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Abstract. We introduce factorial analogues of the ordinary Hall–Littlewood P - and
Q-polynomials, which we call the factorial Hall–Littlewood P - and Q-polynomials. Using
the universal formal group law, we further generalize these polynomials to the universal
factorial Hall–Littlewood P - and Q-functions. We show that these functions satisfy the
vanishing property which the ordinary factorial Schur S-, P -, and Q-polynomials have.
By the vanishing property, we derive the Pieri-type formula and a certain generaliza-
tion of the classical hook formula. We then characterize our functions in terms of Gysin
maps from flag bundles in complex cobordism theory. Using this characterization and
Gysin formulas for flag bundles, we obtain generating functions for the universal facto-
rial Hall–Littlewood P - and Q-functions. Using our generating functions, we show that
our factorial Hall–Littlewood P - and Q-polynomials have a certain cancellation property.
Further applications such as Pfaffian formulas for K-theoretic factorial Q-polynomials are
also given.

1. Introduction. Let xn = (x1, . . . , xn) and t be independent inde-
terminates over Z, and λ = (λ1, . . . , λn) a partition of length ≤ n. Then
the ordinary Hall–Littlewood P - and Q-polynomials, denoted by Pλ(xn; t)
and Qλ(xn; t) respectively, are symmetric polynomials with coefficients in
Z[t]. When t = 0, both Pλ(xn; t) and Qλ(xn; t) reduce to the ordinary
Schur S-polynomial sλ(xn), and when t = −1, to the ordinary Schur P -
polynomial Pλ(xn) and Q-polynomial Qλ(xn) respectively. Thus the polyno-
mials Pλ(xn; t), Qλ(xn; t) serve to interpolate between the Schur polynomials
and the Schur P - and Q-polynomials, and play a crucial role in the symmet-
ric function theory, representation theory, and combinatorics. In the context

2020 Mathematics Subject Classification: Primary 05E05; Secondary 55N20, 55N22,
57R77.
Key words and phrases: factorial Hall–Littlewood P - and Q-functions, generating func-
tions, formal group laws, complex cobordism theory, Gysin formulas.
Received 17 November 2022; revised 15 May 2023.
Published online 16 August 2023.

DOI: 10.4064/fm257-5-2023 [1] © Instytut Matematyczny PAN, 2023



2 M. Nakagawa and H. Naruse

of Schubert calculus, it is well-known that the ordinary Schur S-, P -, and Q-
polynomials appear as the Schubert classes in the ordinary cohomology rings
of the various Grassmannians (Fulton [7, §9.4], Fulton–Pragacz [8, Chapters
II and III], Pragacz [31, §6]). Moreover, their factorial analogues, the facto-
rial Schur S-, P -, and Q-polynomials, play an analogous role in equivariant
Schubert calculus (Knutson–Tao [17], Ikeda [11], Ikeda–Naruse [13]).

As for the Hall–Littlewood polynomials, it is known that there are some ge-
ometric or representation-theoretic interpretations of them related to flag va-
rieties or flag bundles (the readers are referred to e.g. De Concini–Procesi [5],
Garsia–Procesi [9], Pragacz [32]). In the context of Schubert calculus, there
seems to be no obvious geometric meaning of the Hall–Littlewood poly-
nomials at present. In [35], Totaro considered the coinvariant ring F (e, n)
of the complex reflection group G(e, 1, n) = Z/eZ ≀ Sn (the wreath prod-
uct) for e ≥ 2, and suggested thinking of F (e, n) as the cohomology of
a certain “flag manifold”. He also considered a subring C(e, n) of F (e, n),
and described a basis for the ring C(e, n) given by the Hall–Littlewood Q-
polynomials. For e = 2, C(2, n) ⊂ F (2, n) is the inclusion of the cohomology
of the Lagrangian Grassmannian in that of the isotropic flag manifold of
the symplectic group, and Totaro’s result is interpreted as a generalization
of the classical result in Schubert calculus for Lagrangian Grassmannians
(Józefiak [16], Pragacz [31, §6]). It is natural to consider a generalization of
the above theory to the double coinvariant rings (or equivariant coinvariant
rings) of complex reflection groups (cf. recent work of McDaniel [20]). From
a geometric or topological point of view, one expects that these rings would
be related to torus-equivariant cohomology of certain “flag manifolds”, and
factorial versions of the Hall–Littlewood polynomials would play a crucial
role.

Moreover, we notice that all the results stated above are formulated in
the ordinary cohomology theory H∗(−). In topology, it is classical that a
complex-oriented generalized cohomology theory h∗(−) gives rise to a for-
mal group law F h(u, v) over the coefficient ring h∗ := h∗(pt), where pt is
a single point. Three typical examples are the ordinary cohomology theory
H∗(−), the (topological) complex K-theory K∗(−), and the complex cobor-
dism theory MU∗(−), which correspond to the additive formal group law
Fa(u, v) = u + v, the multiplicative formal group law Fm(u, v) = u ⊕ v =
u + v − βuv, and the universal formal group law FL(u, v) = u +L v, re-
spectively. By the classical result of Quillen [34, Proposition 1.10], complex
cobordism theory is universal among all complex-oriented generalized coho-
mology theories. Therefore it is also quite natural to ask whether one can
generalize the above results formulated in the ordinary cohomology theory
to complex cobordism theory.
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Motivated by these facts and the preceding results, we introduce fac-
torial and universal analogues of the ordinary Hall–Littlewood P - and Q-
polynomials, which we call the universal factorial Hall–Littlewood P - and
Q-functions (for notation, see §2.1):

Definition 1.1 (Definition 3.1, cf. Naruse [28]). For a sequence λ =
(λ1, . . . , λr) of positive integers with r ≤ n, we define

HPL
λ (xn; t|b) :=

∑
w∈Sn/(S1)r×Sn−r

w ·
[
[x|b]λL

r∏
i=1

n∏
j=i+1

xi +L [t](xj)

xi +L xj

]
,

HQL
λ(xn; t|b) :=

∑
w∈Sn/(S1)r×Sn−r

w ·
[
[[x; t|b]]λL

r∏
i=1

n∏
j=i+1

xi +L [t](xj)

xi +L xj

]
.

To the best of our knowledge, even a factorial version of the ordinary
Hall–Littlewood polynomials has not appeared in the literature. Here we
emphasize the importance of these factorial Hall–Littlewood polynomials.
In fact, they will be needed in describing the torus-equivariant cohomology
of the p-compact flag variety corresponding to G(e, 1, n) (cf. recent work
of Ortiz [30]). In this context, the “deformation parameters” b are inter-
preted as the torus-equivariant parameters. We will discuss this new as-
pect of the Hall–Littlewood functions in more detail in our forthcoming
paper [27].

We will show that our factorial Hall–Littlewood P - and Q-functions have
the so-called vanishing property (see Propositions 3.7, 3.8). This property will
be useful in the so-called GKM description of the torus-equivariant coho-
mology ring of the p-compact flag variety corresponding to G(e, 1, n) ([27]).
By the vanishing property, we can derive a Pieri-type formula for factorial
Hall–Littlewood P -polynomials (see Proposition 3.9). Moreover, by a simple
recursive argument based on the associativity of factorial Hall–Littlewood
P -polynomials, we can derive a certain generalization of the hook formula
(see Proposition 3.10). We then give a characterization of them in terms of
Gysin maps from full flag bundles in complex cobordism theory (Proposi-
tion 3.5). Using this characterization, we derive generating functions for the
universal factorial Hall–Littlewood P - and Q-functions. The idea of getting
our result is to apply the Gysin formula for a projective bundle repeatedly
to the full flag bundle since a full flag bundle is constructed as a sequence
of projective bundles. However, the existence of the deformation parameter
b = (b1, b2, . . .) precludes a direct application of the Gysin formula. To cir-
cumvent this difficulty, we develop a specific modification in each step (for
details, see §4.1). Then, by a careful argument, we succeed in getting the
required result. To state it, we need some notation from §§2.1, 2.2, and 4.1:
For a sequence λ = (λ1, . . . , λr) of positive integers with r ≤ n, we set
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H̃P
L,(n)
i,λi

(u1, . . . , ui|b) :=
ui

ui +L [t](ui)
· 1

PL(ui)

×
( n∏

j=1

ui +L [t](xj)

ui +L xj

i−1∏
j=1

ui +L uj
ui +L [t](uj)

λi∏
j=1

ui +L bj
ui

− tn−i+1
λi∏
j=1

bj
ui

)
,

H̃P
L,(n)
λ (ur|b) = H̃P

L,(n)
λ (u1, . . . , ur|b) :=

r∏
i=1

H̃P
L,(n)
i,λi

(u1, . . . , ui|b).

Then our main result is as follows:

Theorem 1.2 (Theorem 4.3). For a sequence λ = (λ1, . . . , λr) of posi-
tive integers with r ≤ n, the universal factorial Hall–Littlewood P -function
HPL

λ (xn; t|b) is the coefficient ofu−λ=u−λ1
1 · · ·u−λr

r in H̃P
L,(n)
λ (u1, . . . , ur|b):

HPL
λ (xn; t|b) = [u−λ](H̃P

L,(n)
λ (ur|b)).

