. Hence, we aimed to construct artificial intelli-

gence (AI) models for the diagnosis of liver tumors in US.

Methods We constructed three AI models based on still

B-mode images: model-1 using 24,675 images, model-2

using 57,145 images, and model-3 using 70,950 images. A

convolutional neural network was used to train the US

images. The four-class liver tumor discrimination by AI,

namely, cysts, hemangiomas, hepatocellular carcinoma,

and metastatic tumors, was examined. The accuracy of the

AI diagnosis was evaluated using tenfold cross-validation.

The diagnostic performances of the AI models and human

experts were also compared using an independent test

cohort of video images.
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Results The diagnostic accuracies of model-1, model-2,

and model-3 in the four tumor types are 86.8%, 91.0%, and

91.1%, whereas those for malignant tumor are 91.3%,

94.3%, and 94.3%, respectively. In the independent com-

parison of the AIs and physicians, the percentages of cor-

rect diagnoses (accuracies) by the AIs are 80.0%, 81.8%,

and 89.1% in model-1, model-2, and model-3, respectively.

Meanwhile, the median percentages of correct diagnoses

are 67.3% (range 63.6%–69.1%) and 47.3% (45.5%–

47.3%) by human experts and non-experts, respectively.

Conclusion The performance of the AI models surpassed

that of human experts in the four-class discrimination and

benign and malignant discrimination of liver tumors. Thus,

the AI models can help prevent human errors in US

diagnosis.

Keywords Ultrasonography � Liver tumor � Diagnosis �
Artificial intelligence � Deep neural network

Introduction

With the increase of the aged population, the prevalence of

malignant liver tumors is expected to increase, so an effi-

cient method for screening lesions is imperative [1, 2].

Abdominal ultrasonography (US) is a non-invasive, highly

convenient, and versatile imaging technique that is

commonly used for liver tumor diagnosis. However,

extensive experience in US is required for accurate diag-

noses because of the need to perform real-time recognition

of lesions [3]. From this viewpoint, the lack of experts in

US is an urgent issue in the medical sector that needs to be

addressed because missing and incorrect diagnoses by non-

experts will have serious consequences.

Artificial intelligence (AI) is emerging as a major tool in

the fields of medicine and healthcare, particularly in image

diagnosis [4, 5]. It is easily applied to imaging data because

AI excels in recognizing unique and complex image fea-

tures and facilitates quantitative assessments [6]. This

unique characteristic of AI is ideal for constrained clinical

settings where a medical professional needs to evaluate a

large number of images using visual perception, with some

uncertainties and inevitable human errors. As a result, AI

has been applied to many aspects of medical imaging, such

as computed tomography (CT), magnetic resonance

imaging (MRI), colonoscopy, mammography, and patho-

logical assessment [5–10].

Several reports have been published on machine learn-

ing to assess the diagnosis of liver tumors. Recently, deep

neural networks have become available in the field of

imaging diagnostics. In this context, US supported by AI

will be an ideal device for screening liver lesions, partic-

ularly for the early diagnosis of liver cancer [11]. However,

several issues still need to be resolved before the
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application of AI in US diagnosis because of the specific

nature of US image. For instance, US images are hetero-

geneous with a variety of features, even for the same type

of lesions. US images can be affected by the location of the

lesion, such as the depth from the body surface, and the

patient’s position. In addition, the difference in image

processing, which could vary among equipment, gives rise

to heterogeneity in images. Therefore, a number of

heterogenous image datasets from several institutes are

required to train a neural network to produce a reliable AI

model that can be applied to a clinical setting, which has

not yet been established [12].

In this study, AI models were built using a large number

of B-mode images of liver tumors. We compared the per-

formance of three AI models pretrained with 24,675 ima-

ges, 57,147 images, and 70,950 still B-mode images to

know the improvement of diagnostic accuracies in liver

tumor discrimination based on the increase of training data.

We also compared the diagnostic accuracies between the

AI models and physicians using independent external test

cohorts of video images of liver tumors. We confirmed that

the accuracy of AI in discriminating liver tumors exceeds

that of human experts, indicating that AI models have

sufficient potential for applications in clinical settings.

Materials and methods

Dataset for the training, validation, and test cohorts

of the AI models

This is a multicenter diagnostic study using the B-mode

ultrasound image dataset of liver tumors. The inclusion

criteria for data collection are as follows: (1) Patients’ liver

tumors were detected by B-mode US. (2) The diagnosis of

the liver tumor was confirmed via histology, contrast-en-

hanced computed tomography (CECT), contrast-enhanced

ultrasonography using Sonzoid� (CEUS), or gadolinium-

ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-

EOB-DTPA)-enhanced MRI.