Using a similar, but simpler technique, we can also obtain a generating
function for HQL

λ(xn; t|b) (see Theorem 4.5). Here we stress the usefulness
of the technique of generating functions. For instance, it is easy to derive
Pfaffian formulas for factorial K-theoretic Q-polynomials in a simple and
uniform manner (see Theorem 5.3). Moreover, a certain cancellation property
(cf. Pragacz [31, §2]) of the factorial Hall–Littlewood P - and Q-polynomials
can be verified immediately (see Proposition 5.1). For further applications
of generating functions to obtain the so-called Pieri rule for K-theoretic P -
and Q-polynomials, see also Naruse [28].

1.1. Organization of the paper. The paper is organized as follows: In
Section 2, we prepare the notation and conventions concerning the universal
formal group law, a Gysin formula for a projective bundle, which will be used
throughout the paper. In Section 3, the universal factorial Hall–Littlewood
P - and Q-functions are introduced, and a characterization of them by means
of a Gysin map is given. The vanishing property of these functions is also
discussed. By the vanishing property, a Pieri-type formula and a generaliza-
tion of the hook formula are derived. Using Gysin formulas for flag bundles
and characterizations of the Hall–Littlewood functions by means of Gysin
maps, in Section 4, we obtain generating functions for these universal facto-
rial Hall–Littlewood functions. In Section 5, using the generating functions,
we show that the factorial Hall–Littlewood P - and Q-polynomials satisfy a
certain cancellation property. Pfaffian formulas for factorial K-theoretic Q-
polynomials can be obtained as a by-product. In the Appendix (Section 6),
we deal with the topic closely related to the current work, namely, generat-
ing functions for the dual Grothendieck polynomials and the dual K-theoretic
Schur Q-polynomials.
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2. Notation, conventions, and preliminary results. For notation
and conventions, we shall follow our previous papers [24, 26]. However, to
make the exposition self-contained as much as possible, we collect some of
them below.

2.1. Lazard ring L and the universal formal group law FL. Let

FL(u, v) = u+ v +
∑
i,j≥1

aLi,ju
ivj ∈ L[[u, v]]

be the universal formal group law, where L is the Lazard ring. Namely,
FL(u, v) is a formal power series in two indeterminates u, v with coefficients
aLi,j ∈ L which satisfies the axioms of the formal group law. For the universal
formal group law, we shall use the following notation:

u+L v = FL(u, v) (formal sum),
u = [−1]L(u) (formal inverse ofu),
u−L v = u+L [−1]L(v) = u+L v (formal subtraction).

Furthermore, we define [0]L(u):=0, and inductively, [n]L(u):=[n−1]L(u)+Lu
for a positive integer n ≥ 1. We also define [−n]L(u) := [n]L([−1]L(u)) for
n ≥ 1. We call [n]L(u) the n-series. Denote by ℓL(u) ∈ L ⊗ Q[[u]] the
logarithm of FL, i.e., the unique formal power series with leading term u
such that

ℓL(u+L v) = ℓL(u) + ℓL(v).

Using the logarithm ℓL(u), one can rewrite the n-series [n]L(u) for a non-
negative integer n as ℓ−1

L (n · ℓL(u)), where ℓ−1
L (u) is the formal power series

inverse to ℓL(u). This formula allows us to define

[t]L(x) = [t](x) := ℓ−1
L (t · ℓL(x))

for an indeterminate t. This is a natural extension of t · x as well as of the
n-series [n]L(x).

Next we shall introduce various generalizations of the ordinary power
of variables. Let x = (x1, x2, . . .) be a countably infinite sequence of inde-
pendent variables. We also introduce another set of independent variables
b = (b1, b2, . . .). Then, for a positive integer k ≥ 1, we define a generalization
of the ordinary kth power xk of one variable x by

[x|b]kL :=
k∏

j=1

(x+L bj) = (x+L b1) · · · (x+L bk).

We set [x|b]0L := 1. For a sequence λ = (λ1, . . . , λr) of positive integers, we
set

[x|b]λL :=
r∏

i=1

[xi|b]λi
L =

r∏
i=1

λi∏
j=1

(xi +L bj).
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Similarly, we define

[[x|b]]kL := (x+L x)[x|b]k−1
L = (x+L x)(x+L b1) · · · (x+L bk−1).

For a sequence λ = (λ1, . . . , λr) of positive integers, we set

[[x|b]]λL :=
r∏

i=1

[[xi|b]]λi
L =

r∏
i=1

(xi +L xi)[xi|b]λi−1
L .

Moreover, for indeterminates x and t, we define

[[x; t|b]]kL := (x+L [t](x))[x|b]k−1
L

for a positive integer k ≥ 1. For a sequence λ = (λ1, . . . , λr) of positive
integers, we define

[[x; t|b]]λL :=
r∏

i=1

[[xi; t|b]]λi
L =

r∏
i=1

(xi +L [t](xi))[xi|b]λi−1
L .

2.2. Gysin formula for a projective bundle in complex cobor-
dism. Recall from Quillen [33, Theorem 1] the Gysin formula for a pro-
jective bundle in complex cobordism. We shall state his result in a manner
suitable for our purpose (for more details, see Nakagawa–Naruse [26, §3.1]):
Let E → X be a complex vector bundle of rank n. For any m ∈ Z, denote
by S L

m(E) = S MU
m (E) the Segre class of E in complex cobordism, and

S L(E;u) :=
∑
m∈Z

S L
m(E)um

its Segre series. The explicit expression of S L(E;u) is

(2.1)

S L(E;u) =
1

PL(z)

n∏
j=1

z

z +L xj

∣∣∣∣
z=u−1

=
1

PL(z)

zn∏n
j=1(z +L xj)

∣∣∣∣
z=u−1

,

where PL(z) := 1+
∑∞

i=1 a
L
i,1z

i, and x1, . . . , xn are the Chern roots of E in
complex cobordism.

Now consider the Grassmann bundle π1 : G1(E) → X of hyperplanes
in E. Denote by Q1 the tautological quotient bundle on G1(E). Put x1 :=
cMU
1 (Q1) ∈ MU2(G1(E)). For a monomial m of a formal Laurent series F ,

we denote by [m](F ) the coefficient of m in F . Note that the Grassmann
bundle G1(E) of hyperplanes in E is canonically isomorphic to the projective
bundle P (E∨) = G1(E

∨) of lines in the dual bundle E∨. Then, by dualizing
the formula [26, (3.4)], we have the following form of Quillen’s Gysin formula:

Proposition 2.1. For a polynomial f(u) ∈ MU∗(X)[u], the Gysin map
π1
∗ : MU∗(G1(E)) → MU∗(X) is described by

(2.2) π1
∗(f(x1)) = [un−1](f(u) · S L(E; 1/u)).
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This is the fundamental formula for establishing more general Gysin for-
mulas for general flag bundles.

Here we shall fix some notation concerning flag bundles (1): Let E → X
be a complex vector bundle of rank n. For r = 1, . . . , n, denote by πr,r−1,...,1 :
Fℓr,r−1,...,1(E) = Fℓn−r,n−r+1,...,n−1(E) → X the associated flag bundle.
Thus a point in Fℓr,r−1,...,1(E) is written as a pair (x, (W•)x), where (W•)x is
a flag, i.e., nested subspaces of the form (W1)x ⊂ · · · ⊂ (Wr)x, codim (Wi)x =
r+1− i, in the fiber Ex of E over each point x ∈ X. Following Darondeau–
Pragacz [4, §1.2], we shall call the flag bundle of the form πr,r−1,...,1 :
Fℓr,r−1,...,1(E) → X the full flag bundle. When r = n, we call πn,n−1,...,1 :
Fℓn,n−1,...,1(E) → X the complete flag bundle, and just write π : Fℓ(E)→X.
On Fℓ(E), there is the universal flag of subbundles

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = π∗(E),

where rankUi = i (i = 0, 1, . . . , n) and we put

(2.3) xi := cMU
1 (Un+1−i/Un−i) ∈ MU2(Fℓ(E)) (i = 1, . . . , n),

which are the MU∗-theory Chern roots of E. It is well-known (see e.g.,
Darondeau–Pragacz [4, §1.2]) that the full flag bundle Fℓr,r−1,...,1(E) is
constructed as a sequence of Grassmann bundles of codimension 1 hyper-
planes (2):

(2.4)
πr,...,1 : Fℓr,r−1,...,1(E) = G1(Un−r+1)

πr

→ · · · → G1(Un−1)
π2

→ G1(E)
π1

→ X.

3. Universal factorial Hall–Littlewood P - and Q-functions. In
this section, we shall introduce our main object of study, the universal fac-
torial Hall–Littlewood P - and Q-functions, which are universal as well as
factorial analogues of the ordinary Hall–Littlewood polynomials.