In this study, 94,427 B-mode images of liver tumors

from 29,264 cases were collected from April 1, 2018 to

March 12, 2021 in 11 core medical centers across Japan. Of

these images, 25,495 still B-mode images from 8712 cases

of liver tumors were available by January 20, 2020, where

24,675 images of four types of liver tumors, namely,

hepatocellular carcinoma (HCC), metastatic liver tumor

(metastatic tumor), liver hemangioma (hemangioma), and

liver cyst (cyst), from 8585 cases were used to construct AI

model-1 for the liver tumor discrimination. Similarly,

59,196 still B-mode images from 20,424 cases of liver

tumors were available by June 29, 2020, of which 57,145

images of the four types of liver tumors from 20,318 cases

were used for AI model-2. Then, 80,258 images from

25,779 cases were available by December 17, 2020, of

which 70,950 still B-mode images from 23,756 cases were

used for AI model-3. The remaining 821 images from 127

cases, 2,015 images from 106 cases, and 9,308 images

from 2023 cases for model-1, model-2, and model-3 were

excluded from the analysis because they present other

types of tumors (Supplementary Fig. 1). We also applied

4,633 images from 972 cases for developing an AI model

that help classify another set of tumors: HCC, intrahepatic

cholangiocarcinoma (ICC), metastatic tumor, and heman-

gioma (model-ICC). More details on the dataset are

described in Supplementary Materials and Methods.

There were no restrictions on the manufacturer or model

of equipment for the collection of the B-mode images. All

the images were collected based on the system construction

guidelines for the collection of medical images published

by the Japan Association for Medical Informatics (http://

jami.jp/about/documents/amed_report.pdf). The study was

conducted in accordance with the World Medical Associ-

ation Declaration of Helsinki. The study protocol con-

formed to the ethical guidelines of the 1975 Declaration of

Helsinki. Informed consent was waived for retrospectively

collected data in the medical records, including US images,

if they were anonymized. The study was approved by the

ethics committees of all participating institutions.

Image processing

We cropped a region of interest (ROI) that included a liver

tumor from the entire ultrasound image as a preprocessing

step for training a convolutional neural network (CNN). A

square ROI was used because a square image is generally

applied as an input image to the CNN and the aspect ratio

of the tumor does not change in the input image. Further-

more, in ultrasonic diagnosis, aside from information

inside the tumor, information around the tumor is also

critical for diagnosis. In a previous study, we examined the

size of the surrounding area that should be included in the

ROI for the most accurate liver tumor classification [13].

We reported that the best accuracy was achieved when the

ROI was cropped so that the maximum diameter of the

tumor was 0.6 times the ROI size, as shown in Supple-

mentary Fig. 2. Accordingly, the same criterion was used

in this study.

In the database used for training the AI model-1, model-

2, and model-3 the amount of data for HCC, metastatic

tumors, hemangiomas, and cysts was different, and the

number of datasets for HCC and metastatic tumors was

smaller than that for hemangiomas and cysts. Therefore, to

avoid a biased output that is prone to being classified as a

hemangioma or cyst, we performed data augmentation so

that the number of training data for each liver tumor type is
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almost equal. For the data augmentation, we added left–

right reversed images and rotated images with limited

angles to the training data. In general, the rotation of an

ultrasound image is not desirable because it is direction

dependent. However, because a convex probe is used in

abdominal ultrasonography, the ultrasonic beam is tilted

within a range of approximately ± 30�. Therefore, we

added randomly rotated images in the range of ± 10� to

the training data. Using the augmented data, we upsampled

the HCC and metastatic tumor data by a factor of four and

the hemangioma and cyst data by a factor of two. Finally,

the images were resized to the input image size of the

CNN.

On the other hand, for the development of AI model-

ICC, the number of the original images of ICC was too

small compared to those of HCC, metastatic tumor and

hemangioma. Therefore, to avoid a bias based on the dis-

proportion in the amount of original data among tumor

types, we downsized the number of the images for HCC,

metastatic tumor, and hemangioma to the similar amount

of ICC images for training.

Construction of AI models using CNN

CNNs based on VGGNet were used in the AI models as

shown in Fig. 1. Figure 1a shows the CNN applied for

model-1 and model-ICC, and Fig. 1b shows the CNN for

large-scale training datasets used for model-2 and model-3

to improve the accuracy. We used adaptive moment esti-

mation (Adam) as the solver during training and set the

learning rate to 0.001. The optimum number of epochs was

found to be between 10 and 30 using the validation data.

The k-fold cross-validation method (k = 10) was used to

validate the CNN models. That is, all the datasets were

divided into 10 groups, one of which was used as test data,

another as validation data, and the remaining eight as

training data. Then, the groups used for testing, validation,

and training were changed so that all groups would be used

once as test data.

Comparative study of the discrimination of liver
tumors between the AI models and physicians

Dataset for a comparative study

A comparative study was conducted using video images of

55 patients with liver tumors. The test dataset used for the

comparison of AI and human physicians was completely

different from that used for cross-validation. All tumors

used in this study were of the nodular type with a visible

boundary. Video images showing the entire picture of a

tumor were selected for comparison between AI models

and humans.