3.1. Universal factorial Hall–Littlewood P - and Q-functions

3.1.1. Definition of universal factorial Hall–Littlewood P - and Q-func-
tions. We shall use the notation introduced in §2.1. We consider the variables
x = (x1, x2, . . .) and b = (b1, b2, . . .) with deg(xi) = deg(bi) = 1 for i =
1, 2, . . . . Then we make the following definition:

Definition 3.1 (Universal factorial Hall–Littlewood P - and Q-func-
tions). For a sequence λ = (λ1, . . . , λr) of positive integers with r ≤ n,

(1) The notation concerning flag bundles or flag manifolds varies depending on the
authors. We basically follow that used by Nakagawa–Naruse [24, §4.1] and Darondeau–
Pragacz [4, §1].

(2) Note that, in [4, §1.2], the full flag bundle is constructed as a sequence of projective
bundles of lines.
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we define

HPL
λ (xn; t|b) :=

∑
w∈Sn/(S1)r×Sn−r

w ·
[
[x|b]λL

r∏
i=1

n∏
j=i+1

xi +L [t](xj)

xi +L xj

]
,

HQL
λ(xn; t|b) :=

∑
w∈Sn/(S1)r×Sn−r

w ·
[
[[x; t|b]]λL

r∏
i=1

n∏
j=i+1

xi +L [t](xj)

xi +L xj

]
,

where the symmetric group Sn acts on the variables xn = (x1, . . . , xn) by
permuting them. We also define

HPL
λ (xn; t) := HPL

λ (xn; t|0) and HQL
λ(xn; t) := HQL

λ(xn; t|0).

In what follows, HPL
λ (xn; t) and HQL

λ(xn; t) will be called the universal
Hall–Littlewood P - and Q-functions respectively.

In the above definition, the action of the subgroup (S1)
r ×Sn−r of Sn on

the first factors [x|b]λL and [[x; t|b]]λL is trivial, and the second factor∏
1≤i≤r, i<j≤n

xi +L [t](xj)

xi +L xj

is invariant under this action. Therefore, the action of the symmetric group
does not depend on the choice of a representative w of the coset w ∈
Sn/(S1)

r × Sn−r. Note that for t = −1 in the definition, HPL
λ (xn;−1|b)

(resp. HQL
λ(xn;−1|b)) coincides with the universal factorial Schur P -func-

tion PL
λ (xn|b) (resp. Q-function QL

λ(xn|b)), for a strict partition λ, which
have been introduced in our previous paper [23, Definition 4.1]. By con-
trast, for t = 0, both HPL

λ (xn; 0|b) and HQL
λ(xn; 0|b) are different from

the universal factorial Schur functions sLλ(xn|b) [23, Definition 4.10] and
SLλ(xn|b) [24, Definition 5.1].

3.1.2. Factorial Hall–Littlewood P - and Q-polynomials. The specializa-
tion from FL(u, v) = u+L v to Fa(u, v) = u+ v is of particular importance.
Under this specialization, the generalized powers [x|b]kL, [[x; t|b]]kL reduce to

[x|b]k =

k∏
j=1

(x+ bj), [[x; t|b]]k = (x− tx)[x|b]k−1,

and we obtain new symmetric polynomials denoted by HPλ(xn; t|b) and
HQλ(xn; t|b) respectively. More explicitly, these are defined as follows:

Definition 3.2 (Factorial Hall–Littlewood P - and Q-polynomials). For
a sequence λ = (λ1, . . . , λr) of positive integers with r ≤ n, we define
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HPλ(xn; t|b) :=
∑

w∈Sn/(S1)r×Sn−r

w ·
[
[x|b]λ

r∏
i=1

n∏
j=i+1

xi − txj
xi − xj

]
,

=
∑

w∈Sn/(S1)r×Sn−r

w ·
[ r∏
i=1

λi∏
j=1

(xi + bj)×
r∏

i=1

n∏
j=i+1

xi − txj
xi − xj

]
,

HQλ(xn; t|b) :=
∑

w∈Sn/(S1)r×Sn−r

w ·
[
[[x; t|b]]λ

r∏
i=1

n∏
j=i+1

xi − txj
xi − xj

]
= (1− t)r×∑
w∈Sn/(S1)r×Sn−r

w ·
[ r∏
i=1

λi−1∏
j=1

xi(xi + bj)×
r∏

i=1

n∏
j=i+1

xi − txj
xi − xj

]
.

We also define

HPλ(xn; t) := HPλ(xn; t|0) and HQλ(xn; t) := HQλ(xn; t|0),
and call them the Hall–Littlewood P - and Q-polynomials respectively.

Note that, by definition, HQλ(xn; t|b) = (1 − t)ℓ(λ)HPλ(xn; t|0, b). For
a strict partition λ, if t = −1, then HPλ(xn;−1|b) and HQλ(xn;−1|b) =
2ℓ(λ)HPλ(xn;−1|0, b) coincide with the factorial Schur P - and Q-polyno-
mials (by replacing b with −b = (−b1,−b2, . . . )) (for their definition, see
Ikeda–Mihalcea–Naruse [12, §4.2]). However, for any partition λ, neither
HPλ(xn; 0|b) nor HQλ(xn; 0|b) coincides with the factorial Schur polyno-
mial (for its definition, see Molev–Sagan [21, §2, (3)]).

Example 3.3. Direct computation using Definition 3.2 gives some ex-
amples:

HP(1)(xn; t|b) = x1 + · · ·+ xn +
1− tn

1− t
b1,

HP(12)(xn; t|b)

= (1 + t)

[
m(12)(xn) +

1− tn−1

1− t
b1m(1)(xn) +

(1− tn−1)(1− tn)

(1− t)(1− t2)
b21

]
,

HP(2)(xn; t|b) = s(2)(xn)− ts(12)(xn) + (b1 + b2)s(1)(xn) + b1b2
1− tn

1− t
.

Here mλ(xn) and sλ(xn) are respectively the monomial symmetric polyno-
mials and Schur polynomials corresponding to λ.

If λ is a partition of length ℓ(λ) = r ≤ n, i.e., λ1 ≥ · · · ≥ λr > 0, our
factorial Hall–Littlewood P - and Q-polynomials are related to Macdonald’s
Hall–Littlewood P - and Q-polynomials in the following way: We rewrite λ
as λ = (np1

1 · · ·npd
d ), where n1 > · · · > nd = 0, pi > 0 for each i, pd = n− r,
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and
∑d

i=1 pi = n. We put ν(k) :=
∑k

i=1 pi for k = 1, . . . , d and ν(0) := 0.
Denote by Spk the symmetric group on pk letters ν(k − 1) + 1, . . . , ν(k) for
k = 1, . . . , d. Thus the stabilizer subgroup Sλ

n of λ under the action of Sn on
λ is given by Sλ

n =
∏d

k=1 Spk . For an integer k ≥ 0, let vk(t) :=
∏k

i=1
1−ti

1−t ,
and for the above partition λ, we define (3)

vλ>0(t) :=

d−1∏
k=1

vpk(t).

Using the identity

(3.1)
∑
w∈Sn

w ·
[ ∏
1≤i<j≤n

xi − txj
xi − xj

]
= vn(t)

of [19, Chapter III, (1.4)], one can prove the following fact along the same
lines as for the usual Hall–Littlewood polynomials in [19, Chapter III, (1.5)]:

(3.2) HPλ(xn; t|b) = vλ>0(t)×
∑

w∈Sn/Sλ
n

w ·
[
[x|b]λ ·

∏
1≤i<j≤n
λi>λj

xi − txj
xi − xj

]
.

Thus HPλ(xn; t|b) is divisible by vλ>0(t). Taking this fact into account, we
define

(3.3) Pλ(xn; t|b) :=
1

vλ>0(t)
HPλ(xn; t|b),

or equivalently

(3.4) Pλ(xn; t|b) :=
∑

w∈Sn/Sλ
n

w ·
[
[x|b]λ ·

∏
1≤i<j≤n
λi>λj

xi − txj
xi − xj

]
.

It is this polynomial that can be considered as a factorial version of Mac-
donald’s Hall–Littlewood P -polynomial Pλ(xn; t). Putting b = 0 in (3.3), we
have HPλ(xn; t) = vλ>0(t)Pλ(xn; t). In particular, for λ strict, HPλ(xn; t)
coincides with Pλ(xn; t). On the other hand, by the argument in Macdon-
ald’s book [19, pp. 210–211], we see that HQλ(xn; t) equals the ordinary
Hall–Littlewood Q-polynomial Qλ(xn; t).

Remark 3.4. (1) The universal analogue of the left-hand side of (3.1),
namely, ∑

w∈Sn

w ·
[ ∏
1≤i<j≤n

xi +L [t](xj)

xi +L xj

]

(3) Do not confuse vλ>0(t) with vλ(t) :=
∏

i≥0 vmi(t) in Macdonald [19, Chapter III,
§1], where mi = mi(λ) means the multiplicity for each i ≥ 0.
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is no longer a polynomial in t alone (it contains the variables x1, . . . , xn).
Therefore a formula analogous to (3.2) does not hold in this case.

(2) For a general sequence λ of positive integers, HPλ(xn; t|b) may not
be divisible by vλ>0(t).

3.2. Characterization of the universal factorial Hall–Littlewood
P - and Q-functions. Geometrically, the universal factorial Hall–Little-
wood P - and Q-functions are characterized by means of the Gysin map
for certain flag bundles. (We learned this idea from Pragacz’s work [32].)
Let E → X be a complex vector bundle of rank n, and x1, . . . , xn the
MU∗-theory Chern roots of E as in (2.3). Consider the associated full flag
bundle πr,r−1,...,1 : Fℓr,r−1,...,1(E) → X. Then the Gysin homomorphism
(πr,...,1)∗ : MU∗(Fℓr,...,1(E)) → MU∗(X) is described as the following type
of a symmetrizing operator (see Nakagawa–Naruse [24, Theorem 4.10], and
also Brion [3, Proposition 1.1] for cohomology): For an (S1)

r×Sn−r-invariant
polynomial f(X1, . . . , Xn) ∈ MU∗(X)[X1, . . . , Xn]

(S1)r×Sn−r , one has

(πr,...,1)∗(f(x1, . . . , xn)) =
∑

w∈Sn/(S1)r×Sn−r

w ·
[

f(x1, . . . , xn)∏
1≤i≤r, i<j≤n(xi +L xj)

]
.

Then it follows from Definition 3.1 and the above description of the Gysin
homomorphism (πr,...,1)∗ that the following formula holds:

Proposition 3.5 (Characterization of the universal factorial Hall–Lit-
tlewood P - and Q-functions).

(πr,...,1)∗

(
[x|b]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))
)
= HPL

λ (xn; t|b),(3.5)

(πr,...,1)∗

(
[[x; t|b]]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))
)
= HQL

λ(xn; t|b).(3.6)

Here b = (b1, b2, . . .) is a sequence of elements in MU∗(X).

At first sight, this characterization seems to be merely a paraphrase of
Definition 3.1. However, this geometric interpretation will be crucial to our
current work. In fact, as shown in §4, a careful application of the fundamental
Gysin formula (2.2) to the left hand sides of (3.5), (3.6) enables us to obtain
the generating functions for the universal factorial Hall–Littlewood P - and
Q-functions.

Remark 3.6. As a special case of the above result, the factorial Hall–
Littlewood P -polynomial HPλ(xn; t|b) is characterized by the cohomology
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Gysin map:

(πr,...,1)∗

(
[x|b]λ

r∏
i=1

n∏
j=i+1

(xi − txj)
)
= HPλ(xn; t|b).

A factorial version of Macdonald’s Hall–Littlewood P -polynomial Pλ(xn; t|b)
can also be characterized by the Gysin map: Consider the partial flag bundle
πλ :Fℓλ(E) :=Fℓν(d−1),ν(d−2),...,ν(1)(E)→X. Here we write λ=(np1

1 · · ·npd
d )

and ν(k)=
∑k

i=1 pi as in §3.1. Then

(πλ)∗

(
[x|b]λ

r∏
i=1

n∏
j=i+1

(xi − txj)
)
= Pλ(xn; t|b).

3.3. Vanishing properties of factorial Hall–Littlewood P - and
Q-polynomials. It is known that the factorial Schur S-, P -, and Q-polyno-
mials have a remarkable property called the vanishing property (see Molev–
Sagan [21, Theorem 2.1], Ivanov [15, Theorem 5.3]). In this subsection, we
shall show that our factorial Hall–Littlewood P - and Q-polynomials also
have this property. Let b = (b1, b2, . . .) be a sequence of indeterminates, and
t be an indeterminate. For a partition µ = (µ1, µ2, . . .), let mi = mi(µ) be
the multiplicity of i (1 ≤ i ≤ µ1), i.e., the number of components in µ of
size i. We define

−bµ(t) := (−b
mµ1
µ1 (t), . . . ,−bm2

2 (t),−bm1
1 (t)),

where −bki (t) := (−bi,−tbi, . . . ,−tk−1bi) (we set −b0i (t) = ( ), the empty
sequence). Let us consider substituting the variables xn = (x1, . . . , xn) with
the sequence −bµ(t) for a partition µ of length ℓ(µ) ≤ n. We sometimes
write xn → −bµ(t), or more specifically, say, x1 → −bµ1 when we make
such a substitution. After the substitution xn → −bµ(t), denote by evµ(xi)
(i = 1, . . . , n) the ith entry of −bµ(t). Then we have

(evµ(x1), . . . , evµ(xn)) = −bµ(t).

We also use the notation evµ(f(x1, . . . , xn)) = f(evµ(x1), . . . , evµ(xn)). For
example, if µ = (5, 5, 5, 4, 1, 1), then m1(µ) = 2, m2(µ) = 0, m3(µ) = 0,
m4(µ) = 1, m5(µ) = 3, and −bµ(t) = (−b5,−tb5,−t2b5,−b4,−b1,−tb1),
evµ(x1) = −b5, evµ(x2) = −tb5, evµ(x2 − tx1) = −tb5 − t · (−b5) = 0, etc.
With these notations, we can prove the following:

Proposition 3.7 (Vanishing property). Let λ, µ be partitions of length
at most n and set µ̂ := µ + (1n) = (µ1 + 1, . . . , µn + 1). Then the factorial
Hall–Littlewood P - and Q-polynomials have the following vanishing property:

(1) If µ ̸⊃ λ, then

HQλ(−bµ(t), 0, . . . , 0︸ ︷︷ ︸
n−ℓ(µ)

; t|b) = 0, HPλ(−bµ̂(t); t|b) = 0.
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(2) If µ = λ, then

HQλ(−bλ(t), 0, . . . , 0︸ ︷︷ ︸
n−ℓ(λ)

; t|b) =
λ1∏
q=1

mq(λ)∏
k=1

( q∏
p=1

(−tk−1bq + tmp(λ)bp)
)
,

HPλ(−bλ̂(t); t|b) = vλ>0(t)

λ̂1∏
q=2

mq(λ̂)∏
k=1

( q−1∏
p=1

(−tk−1bq + tmp(λ̂)bp)
)
.

Proof. We only handle the case of HPλ(xn; t|b); the case of HQλ(xn; t|b)
can be proved similarly.

(1) Assuming λ ̸⊂ µ, we can find the minimal k such that λk > µk

(1 ≤ k ≤ ℓ(λ) = r). For each choice w of w ∈ Sn/(S1)
r ×Sn−r, we will show

that the corresponding summand in (3.2) vanishes, i.e.,(
w ·

[
[x1|b]λ1 · · · [xr|b]λr

∏
1≤i≤r, i<j≤n

xi − txj
xi − xj

])
xn→−bµ̂(t)

= 0.

For the permutation w, take the minimal d (1 ≤ d ≤ k) such that w(d) ≥ k.
Then we divide the discussion into two cases:

Case 1: w(d) = 1 or [w(d) > 1 and µw(d)−1 > µw(d)]. In this case,

([xw(d)|b]λd)xw(d)→evµ̂(xw(d)) = 0

because evµ̂(xw(d)) = −bµw(d)+1 and λd ≥ λk > µk ≥ µw(d).
Case 2: w(d) > 1 and µw(d)−1 = µw(d). In this case, we claim that

evµ̂

( ∏
1≤i≤r, i<j≤n

xw(i) − txw(j)

xw(i) − xw(j)

)
= 0.

First note that, by the minimality of k, we have w(d) > k. Let p (1 ≤ p ≤ n)
be an integer such that w(p) = w(d) − 1. Then, by the minimality of d,
we have d < p ≤ n. Since µw(p) = µw(d) and w(d) = w(p) + 1, we have
evµ̂(xw(d)) = t · evµ̂(xw(p)). As 1 ≤ d ≤ r and d < p ≤ n, the factor
evµ̂(xw(d) − txw(p)) vanishes, and our claim follows.

(2) When µ = λ, we first show that each summand corresponding to
w ∈ Sn/(S1)

r × Sn−r vanishes under the evaluation evλ̂, except for w = e
(where e is the identity element). In fact, if w ̸= e, we can find minimal d
such that 1 ≤ d ≤ r and w(d) > d. Then, by dividing the argument into
the cases of λw(d)−1 > λw(d) and of λw(d)−1 = λw(d), we can show that the
corresponding summand vanishes under evλ̂.

For w = e, we can evaluate the term as follows. For each i (1 ≤ i ≤ r),
we can write evλ̂(xi) = tk−1bq (k ≥ 1, q = λi + 1 ≥ 2). Then the direct
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computation yields

evλ̂

(
[xi|b]λi

n∏
j=i+1

xi − txj
xi − xj

)
=

1− tmq(λ̂)−k+1

1− t

q−1∏
p=1

(−tk−1bq + tmp(λ̂)bp).

We then take the product of all these evaluations for 1 ≤ i ≤ r. Since

λ̂1∏
q=2

mq(λ̂)∏
k=1

1− tmq(λ̂)−k+1

1− t
= vλ>0(t),

we get the desired formula.