Fig. 1 Convolutional neural network (CNN) used in the AI models.

a CNN used in AI model-1 and AI model-ICC. This CNN is based on

VGGNet. It was used when the number of datasets was small. The

input image size of the CNN is 64 9 64 pixels, and the output is the

probability of the four classes (HCC, metastatic tumors, heman-

giomas, and cysts). b CNN used in AI model-2 and model-3. This

CNN was used when the number of datasets was large. The CNN is

also based on VGGNet. The input image size of the CNN is

128 9 128 pixels, and the output is the probability of the four classes

(HCC, metastatic tumors, hemangiomas, and cysts). The ‘‘3 9 3

Conv, 16’’ represents a convolutional layer with a filter size of 3 9 3

and 16 channels. Although omitted in the figure, a batch normaliza-

tion layer and rectified linear unit function were also included after all

the convolutional layers. ‘‘Max Pooling, 1/2’’ represents a max

pooling layer that halves the image size, and ‘‘FC, 4’’ represents a

fully connected layer having four outputs
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Diagnosis of tumors by AI and physicians

The diagnosis of four types of tumors was performed by

physicians using video images. Eight physicians partici-

pated in this study: five were experts who were qualified as

specialists by the academic societies (expert group),

whereas the remaining three were non-specialists (non-

expert group). There was no time restriction for the

physicians’ answers.

For the AI diagnosis, five different still frames showing

tumors were used for each nodule: one was a frame

showing the tumor with the maximum diameter where the

median size of the tumors is 22 mm in the major axis

(range 6–75), two showing tumors that are 75% of the

maximum diameter, and two with tumors that are 50% of

the maximum diameter. The sites of the tumors were

selected as the ROIs in the frame and applied for AI

diagnosis, as described above. Among the four types of

tumors, the diagnosis with the highest estimated probability

in three or more frames was selected as the AI diagnosis

(C 3 out of the five-frame rule). More details on the dataset

for the comparison test, AI models applied, physicians

involved in the comparison test, and judgment rule for the

correct diagnosis by AI are presented in Supplementary

Materials and Methods.

Statistics

We compared the diagnostic accuracy, which was calcu-

lated as the number of nodules with correct estimation

divided by the number of the total test nodules among AI

model-1, model-2, model-3, and physicians. Sensitivity and

specificity were also compared for the two-class classifi-

cation of nodules. For the comparison of performance

among the three AI models, we applied nonparametric

multiple comparisons using the Steel–Dwass test. For the

comparison of the AIs and human experts, we used the

nonparametric Wilcoxon rank sum test.

Results

Accuracy of the diagnosis of liver tumors in AI

model-1, model-2, and model-3

As described above, three CNN AI models, model-1 with

24,675 images, model-2 with 57,147 images, and model-3

with 70,960 images of liver tumors, were constructed. The

accuracies of the AI models in the diagnosis of the four

types of tumors (4-class discrimination) were 86.8%,

91.0%, and 91.1% for model-1, model-2, and model-3,

respectively; the overall accuracy for four-class

discrimination improved steadly with the increase of

training data, indicating the CNN algorism was effectively

trained with US imagess (Supplementary Fig. 3). The

respective diagnostic accuracies of model-1, model-2, and

model-3 in each type of tumor were as follows: 89.9%,

93.2%, and 93.4% for the diagnosis of HCC; 93.4%,

95.2%, and 95.1% for the diagnosis of metastatic tumors;

91.2%, 94.6%, and 94.6% for the diagnosis of heman-

giomas; and 98.5%, 98.9%, and 99.0% for the diagnosis of

cysts (Table 1, Supplementary File 1). The sensitivities for

the diagnosis in each type of tumor were 64.6%, 68.1%,

and 67.5% for HCCs; 62.0%, 60.6%, and 62.8% for

metastatic tumors; 87.5%, 90.8%, and 91.0% for heman-

giomas; and 98.3%, 99.1%, and 99.0% for the diagnosis of

cysts by model-1, model-2, and model-3, respectively.

Similarly, the specificities for each tumor are 93.8%,

96.0%, and 96.0% for HCCs; 96.7%, 97.4%, and 97.5% for

metastatic tumors; 93.9%, 96.6%, and 96.5% for heman-

giomas; and 98.7%, 98.8%, and 98.8% for cysts by model-

1, model-2, and model-3, respectively. Compared to AI

model-1, all accuracies, all sensitivities but for metastatic

tumors, and all specificities are higher in model-2. Simi-

lally, all accuracies, sensitivities and specificities for the

diagnosis of these four types of tumors are higher in model-

3 compared to model-1 (Table 1, Supplementary File 1).

The accuracies of model-1, model-2, and model-3 for the

diagnosis of malignant tumors were 91.3%, 94.3%, and

94.3%, respectively, whereas the sensitivities and speci-

ficities were 80.9% and 94.4% by model-1, 82.4% and

96.8% by model-2, and 82.8% and 96.7% by model-3,

respectively (Table 2).

We also evaluated the diagnostic performace of AI

model-ICC using the k-fold cross-validation (k = 10). The

overall accuracy for four-class discrimination is 71.5%,

where accuracies for diagnosing HCC, ICC, metastatic

tumor and hemangioma are 83.3%, 88.6%, 83.0%, and

88.1%, respectively. The accuracies, sensitivities, and

specificities for diagnosing each type of tumors are also

shown in Supplementary File 2. Similarly, the accuracy,

sensitivity, and specificity for diagnosing malignant tumor

are 88.1%, 90.5%, and 83.1%, respectively.

Comparison of the diagnostic accuracies of AI
and physicians

We compared the performances of the three AI models

(model-1, model-2, and model-3) and eight physicians,

which included five experts certified by academic societies

and three non-experts, for the diagnosis of liver tumor

using 55 videos of tumors (i.e., HCC, metastatic tumors,

hemangiomas, and cysts). The list of diagnoses for the 55

test cases in the comparative study and the probabilities for
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the correct diagnosis estimated by the AI models in five

frames and diagnoses by physicians are shown in Supple-

mentary File 3.

The overall diagnostic accuracies of model-1, model-2,

and model-3 were 80.0% (44/55), 81.8% (45/55), and

89.1% (50/55), respectively. The median percentages of the

diagnostic accuracies of physicians were 67.3% (range

63.6%–69.1%) and 47.3% (45.5%–47.3%) for experts and

non-experts, respectively (Fig. 2a, Supplementary File 4).

Because each AI model yielded only one value of accuracy

(percentage of correct answer), we compared accuracies of

three AI models with those of 5 human experts. The

accuracies of AI models are significantly higher than those

of human experts (p = 0.0325 by Wilcoxon rank sum test).

The accuracies in diagnosis of HCC, metastatic tumors,

hemangiomas, and cysts by AI models were as follows:

85.5%, 87.3%, 90.9%, and 96.4% in model-1; 87.3%,

89.1%, 90.9%, and 96.4% in model-2; and 92.7%, 94.6%,

98.2%, and 96.4% in model-3, respectively (Table 3). For

the eight human physicians, the median diagnostic accu-

racies in each type of tumor are as follows: 69.1% (range

74.5 – 61.8), 80.9% (85.5 – 63.6), 80.0% (83.6 – 56.4), and

97.3% (100 – 94.6) for HCC, metastatic tumors, heman-

giomas, and cysts, respectively (Supplementary File 4).

The sensitivities and specificities for the diagnosis of each

type of tumor by the AI models and human physicians are

also detailed in Supplementary File 4. All the accuracies,

sensitivities and specificities for the diagnosis of these

types of liver tumors, except for cyst, by the AI models are

higher than the corresponding values by the human

physicians including experts. The sample US images that

Table 1 The performance for each diagnosis for liver tumor by AI modes

True diagnosis HCC Metastatic tumor Hemangioma Cyst

AI diagnosis Model-

1

Model-

2

Model-

3

Model-

1

Model-

2

Model-

3

Model-

1

Model-

2

Model-

3

Model-

1

Model-

2

Model-

3

HCC 833 1532 1750 160 300 326 231 325 362 20 33 48

Metastatic

tumor

181 295 369 430 767 938 98 137 201 22 42 34

Hemangioma 250 379 433 91 173 204 2465 4967 6109 22 31 45

Cyst 25 43 41 12 25 25 24 44 38 3721 11,225 12,833

Accuracya 89.9% 93.2% 93.4% 93.4% 95.2% 95.1% 91.2% 94.6% 94.6% 98.5% 98.9% 99.0%

Sensitivityb 64.6% 68.1% 67.5% 62.0% 60.6% 62.8% 87.5% 90.8% 91.0% 98. 3% 99.1% 99.0%

Specificityc 93.8% 96.0% 96.0% 96.7% 97.4% 97.5% 93.9% 96.6% 96.5% 98.7% 98.8% 98.8%

The numbers of the nodule for true and estimated diagnosis by model-1, model-2, and model-3 are shown for HCC metastatic liver tumor, liver

hemangioma, and liver cyst. Bold indicates the number of the tumor that shows a correct answer by AI

Details for the calculations of the sensitivity and specificity for the diagnosis of each type of tumor are shown in supplementary file 1
aAccuracy for diagnosis is calculated as number of the tumors with correct estimations divided by the number of total tumors
bSensitivity for diagnosis of HCC is calculated as the number of the tumor estimated as HCC by AI divided by the number of the true HCC.