More generally, we can prove the vanishing property of the universal
factorial Hall–Littlewood P - and Q-functions in a similar way. We only state
the result, for which we need some notations. For a partition µ, we define

bµ[t] := (b
mµ1
µ1

[t], b
mµ1−1

µ1−1 [t], . . . , b
m2

2 [t], b
m1

1 [t]),

where b
k
i [t] := (bi, [t](bi), . . . , [t

k−1](bi)) (we set b
0
i [t] = ( ), the empty se-

quence).

Proposition 3.8 (Vanishing property). Let λ, µ be partitions of length
at most n and set µ̂ = µ + (1n) = (µ1 + 1, . . . , µn + 1). Then the universal
factorial Hall–Littlewood P - and Q-functions have the following vanishing
property:

(1) If µ ̸⊃ λ, then

HQL
λ(bµ[t], 0, . . . , 0︸ ︷︷ ︸

n−ℓ(µ)

; t|b) = 0, HPL
λ (bµ̂[t]; t|b) = 0.

(2) If µ = λ, then

HQL
λ(bλ[t], 0, . . . , 0︸ ︷︷ ︸

n−ℓ(λ)

; t|b) =
λ1∏
q=1

mq(λ)∏
k=1

( q∏
p=1

([tk−1](bq) +L [tmp(λ)](bp))
)
,

HPL
λ (bλ̂[t]; t|b) = vλ>0(t)

λ̂1∏
q=2

mq(λ̂)∏
k=1

( q−1∏
p=1

([tk−1](bq) +L [tmp(λ̂)](bp))
)
.

3.4. Pieri-type formula and hook formula. The vanishing property
established in the previous section is useful in that one can derive from it
several interesting results on factorial Hall–Littlewood polynomials. Denote
by Λ(xn) = Z[x1, . . . , xn]Sn the ring of symmetric polynomials of n variables,
and by Pn the set of partitions of length ≤ n. Then it is known that the
usual Hall–Littlewood P -polynomials Pλ(xn; t) (λ ∈ Pn) form a Z[t]-basis
of Λ(xn)[t] ∼= Z[t]⊗Z Λ(xn) (cf. Macdonald [19, III, (2.7)]). Therefore there
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exist polynomials cνλ,µ(t) = c
ν,(n)
λ,µ (t) ∈ Z[t] such that

Pλ(xn; t)Pµ(xn; t) =
∑
ν

cνλ,µ(t)Pν(xn; t) (λ, µ, ν ∈ Pn).

It is known (see Macdonald [19, III, (5.7)]) that the following Pieri-type
formula holds:
(3.7) P(1)(xn; t)Pµ(xn; t) =

∑
µ⊂ν, |ν/µ|=1

αν/µ(t)Pν(xn; t),

where the polynomial αν/µ(t) = α
(n)
ν/µ(t) is given by 1−tmj(ν)

1−t if ν/µ has a
box in the jth column. As for the factorial version of Macdonald’s Hall–
Littlewood P -polynomials Pλ(xn; t|b) (see (3.3)), one can consider a simi-
lar problem: First we see that the factorial Hall–Littlewood P -polynomials
Pλ(xn; t|b) (λ ∈ Pn) form a Z[t]⊗ZZ[b]-basis of Λ(xn|b)[t] := Z[t]⊗ZZ[b]⊗Z
Λ(xn), where Z[b] = Z[b1, b2, . . .] is the polynomial ring in indeterminates
b = (b1, b2, . . .). Therefore there exist polynomials cνλ,µ(t|b) = c

ν,(n)
λ,µ (t|b) ∈

Z[t]⊗ Z[b] such that

(3.8) Pλ(xn; t|b)Pµ(xn; t|b) =
∑
ν

cνλ,µ(t|b)Pν(xn; t|b) (λ, µ, ν ∈ Pn).

By definition, the “structure constant” cνλ,µ(t|b) is a homogeneous polyno-
mial of degree |λ| + |µ| − |ν| in the indeterminates b = (b1, b2, . . .) with co-
efficients in Z[t]. Comparing the highest homogeneous components in xn =
(x1, . . . , xn) on both sides of (3.8), we see that

cνλ,µ(t|b) =

{
cνλ,µ(t) if |λ|+ |µ| = |ν|,
0 if |λ|+ |µ| < |ν|.

From the commutativity of the product on the left hand side of (3.8), the
symmetry cνλ,µ(t|b) = cνµ,λ(t|b) holds obviously. Furthermore, using the van-
ishing property (4), Proposition 3.7, we claim that cνλ,µ(t|b) is zero unless
λ ⊂ ν and µ ⊂ ν. The proof proceeds as follows (cf. Molev–Sagan [21,
p. 4434]): Fix λ, µ and let ν be a minimal partition with respect to the con-
tainment relation such that cνλ,µ(t|b) ̸= 0 in (3.8). Suppose that µ ̸⊂ ν. We
set xn = −bν̂(t) in (3.8). Then, by Proposition 3.7(1), we have

0 = cνλ,µ(t|b)Pν(−bν̂(t); t|b).
By Proposition 3.7(2), we have Pν(−bν̂(t); t|b) ̸= 0, and hence cνλ,µ(t|b) = 0.
However, this contradicts cνλ,µ(t|b) ̸= 0, and hence µ ⊂ ν holds. From this
and the symmetry relation cνλ,µ(t|b) = cνµ,λ(t|b), our claim follows.

Now we consider the case where λ = (1) in (3.8). Then, by the known
properties of the structure constants, we only need to consider those ν with

(4) By the definition (3.3), Pλ(xn; t|b)’s also satisfy the vanishing property.
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µ ⊂ ν and |ν| ≤ |µ|+ 1, Thus (3.8) takes the following form:

P(1)(xn; t|b)Pµ(xn; t|b) = cµ(1),µ(t|b)Pµ(xn; t|b)

+
∑

µ⊂ν, |ν/µ|=1

cν(1),µ(t|b)Pν(xn; t|b).

Setting xn = −bµ̂(t) and using the vanishing property, we see that cµ(1),µ(t|b)
= P(1)(−bµ̂(t); t|b). On the other hand, for degree reasons, we have cν(1),µ(t|b)
= cν(1),µ(t) = αν/µ(t) when µ ⊂ ν and |ν/µ| = 1. Thus we obtain the following
formula:

Proposition 3.9 (Pieri-type formula for factorial Hall–Littlewood P -
polynomials).

P(1)(xn; t|b)Pµ(xn; t|b) = P(1)(−bµ̂(t); t|b)Pµ(xn; t|b)

+
∑

µ⊂ν, |ν/µ|=1

αν/µPν(xn; t|b).

Using Proposition 3.9, we can derive a generalization of the so-called hook
(length) formula. We argue as follows (the following argument is essentially
the same as that given in Molev–Sagan [21, Proposition 3.2] for factorial
Schur polynomials, although they did not mention the relation to the hook
formula; for this type of argument, see also Naruse–Okada [29, Lemma 4.5]).
For simplicity, we shall use the abbreviated notation Pλ, cνλ,µ, and αλ/µ for

Pλ(xn; t|b), cν,(n)λ,µ (t|b), and α
(n)
λ/µ(t) respectively. Then our hook formula can

be stated as follows:

Proposition 3.10 (Hook formula for factorial Hall–Littlewood P -poly-
nomials). Let µ be a partition of length ℓ(µ) ≤ n and size |µ| = k, a positive
integer. Then

∑
µ=µ(0)⊋µ(1)⊋···⊋µ(k)=∅

αµ(k−1)/µ(k)

cµ(1),µ − cµ
(k)

(1),µ(k)

· · ·
αµ(1)/µ(2)

cµ(1),µ − cµ
(2)

(1),µ(2)

·
αµ(0)/µ(1)

cµ(1),µ − cµ
(1)

(1),µ(1)

=
1

Pµ(−bµ̂(t); t|b)
.

(3.9)

Proof. We use the associativity of the product

(P(1)Pλ)Pµ = P(1)(PλPµ),

and take the coefficient of Pµ on both sides. Using the fact that cγα,β is zero
unless α ⊂ γ and β ⊂ γ, and Proposition 3.9, we have

cλ(1),λc
µ
λ,µ +

∑
µ⊃ν⊋λ, |ν/λ|=1

αν/λ c
µ
ν,µ = cµ(1),µc

µ
λ,µ,
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and therefore

(cµ(1),µ − cλ(1),λ)c
µ
λ,µ =

∑
µ⊃ν⊋λ, |ν/λ|=1

αν/λ c
µ
ν,µ.

By definition and Example 3.3, we know that P(1)(xn; t|b) = x1+ · · ·+xn+
1−tn

1−t b1. Therefore, if µ ⊋ λ, we see that

cµ(1),µ − cλ(1),λ = P(1)(−bµ̂(t); t|b)− P(1)(−bλ̂(t); t|b) ̸= 0.

Thus we have the following recurrence formula:

cµλ,µ =
∑

µ⊃ν⊋λ, |ν/λ|=1

αν/λ

cµ(1),µ − cλ(1),λ
cµν,µ.