Sensitivities for other types of tumors are calculated similarly
cSpecificity for diagnosis of HCC is calculated as the number of the nodule estimated as non-HCC by AI divided by the number of the true non-

HCC nodules. Specificity for other types of tumors are calculated similarly

Table 2 The sensitivity and

specificity for diagnosing

malignant tumor by AI models

True diagnosis Benign Malignant

AI diagnosis Model-1 Model-2 Model-3 Model-1 Model-2 Model-3

Benign 6232 16,267 19,025 378 620 703

Malignant 371 537 645 1604 2894 3383

Specificitya 94.4% 96.8% 96.7% Sensitivitya 80.9% 82.4% 82.8%

The numbers of the nodule for true and estimated diagnosis by model-1, model-2, and model-3 are shown

for benign (hemangioma and cyst) and malignant tumors (HCC and metastatic liver tumor). Bold indicates

the number of the tumor that shows a correct answer by AI
aSpecificity and specificity for diagnosing malignant tumor. The accuracy of diagnosis is 91.3%, 94.3%,

and 94.3%, respectively by model-1, model-2, and model-3 which is calculated as total number of esti-

mated correct answers by AI divided by the number of total cases
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showed the differential results between AI model-3 and

human experts are shown in Supplementary Fig. 4.

Conversely, the diagnostic accuracies for malignant

tumors by the AIs were 87.3% (48/55) for model-1, 87.3%

Fig. 2 Comparison of the diagnostic accuracies between AI and

human physicians. Diagnostic accuracies for the four-class discrim-

ination and benign and malignant tumor discrimination were

compared among the three AI models, five human experts, and three

non-experts. a Comparison of diagnostic accuracies for the four-class

discrimination. b Comparison of diagnostic accuracies for the

malignant tumor. Open circle indicates the accuracies of AI model,

solid circle shows accuracies of the human experts, and solid square

shows accuracies of the non-experts. The details of each value are

shown in Supplementary File 3

Table 3 The performance of diagnosis for each type of tumor by AI model-1, model-2, and model-3 in the comparative test

True diagnosis HCC Metastatic tumor Hemangioma Cyst

AI diagnosis Model-

1

Model-

2

Model-

3

Model-

1

Model-

2

Model-

3

Model-

1

Model-

2

Model-

3

Model-

1

Model-

2

Model-

3

HCC 11 13 14 1 2 0 0 0 0 0 0 0

Metastatic

tumor

3 1 1 5 4 7 0 0 0 0 0 0

Hemangioma 4 4 1 1 1 0 23 23 23 0 0 0

Cyst 0 0 0 2 2 2 0 0 0 5 5 5

Not determineda 0 0 2 0 0 0 0 0 0 0 0 0

Accuraciesb 85.5% 87.3% 92.7% 87.3% 89.1% 94.6% 90.9% 90.9% 98.2% 96.4% 96.4% 96.4%

Sensitivityc 61.1% 72.2% 77.8% 55.5% 44.4% 77.8% 100% 100% 100% 100% 100% 100%

Specificityd 83.7% 87.5% 90.2% 91.4% 90.0% 95.7% 100% 100% 100% 100% 100% 100%

The numbers of the nodule for true and estimated diagnosis by model-1, model-2, and model-3 are shown for HCC metastatic liver tumor, liver

hemangioma, and liver cyst. Bold indicates the number of the tumor that shows a correct answer by AI

Details for the calculations of the sensitivity and specificity for the diagnosis of each type of tumor are shown in supplementary file 3
aNo specific diagnoses are not made by AI with ‘‘ C 3 out of the 5-frame rule’’, because no consistent diagnosis with the highest estimated

probability is shown in three or more frames among 5 frames
bAccuracy for diagnosis is calculated as number of the tumors with correct estimations divided by the number of total tumors
cSensitivity for diagnosis of HCC is calculated as the number of the nodule estimated as HCC by AI divided by the number of the true HCC.

Sensitivities for other types of tumors are calculated similarly
dSpecificity for diagnosis of HCC is calculated as the number of the nodule estimated as non-HCC by AI divided by the number of the true non-

HCC nodules. Specificities for other types of tumors are calculated similarly
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(48/55) for model-2, and 90.9% (50/55) for model-3

(Fig. 2b, Supplementary File 4). For the human physicians,

the median the diagnostic accuracy among the test nodules

was 80.0% (range 74.5%–83.6%) by experts and 60.0%

(range 52.7%–65.5%) by non-experts. The accuracies of AI

models are also significantly higher than those of human

experts (p = 0.0358 by Wilcoxon rank sum test). The

sensitivities and specificities for the diagnosis of malignant

tumors were 74.1% (20/27) and 100% (28/28) for model-1,

74.1% (20/27) and 100% (28/28) for model-2, and 81.5%

(22/27) and 100% (28/28) for model-3, respectively. For

the human physicians, the median sensitivity and speci-

ficity were 77.8% (66.7%–85.2%) and 82.1% (75.0%–

92.9%) by the experts and 70.4% (66.7%–88.9%) and

42.9% (35.7%–53.6%) by the non-experts, respectively

(Supplementary File 4).

Probabilities of correct diagnoses by the AI models

We hypothesized that the estimation for a correct diagnosis

could be further improved in AI model-2 and model-3 as

compared to model-1, where a larger number of US images

were applied for the training of the CNN model. Accord-

ingly, we compared the third-highest estimated probability

for a correct diagnosis (the median value of the estimated

probabilities for a correct answer among five frames).