Using this recurrence formula repeatedly, we obtain

cµ∅,µ =
∑

µ=µ(0)⊋µ(1)⊋···⊋µ(k)=∅

αµ(k−1)/µ(k)

cµ(1),µ − cµ
(k)

(1),µ(k)

· · ·
αµ(0)/µ(1)

cµ(1),µ − cµ
(1)

(1),µ(1)

cµµ,µ.

The fact that cµ∅,µ = 1 is obvious from the definition of structure constants.
The value of cµµ,µ equals Pµ(−bµ̂(t); t|b) by the vanishing property, Proposi-
tion 3.7. Therefore, we have the desired formula.

As mentioned before the proposition, one can obtain a similar hook for-
mula from [21, Proposition 3.2]. More concretely, in their notation,

(3.10)
∑

∅=ρ(0)→ρ(1)→···→ρ(l)=ν

1

(|aν | − |aρ(0) |) · · · (|aν | − |aρ(l−1) |)
=

1

sν(aν |a)
.

We remark that this formula can be interpreted as a special case of Nakada’s
colored hook formula [22, Corollary 7.2], which is a generalization of the
famous hook formula due to Frame–Robinson–Thrall [6]. As an example,
let us take ν = (2, 2) and n = 2, the number of variables. Then the above
formula leads to

1

(a3 − a2)(a3 − a1)(a4 − a1)(a4 + a3 − a2 − a1)

+
1

(a3 − a2)(a4 − a2)(a4 − a1)(a4 + a3 − a2 − a1)

=
1

(a3 − a2)(a3 − a1)(a4 − a2)(a4 − a1)
.

Now consider the simple root system {α1, α2, α3} of type A3. If one represents
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the simple root αi as ai−ai+1 for i = 1, 2, 3, then the above identity becomes

(3.11)
1

α2(α1 + α2)(α1 + α2 + α3)(α1 + 2α2 + α3)

+
1

α2(α2 + α3)(α1 + α2 + α3)(α1 + 2α2 + α3)

=
1

α2(α1 + α2)(α2 + α3)(α1 + α2 + α3)
,

which agrees with the example given in [22, p. 1088]. When we specialize t to
be 0, our factorial Hall–Littlewood P -polynomialHPλ(xn; 0|b) = Pλ(xn; 0|b)
does not coincide with the factorial Schur polynomial sλ(xn|b) (5). Thus the
t = 0 specialization of our hook formula (3.9) yields another colored hook
formula (see the example below). It is well-known that the classical hook
formula and its shifted analogue have geometric background known as Schu-
bert calculus, and are closely related to the combinatorics of Grassmannians,
root systems, and Weyl groups (see, e.g., Hiller [10]). In our forthcoming pa-
per [27], we shall discuss the geometric or topological background of our hook
formula, in relation to the complex reflection groups G(e, 1, n) and G(e, e, n)
(for the root systems of these groups, see Bremke–Malle [1, 2]).

Example 3.11. For the partition µ = (2, 2), the explicit form of our
hook length formula is as follows: First note that there exist two “paths”
from µ = (2, 2) to ∅ = ( ):

µ = (2, 2) ⊋ (2, 1) ⊋ (2) ⊋ (1) ⊋ ( ),

µ = (2, 2) ⊋ (2, 1) ⊋ (1, 1) ⊋ (1) ⊋ ( ).

From the fact that cν(1),ν = c
ν,(n)
(1),ν (t|b) = P

(n)
(1) (−bν̂(t); t|b), we get the follow-

ing result directly:

c
( )
(1),( ) = 0,

c
(1)
(1),(1) = −b2 + tn−1b1,

c
(1,1)
(1),(1,1) = (1 + t)(−b2 + tn−2b1),

c
(2)
(1),(2) = −b3 + tn−1b1,

c
(2,1)
(1),(2,1) = −b3 − b2 + (1 + t)tn−2b1,

c
(2,2)
(1),(2,2) = (1 + t)(−b3 + tn−2b1).

(5) In the definition of the factorial Schur polynomial sλ(x|a) given by Molev–Sagan [21,
§2, (3)], we replaced a doubly-infinite variable sequence a = (ai), i ∈ Z, by b = (b1, b2, . . .).
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Similarly, αν/λ = α
(n)
ν/λ(t) can be computed directly from the definition, and

we get

α(2,2)/(2,1) = 1 + t, α(2,1)/(2) = 1, α(2,1)/(1,1) = 1, α(2)/(1) = 1,

α(1,1)/(1) = 1 + t, α(1)/( ) = 1.

By Proposition 3.7, we have, for µ = (2, 2),

P (n)
µ (−bµ̂(t); t|b) = (−b3 + tn−2b1)(−tb3 + tn−2b1)(−b3 + b2)(−tb3 + b2).

Therefore our hook formula gives the following identity:

1 + t

−tb3 + b2
·
(

1

−tb3 + tn−2b1
· 1

−b3 − tb3 + b2 + tn−2b1

+
1

−b3 − tb3 + b2 + tb2
· 1 + t

−b3 − tb3 + b2 + tn−2b1

)
× 1

−b3 − tb3 + tn−2b1 + tn−1b1

=
1

(−b3 + tn−2b1)(−tb3 + tn−2b1)(−b3 + b2)(−tb3 + b2)
.

4. Generating functions for the universal factorial Hall–Little-
wood P - and Q-functions. In this section, by utilizing a Gysin formula in
complex cobordism (Proposition 2.1) we shall derive the generating functions
for the universal factorial Hall–Littlewood P - and Q-functions.

4.1. Generating function for HPL
λ (xn; t|b). The basic idea is to apply

the fundamental formula (2.2) repeatedly to the characterization (3.5) to
obtain the generating function. Here we remark that formula (2.2) still holds
for a formal power series f(u) ∈ MU∗(X)[[u]], and we shall use such an
extended form of (2.2). However, we will be confronted with some difficulty
when we apply the formula to (3.5). In order to clarify the difficulty, let us
consider the simplest case λ = (λ1) with λ1 ≥ 1 (and hence r = 1) of (3.5).
We wish to push forward the expression [x1|b]λ1

L
∏n

j=2(x1 +L [t](xj)) via the
Gysin map π1

∗ : MU∗(G1(E)) → MU∗(X). Naively, setting

f(u) := [u|b]λ1
L ·

n∏
j=2

(u+L [t](xj)),

we wish to compute π1
∗(f(x1)). However, one cannot regard f(u) as an el-

ement of MU∗(X)[[u]]. Therefore we consider the following expression in-
stead:

f1(u) :=
[u|b]λ1

L
u+L [t](u)

·
n∏

j=1

(u+L [t](xj)).
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Since symmetric functions in x1, . . . , xn can be regarded as elements of
MU∗(X) (x1, . . . , xn are the Chern roots of E), the coefficients of f1(u) with
respect to u are actually in MU∗(X). Moreover, obviously f(x1) = f1(x1).
However, it is not a formal power series in u because of the constant term
b1 · · · bλ1 in the numerator, and therefore formula (2.2) does not apply di-
rectly. We further modify f1(u) to

(4.1) f2(u) :=
[u|b]λ1

L
u+L [t](u)

{ n∏
j=1

(u+L [t](xj))−
n∏

j=1

[t](u+L xj)
}
.

The effect of subtracting
∏n

j=1[t](u+L xj) (we call it the “correction term”)
is two-fold: Firstly, the expression

∏n
j=1(u+L [t](xj))−

∏n
j=1[t](u+L xj) is

divisible by u, and therefore f2(u) becomes indeed a formal power series in u
with coefficients in MU∗(X). Secondly, when we substitute x1 for u, we have
f(x1) = f2(x1) by the obvious identity

∏n
j=1[t](x1+L xj) = 0. Therefore the

fundamental Gysin formula (2.2) does apply to f2(u), and the result is

HPL
(λ1)

(xn; t|b) = π1
∗(f2(x1)) = [un−1](f2(u)× S L(E; 1/u))

= [un−1]

[
[u|b]λ1

L
u+L [t](u1)

×
{ n∏

j=1

(u+L [t](xj))−
n∏

j=1

[t](u+L xj)
}
· S L(E; 1/u)

]

= [u−λ1 ]

[
1

PL(u)

u

u+L [t](u)

×
{ n∏

j=1

u+L [t](xj)

u+L xj
−

n∏
j=1

[t](u+L xj)

u+L xj

}
·

λ1∏
j=1

u+L bj
u

]
.

Example 4.1. As a special case of the above formula, the ordinary fac-
torial Hall–Littlewood P -polynomial corresponding to the one-row (λ1) is
given by

HP(λ1)(xn; t|b) = [u−λ1 ]

[
1

1− t

( n∏
j=1

u− txj
u− xj

− tn
)
×

λ1∏
j=1

u+ bj
u

]
.

In particular,

HP(1)(xn; t|b) = [u−1]

[
1

1− t

( n∏
j=1

u− txj
u− xj

− tn
)
× u+ b1

u

]
=

1

1− t
q1(xn; t) +

1− tn

1− t
b1

= x1 + x2 + · · ·+ xn + (1 + t+ t2 + · · ·+ tn−1)b1.
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Here qr(xn; t) (r = 0, 1, . . .) are given by the following generating functions:
n∏

j=1

z − txj
z − xj

∣∣∣∣
z=u−1

=
n∏

j=1

1− txju

1− xju
=

∞∑
r=0

qr(xn; t)u
r.

For a general sequence λ = (λ1, . . . , λr) of positive integers with r ≤ n,
we need to compute the image of

[x|b]λL
r∏

i=1

n∏
j=i+1

(xi +L [t](xj))

under the Gysin map

(πr,r−1,...,1)∗ : MU∗(Fℓr,...,1(E)) → MU∗(X).

This image can be computed by applying πr
∗, π

r−1
∗ , . . . , π1

∗ successively. In
each step, we use the modification such as (4.1), i.e., subtracting the “cor-
rection term”. This technique enables us to apply the fundamental Gysin
formula (2.2), and we are able to show the following result:

Lemma 4.2. For a sequence λ = (λ1, . . . , λr) of positive integers with
r ≤ n, we have

(4.2) (πr,r−1,...,1)∗

(
[x|b]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))
)

=
[ r∏
i=1

u−λi
i

][ r∏
i=1

ui
ui +L [t](ui)

· 1

PL(ui)

×
{ n∏

j=1

ui +L [t](xj)

ui +L xj
−

i−1∏
j=1

ui +L [t](uj)

[t](ui +L uj)

n∏
j=1

[t](ui +L xj)

ui +L xj

}

×
∏

1≤i<j≤r

uj +L ui
uj +L [t](ui)

×
r∏

i=1

λi∏
j=1

ui +L bj
ui

]
.

Proof. To find the desired push-forward under the Gysin map

(πr,r−1,...,1)∗ = π1
∗ ◦ · · · ◦ πr−1

∗ ◦ πr
∗,

as explained above, we proceed inductively. For a = 1, . . . , r − 1 we assume
that

(4.3) (πr−a+1 ◦ · · · ◦ πr−1 ◦ πr)∗

(
[x|b]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))
)
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= [un−1
r−a+1 · · ·u

n−1
r−1u

n−1
r ][ r−a∏

i=1

[xi|b]λi
L

n∏
j=i+1

(xi +L [t](xj)) ·
r∏

i=r−a+1

[ui|b]λi
L

ui +L [t](ui)

×
{ n∏

j=r−a+1

(ui +L [t](xj))−
i−1∏

j=r−a+1

ui +L [t](uj)

[t](ui +L uj)

n∏
j=r−a+1

[t](ui +L xj)

}

×
r∏

i=r−a+1

r−a∏
j=1

(ui +L xj) ·
∏

r−a+1≤i<j≤r

uj +L ui
uj +L [t](ui)

·
r∏

i=r−a+1

S L(E; 1/ui)

]
.

We would like to push forward this formula via the Gysin map

πr−a
∗ : MU∗(G1(Un−r+a+1)) → MU∗(G1(Un−r+a+2)).

Taking (4.1) into account, we modify the right-hand side of (4.3) as

[un−1
r−a+1 · · ·u

n−1
r−1u

n−1
r ]

[ r−a−1∏
i=1

[xi|b]λi
L

n∏
j=i+1

(xi +L [t](xj))

×
[xr−a|b]λr−a

L
xr−a +L [t](xr−a)

{ n∏
j=r−a

(xr−a +L [t](xj))−
n∏

j=r−a

[t](xr−a +L xj)
}

×
r∏

i=r−a+1

[ui|b]λi
L

ui +L [t](ui)

{
1

ui +L [t](xr−a)

n∏
j=r−a

(ui +L [t](xj))

−
i−1∏

j=r−a+1

ui +L [t](uj)

[t](ui +L uj)
· 1

[t](ui +L xr−a)

n∏
j=r−a

[t](ui +L xj)

}

×
r∏

i=r−a+1

r−a−1∏
j=1

(ui +L xj)×
r∏

i=r−a+1

(ui +L xr−a)

×
∏

r−a+1≤i<j≤r

uj +L ui
uj +L [t](ui)

×
r∏

i=r−a+1

S L(E; 1/ui)

]
.

Then, we apply (2.2). In the above modification, we divide both the denom-
inator and the numerator of 1

ui+L[t](xr−a)
by ui, and consider it as a formal

power series in xr−a. We also treat 1
[t](ui+Lxr−a)

in the same manner. With
this remark, the result is just replacing xr−a by the formal variable ur−a,
and multiplying by S L(Un−r+a+1; 1/ur−a). Then, we extract the coefficient
of un−r+a

r−a . Since we know from (2.1) that

S L(Un−r+a+1; 1/ur−a) = u
−(r−a−1)
r−a

r−a−1∏
j=1

(ur−a +L xj)× S L(E; 1/ur−a),
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we see directly that formula (4.3) holds for a+ 1. Therefore, when a = r,

(πr,r−1,...,1)∗

(
[x|b]λL

r∏
i=1

n∏
j=i+1

(xi +L [t](xj))
)

= [un−1
1 . . . un−1

r ][ r∏
i=1

[ui|b]λi
L

ui +L [t](ui)

{ n∏
j=1

(ui +L [t](xj))−
i−1∏
j=1

ui +L [t](uj)

[t](ui +L uj)

n∏
j=1

[t](ui +L xj)

}

×
∏

1≤i<j≤r

uj +L ui
uj +L [t](ui)

×
r∏

i=1

S L(E; 1/ui)

]
.

Then, using the Segre series (2.1), we obtain the required formula.

By (3.5), the left-hand side of (4.2) is HPL
λ (xn; t|b), and hence the right-

hand side gives a generating function for HPL
λ (xn; t|b). Let us simplify this

generating function in the following way: First note that∏
1≤i<j≤r

uj +L ui
uj +L [t](ui)

=
∏

1≤j<i≤r

ui +L uj
ui +L [t](uj)

=
r∏

i=1

i−1∏
j=1

ui +L uj
ui +L [t](uj)

.

Therefore if we put

HPL,(n)
i,λi

(u1, . . . , ui|b) :=
ui

ui +L [t](ui)
· 1

PL(ui)

×
( n∏

j=1

ui +L [t](xj)

ui +L xj

i−1∏
j=1

ui +L uj
ui +L [t](uj)

λi∏
j=1

ui +L bj
ui

−
n∏

j=1

[t](ui +L xj)

ui +L xj

i−1∏
j=1

ui +L uj
[t](ui +L uj)

λi∏
j=1

ui +L bj
ui

)
,

HPL,(n)
λ (ur|b) = HPL,(n)

λ (u1, . . . , ur|b) :=
r∏

i=1

HPL,(n)
i,λi

(u1, . . . , ui|b),

then

(4.4) HPL
λ (xn; t|b) = [u−λ](HPL,(n)

λ (ur|b)).
Moreover, observe that:

• ui
ui+L[t](ui)

· 1
PL(ui)

is a formal power series in ui.

•
∏n

j=1
[t](ui+Lxj)
ui+Lxj

∏i−1
j=1

ui+Luj

[t](ui+Luj)
is regarded as a formal power series in ui

with constant term tn−i+1.
•
∏λi

j=1
ui+Lbj

ui
is a formal Laurent series in ui whose lowest degree term is

u−λi
i with coefficient

∏λi
j=1 bj .
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Taking the above observation into account, we put

H̃P
L,(n)
i,λi

(u1, . . . , ui|b) :=
ui

ui +L [t](ui)
· 1

PL(ui)

×
( n∏

j=1

ui +L [t](xj)

ui +L xj

i−1∏
j=1

ui +L uj
ui +L [t](uj)

λi∏
j=1

ui +L bj
ui

− tn−i+1
λi∏
j=1

bj
ui

)
,

H̃P
L,(n)
λ (ur|b) = H̃P

L,(n)
λ (u1, . . . , ur|b) :=

r∏
i=1

H̃P
L,(n)
i,λi

(u1, . . . , ui|b).

Then we can reduce HPL,(n)
λ (ur|b) to H̃P

L,(n)
λ (ur|b), and obtain from (4.4)

the following result:

Theorem 4.3 (Generating function for HPL
λ (xn; t|b)). For a sequence

λ = (λ1, . . . , λr) of positive integers with r ≤ n, the universal factorial Hall–
Littlewood P -function HPL

λ (xn; t|b) is the coefficient of u−λ = u−λ1
1 · · ·u−λr

r

in H̃P
L,(n)
λ (u1, . . . , ur|b):

HPL
λ (xn; t|b) = [u−λ](H̃P

L,(n)
λ (ur|b)).