Figure 3 illustrates the difference in the median estimated

probabilities for the correct diagnosis of model-1, model-2,

and model-3 in each nodule, where 90.9% (50/55) and

89.1% (49/55) of the nodules showed a higher estimated

probability in model-2 and model-3 than in model-1,

respectively. This finding suggests that estimating the

correct diagnosis based on the probability is improved

according to the increase in the training data. The estimated

diagnostic probabilities of each tumor type were also

compared using the estimations of each 5 frame in 55 test

nodules (Fig. 4). The estimation for hemangiomas signifi-

cantly improved in model-2 and model-3 as compared with

model-1 (p\ 0.0001 for model-1 vs. model-2 and

p\ 0.0001 for model-1 vs. model-3 by the Steel–Dwass

test: median estimated probabilities and [25–75 per-

centiles] were 62.7%, [47.2–77.6] for model-1, 96.2%,

[74.6–99.7] for model-2, and 95.3%, [76–99.4] for model-

3, respectively). Similarly, the diagnostic probability for

HCC was significantly improved in model-2 and model-3

as compared with model-1 (p = 0.0015 for model-1 vs.

model-2 and p = 0.0026 for model-1 vs. model-3: median

estimated probabilities [25–75 percentiles] were 43.9%,

[27.6–54.8] for model-1, 61.5%, [32.9–91.6] for model-2,

and 62.3%, [29.3–86.6] for model-3). The probability of

diagnoses for cysts was the same for all the models, where

the median probability (25–75 percentiles) was 100% in all

the estimations. For metastatic tumors, although the esti-

mated probability improved after the increase of training,

the differences between model-1 and model-2 and between

model-1 and model-3 were not significant (p = 0.3865 for

model-1 vs. model-2 and p = 0.1061 for model-1 vs.

model-3: median estimated probabilities [25–75 per-

centiles] are 38.1% [15.4–70.8] for model-1, 64.1%

[8.1–98.6] for model-2, and 67.2% [30.2–89.0] for model-

3).

Discussion

Liver cancer is one of the leading causes of cancer deaths,

and screening for early detection of lesions is recom-

mended for high-risk groups in clinical guidelines [14, 15].

US is commonly used for early detection of liver tumors.

However, although it is the most popular imaging equip-

ment, the diagnosis of lesions using B-mode ultrasound is

sometimes difficult, particularly for beginners and non-

experts, as it requires real-time judgment by a human’s

visual perception, and omissions and misdiagnoses due to

human errors can occur, especially under the time con-

straint of clinical workflows [3, 16, 17]. Accordingly, the

use of AI can reduce errors because of its high performance

in large-volume screening of medical images and the pre-

cise detection of subtle image features [12].

Several AI systems for medical images have been pro-

posed, such as detection of referable diabetic retinopathy

on retinal fundus images, lymph node metastasis of breast

cancer on microscopic slide images, skin cancer on

demography, pneumonia on radiography, and neoplastic

polyps on colonoscopy [7, 10, 18, 19].

For abdominal US, most reported AI models were for

the diagnosis of liver tumors, although the targeted lesions

are varied among studies [11, 12, 20]. So far, AI models for

liver tumor diagnosis have been based on small cohorts of

data (Supplementary File 5). Hwang et al. showed that AI

model pretrained with 99 US images of liver tumor

achieved 96% of overall accuracy for the discrimination of

cyst, hemangioma, and malignant tumor [21]. Tarek et al.,

reported the AI model pretrained with 108 images showed

97.2% of overall accuracy for discrimination of normal

liver, cyst, hemangioma, and HCC [22]. Virmani et al.,

reported an AI model that showed 95% of accuracy for

discrimination of lesions including cyst, hemangioma,

HCC, and metastatic tumor [23]. However, although the

accuracies are high even with small number of training

data, these evaluations are based on the cross-validation; a

similar performance might not be expected in an inde-

pendent cohort, especially for multiclass classification,

because of the lack of variation in the training images

[11, 12]. On the other hand, Zhang et al., reported the AI
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model developed using transfer learning form the CEUS

image and achieved the diagnostic accuracy of 88.2% [24].

In our study, the overall accuracy of model-2 and model-3

in the four-class discrimination were 91.0% and 91.1%,

respectively, which are comparable or even higher than

those reported in previous studies. Compared with the

previous study, much larger size of the training cohort with

enough variation from 11 different institutes should give

rise to the reliable performance of our AI models even in

the independent test cohort, which should not be affected

by overfitting [5].

The accuracy of the discrimination for the four types of

tumors based on the tenfold cross-validation method was

better in model-2 and model-3 than in model-1. For the

diagnosis of malignant tumor, the accuracy, sensitivity, and

specificity were also higher in model-2 and model-3 than in

model-1. For the diagnosis of each tumor, model-2 and

model-3 showed higher accuracies, sensitivities and

specificities in the discrimination of each type of liver

tumor than model-1. However, the sensitivity levels

remained similar in metastatic tumors. The lack of

improvement for the sensitivity of metastatic tumors is

Fig. 3 Difference in the median estimated probabilities for the

correct diagnosis by AI model-1, model-2, and model-3 in each

nodule. The median estimated probabilities for the correct diagnosis

for the five frames are shown in a descending order for each nodule;

the blue line shows the median probabilities estimated by AI for each

nodule. a The median estimated probabilities for correct diagnoses by

AI model-1. b Median estimated probabilities for correct diagnoses

by AI model-2. c Median estimated probabilities for correct diagnoses

by AI model-3. The green, blue, yellow, and pink rectangles represent

the tumor types, namely, cysts, hemangiomas, HCCs, and metastatic

tumors, respectively. The red rectangles represent the nodules

incorrectly estimated for diagnosis by AIs based on the ‘‘ C 3 out

of the 5-frame rule,’’ where 80.0% (44/55) of the nodules, 81.8% (45/

55) of the nodules, and 89.1% (49/55) of the nodules were correctly

diagnosed by AI model-1, model-2, and model-3, respectively
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probably attributed to the variation in this type of tumor,

which is generally dependent on the origin of the disease;

increasing the training volume would improve the diag-

nostic performance in this type of tumors.

Diagnosis of malignant tumors is quite important for the

selection of patients who require further examinations

[14–16], where a final diagnosis is generally made by other

modalities, such as CECT, Gd-EOB-DTPA-enhanced MRI,

and histology [14, 15]. According to three previous reports

of CEUS-based AI, the accuracies for diagnosing

malignant tumors were 90.3%, 91.8%, and 90.4% [25–28].

Although our AI models were trained using B-mode ima-

ges, the diagnostic accuracies for malignant tumors were

91.3%, 94.3%, and 94.3% in model-1, model-2, and model-

3, respectively, which are higher than the previous AIs

trained with CEUS images. The high performance of our

B-mode AI models is attributed to the unprecedented vol-

ume of data for the training of deep CNNs.

Recently, another study reported that an AI model

trained with 24,343 B-mode US images of liver tumors

Fig. 4 Comparisons of the estimated probabilities for correct

diagnoses by the three AI models. The estimated diagnostic

probabilities of each tumor type were compared using the estimations

in each frame of 55 test nodules. a Estimated probability for HCC;

b estimated probability for metastatic tumors; c estimated probability

for hemangiomas; d estimated probability for cysts. The probabilities

of the correct diagnoses of HCC and hemangiomas significantly

improved in model-2 and in model-3 as compared with model-1,

where the median estimated probability is 43.9% (25–75 per-

centiles = 27.6–54.8), 61.5% (25–75 percentiles = 32.9–91.6), and

62.3% (25–75 percentiles = 29.3–86.6) for the diagnosis of HCC by

model-1, model-2, and model-3, respectively (p = 0.0015 for model-1

vs. model-2 and p = 0.0026 for model-1 vs. model-3 in the

nonparametric multiple comparisons and Steel–Dwass test).

Similarly, the median estimated probability was 62.7% (25–75

percentiles = 47.2–77.6), 96.2% (25–75 percentiles = 74.6–99.7),

and 95.3% (25–75 percentiles = 76–99.4) for the diagnosis of

hemangiomas by model-1, model-2, and model-3, respectively

(p\ 0.0001 for model-1 vs. model-2, and p\ 0.0001 for model-1

vs. model-3 by the Steel–Dwass test). Although the estimated

probabilities by model-2 and model-3 are higher than that of

model-1 for the diagnosis of metastatic tumors, the difference is not

significant (p = 0.3865 for model-1 vs. model-2 and p = 0.1061 for

model-1 vs. model-3: median estimated probabilities [25–75 per-

centiles] were 38.1% [15.4–70.8], 64.1% [8.1–98.6], and 67.2%

[30.2–89.0] by model-1, model-2, and model-3, respectively). The

median probabilities for the diagnosis of cysts were 100% in all

estimations
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from 2,143 cases showed a similar diagnostic accuracy for

malignant tumor with experienced radiologists. The AI

model trained with US images and clinical data, including

serum levels of tumor markers, reportedly, represented

better accuracy, sensitivity, and specificity for the diagno-

sis of malignant tumor than a skilled radiologist [20]. The

AI models trained with B-mode image showed a diagnostic

accuracy of 76.0%, and those trained with B-mode image

and clinical data represented an accuracy of 84.7% [20].

Our AI model-3 showed a higher diagnostic accuracy for

malignant tumor: 94.3% in the tenfold cross-validation and

90.1% in the independent external validation cohort

(Supplementary File 4). Therefore, our high-performance

AI models should be quite applicable in a clinical setting

without additional clinical data, which would fluctuate at

the timing of sampling.

We also constructed the AI model for diagnosis of ICC

(model-ICC), which has not been reported. ICC is a rare

type of cancer that accounts for approximately only 3—5%

of primary liver cancer; there is a lack of training images

for ICC compared to those of HCC, metastatic tumor, and

hemangioma. To avoid a biased output that prone to clas-

sify lesions into other common type of tumors, we down-

sized the numbers of images from HCC, metastatic tumor

and hemangioma, and matched these numbers to that of

ICC for training. Although the performance of AI model-

ICC for four-class discrimination is still unsatisfactory,

where the overall accuracy is 71.5%, and diagnostic

accuracies for HCC, ICC, metastatic tumor and heman-

gioma are 83.3%, 88.6%, 83.0%, and 88.1%, respectively,

indicating the potential of model-ICC with further training.

In addition, the accuracy, sensitivity, and specificity for

diagnosis of malignant tumor are 88.1%, 90.5%, and

83.1%, respectively. Because benign and malignant dis-

crimination is critical for the management of liver tumor,

and difficult for beginners, discrimination of ICCs by AI

model is also an attractive task.

To confirm the robustness of the performance of our AI

models, we conducted a comparative study for the diag-

nosis between AIs and human physicians using an inde-

pendent external test cohort consists of video images.

Because diagnosis with still B-mode images should be

quite difficult for humans, even for experts, we applied

video images for human diagnoses, whereas the AI diag-

nosis was based on still images with the ‘‘ C 3 out of the

5-frame’’ rule. Interestingly, the median overall accuracies

(percentages of correct answers) were 67.3% and 47.3% for

human experts and non-experts, respectively, whereas

these were 80.0% for AI model-1, 81.8% for AI model-2,

and 89.1% for AI model-3. In addition, all AI models

exceeded the performance of human physicians for diag-

nosing malignant tumors in the comparative study.

Although the overall accuracies for the discrimination of

four tumor types was high with the AI models, some

tumors were still misdiagnosed even with model-3. The

images of six tumors misdiagnosed by AI model-3 are

shown in Supplementary Fig. 5. Among these tumors, two

were metastatic tumors and four were HCCs. As AI auto-

matically learn the specific features of images, a large

number of image data should be required for training of

neural network, especially for the diagnosis of lesions with

a lot of variation, such as metastatic tumors. Indeed, as

shown in Supplementary Fig. 3, although increase of the

training improve the diagnostic accuracies, sensitivity of

62.8% for metastatic tumor even by model-3 is still

unsatisfactory (Table 1). It is possible that enough amount

of training with additional data, such as blood chemical

test, may improve the diagnosis for metastatic tumors. On

the other hand, in the four HCC nodules misdiagnosed with

AI model-3, three showed high estimated probability for

HCC, where 97.2% (tumor no. 47), 64.4% (no. 52), and

62.6% (no. 55) were indicated, but failed to present a

correct answer under the ‘‘[ 3 out of the 5-frame’’ rule

because of the fluctuation of estimated probabilities for

HCC among five frames. Further improvement should be

required to present the best results.

Because the AI diagnosis is based on the ‘‘ C 3 out of

the 5-frame’’ rule for each nodule, we compared the

median estimated probabilities for correct answers on the

nodules and found that the probabilities substantially

improved in most nodules in model-2 and model-3 as

compared with model-1. When we compared the estimated

probability among the types of tumors, considerable

improvement was observed in the diagnosis of HCCs and

hemangiomas. For cysts, the probability is 100% in all the

estimations, suggesting that the image features are homo-

geneous and completely different from those of other types

of tumors. On the other hand, the insufficient estimated

probability for metastatic tumors is one of the limitations of

this study. Nevertheless, the AI models, particularly model-

3, showed a higher performance in the diagnosis of four

types of tumors and malignant tumors as compared with

physicians, including qualified experts.

To know the association between performance of AI and

size of lesions is intriguing, which has not clarified yet.

Yang et al., reported that accuracies for diagnosing

malignant tumor were similar regardless of tumor size in

internal cohort, but slightly lower in large tumor in external

cohort [20]. It is possible that larger tumors may have more

variation in image than smaller lesions, which can result in

the decrease of performance. We have examined 55 tumors

for the performance of AI model; six tumors are not cor-

rectly diagnosed by model-3 (Supplementally Fig. 5),

where no clear trend in size is observed. Further study
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using large size of external test cohort should be required to

know the effect of tumor size on the performance of AI.

In our AI models, other types of rare tumors were not

used as training data, which is another limitation. However,

considering that HCC, metastatic tumors, hemangiomas,

and cysts are the main constituents of liver tumors, and AI

diagnosis is an assistive tool for US examination performed

by humans, our models can offer sufficient support for the

improvement of human diagnosis in B-mode US.

The AI models in this study focused on the diagnosis,

not detection, of tumors, which is also a limitation. A real-

time detection system for thyroid tumors has been reported

for thyroid US [29, 30]. An AI-US that detects and clas-

sifies liver tumors during B-mode examination is under

development. We are also conducting a prospective large-

scale comparative study between the developed AI-US and

human experts for the real-time detection and diagnosis of

liver tumors.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00535-
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