If we specialize the universal formal group law FL(u, v) = u +L v to
Fa(u, v) = u + v, the above generating function takes a relatively simple
form:

H̃P
(n)

i,λi
(u1, . . . , ui|b)

=
1

1− t

( n∏
j=1

ui − txj
ui − xj

i−1∏
j=1

ui − uj
ui − tuj

λi∏
j=1

ui + bj
ui

− tn−i+1
λi∏
j=1

bj
ui

)
,

H̃P
(n)

λ (ur|b) = H̃P
(n)

λ (u1, . . . , ur|b) =
r∏

i=1

H̃P
(n)

i,λi
(u1, . . . , ui|b).

Thus we have the following corollary:

Corollary 4.4 (Generating function for HPλ(xn; t|b)). For a sequence
λ = (λ1, . . . , λr) of positive integers with r ≤ n, the factorial Hall–Littlewood
P -polynomial HPλ(xn; t|b) is the coefficient of u−λ = u−λ1

1 · · ·u−λr
r in

H̃P
(n)

λ (u1, . . . , ur|b):

HPλ(xn; t|b) = [u−λ](H̃P
(n)

λ (ur|b)).

4.2. Generating function for HQL
λ(xn; t|b). Next we shall derive the

generating function for HQL
λ(xn; t|b). In the one-row case λ = (λ1) of (3.6),
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we push forward the expression

[[x1; t|b]]λ1
L

n∏
j=2

(x1 +L [t](xj)) =
(x1 +L [t](x1))[x1|b]λ1−1

L
x1 +L [t](x1)

n∏
j=1

(x1 +L [t](xj))

= [x1|b]λ1−1
L

n∏
j=1

(x1 +L [t](xj)),

which is a formal power series in x1, and so we can apply (2.2) to obtain

HQL
λ(xn; t|b) = [u−λ1

1 · · ·u−λr
r ][ r∏

i=1

1

PL(ui)

n∏
j=1

ui +L [t](xj)

ui +L xj

∏
1≤i<j≤r

uj +L ui
uj +L [t](ui)

·
r∏

i=1

λi−1∏
j=1

ui +L bj
ui

]
.

For each non-negative integer k, we set

HQL,(n)
k (u|b) := 1

PL(u)

n∏
j=1

u+L [t](xj)

u+L xj
×

k∏
j=1

u+L bj
u

.

For a sequence λ = (λ1, . . . , λr) of positive integers with r ≤ n, we set

HQL,(n)
λ (ur|b) = HQL,(n)

λ (u1, . . . , ur|b)

:=

r∏
i=1

HQL,(n)
λi−1(ui|b)

∏
1≤i<j≤r

uj +L ui
uj +L [t](ui)

.

Thus we have the following result:

Theorem 4.5 (Generating function for HQL
λ(xn; t|b)). For a sequence

λ = (λ1, . . . , λr) of positive integers with r ≤ n, the universal factorial Hall–
Littlewood Q-function HQL

λ(xn; t|b) is the coefficient of u−λ = u−λ1
1 · · ·u−λr

r

in HQL,(n)
λ (u1, . . . , ur|b):

HQL
λ(xn; t|b) = [u−λ](HQL,(n)

λ (ur|b)).

5. Application of generating functions

5.1. e-Cancellation property. A symmetric polynomial f(x1, . . . , xn)
with coefficients in Z has the Q-cancellation property if whenever the sub-
stitution x1 = a, x2 = −a, a an indeterminate, is made in f , the resulting
polynomial is independent of a (Pragacz [31, §2]). It is known that the Schur
P - and Q-polynomials satisfy this cancellation property. The notion of the Q-
cancellation property is generalized in the following way: Let e ≥ 2 be a fixed
integer, and ζ = ζe be a primitive eth root of unity. We define ae(ζ) to be the
sequence (a, ζa, ζ2a, . . . , ζe−1a). Suppose that e ≤ n. Then a symmetric poly-
nomial f(x1, . . . , xn) with coefficients in Z[ζ] has the e-cancellation property
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if f(ae(ζ), xe+1, . . . , xn) = f(a, ζa, ζ2a, . . . , ζe−1a, xe+1, . . . , xn) does not de-
pend on a. In the case e = 2, this property is nothing but the Q-cancellation
property. By specializing t to be ζ, the factorial Hall–Littlewood polynomials
HPλ(xn; ζ|b) and HQλ(xn; ζ|b) are symmetric polynomials with coefficients
in Z[ζ] ⊗ Z[b] = Z[ζ] ⊗ Z[b1, b2, . . .]. Thus one can ask if these symmet-
ric polynomials have the e-cancellation property or not. In this subsection,
as the first application of our generating functions, we shall establish the e-
cancellation property of the factorial Hall–Littlewood P - and Q-polynomials.

Proposition 5.1 (e-Cancellation property). Assume that e ≤ n. The
factorial Hall–Littlewood polynomials HPλ(xn; ζ|b) and HQλ(xn; ζ|b) have
the e-cancellation property.

Proof. Let r be the length of λ. By Corollary 4.4, HPλ(xn; ζ|b) is the
coefficient of u−λ in the generating function

(5.1)
1

(1− ζ)r

r∏
i=1

( n∏
j=1

ui − ζxj
ui − xj

i−1∏
j=1

ui − uj
ui − ζuj

λi∏
j=1

ui + bj
ui

−ζn−i+1
λi∏
j=1

bj
ui

)
.

Substituting (x1, . . . , xe) with ae(ζ) in each factor
∏n

j=1
ui−ζxj

ui−xj
, we have

e∏
j=1

ui − ζja

ui − ζj−1a
×

n∏
j=e+1

ui − ζxj
ui − xj

=

n∏
j=e+1

ui − ζxj
ui − xj

,

since ζe = 1. Therefore, (5.1) depends neither on a nor on x1, . . . , xe after
substitution. From this, the e-cancellation property of HPλ(xn; ζ|b) follows.
By Theorem 4.5, HQλ(xn; ζ|b) is given as the coefficient of u−λ in the gen-
erating function

r∏
i=1

n∏
j=1

u− ζxj
u− xj

×
λi−1∏
j=1

u+ bj
u

×
∏

1≤i<j≤r

uj − ui
uj − ζui

.

From this, the e-cancellation property of HQλ(xn; ζ|b) follows just as for
HPλ(xn; ζ|b).

Remark 5.2. For the universal factorial Hall–Littlewood P - and Q-
functions, we substitute (x1, . . . , xe) with

ae[ζ] := (a, [ζ](a), [ζ2](a), . . . , [ζe−1](a)).

Using Theorems 4.3 and 4.5, one can then verify easily that HPL
λ (xn; ζ|b)

and HQL
λ(xn; ζ|b) satisfy the e-cancellation property too.

5.2. Pfaffian formula for GQν(xn|b). As another application of our
generating functions, we shall derive the Pfaffian formulas for the K-the-
oretic factorial Q-polynomial GQν(xn|b), which seems to be new. In what
follows, we assume that the length ℓ(ν) of a strict partition ν is 2m (even). We
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consider the specialization from FL(u, v) = u+L v to Fm(u, v) = u⊕ v with
t = −1. Then HQL

ν (xn; t|b) specializes to GQν(xn|b), and the generating
function HQL,(n)

ν (u2m|b) reduces to

(5.2) GQ(n)
ν (u2m|b) =

2m∏
i=1

GQ(n)
νi−1(ui|b)

∏
1≤i<j≤2m

uj ⊖ ui
uj ⊕ ui

,

where, for each non-negative integer k, we define

GQ(n)
k (u|b) := 1

1 + βu

n∏
j=1

u⊕ xj
u⊖ xj

×
k∏

j=1

u⊕ bj
u

=
1

1 + βu

n∏
j=1

1 + (u−1 + β)xj
1 + (u−1 + β)xj

×
k∏

j=1

{1 + (u−1 + β)bj}.

This is a generating function for the factorial K-theoretic Q-polynomials
GQν(xn|b). Here we recall from Ikeda–Naruse [14, Lemma 2.4] the formula

Pf

(
xj − xi
xj ⊕ xi

)
1≤i<j≤2m

=
∏

1≤i<j≤2m

xj − xi
xj ⊕ xi

.

Thus we can compute (6)

GQ(n)
ν (u2m|b) =

2m∏
i=1

GQ(n)
νi−1(ui|b)

∏
1≤i<j≤2m

uj ⊖ ui
uj ⊕ ui

=

2m∏
i=1

GQ(n)
νi−1(ui|b)

2m∏
i=1

1

(1 + βui)2m−i
· Pf

(
uj − ui
uj ⊕ ui

)
1≤i<j≤2m

= Pf2m

(
GQ(n)

νi−1(ui|b)GQ
(n)
νj−1(uj |b)

× 1

(1 + βui)2m−i

1

(1 + βuj)2m−j
· uj − ui
uj ⊕ ui

)
= Pf2m

(
(1 + βui)

i+1−2m(1 + βuj)
j−2m

× GQ(n)
νi−1(ui|b)GQ

(n)
νj−1(uj |b) ·

uj ⊖ ui
uj ⊕ ui

)
.

(6) Below we use Pf2m (ai,j) as an abbreviation of Pf (ai,j)1≤i<j≤2m when the expres-
sion is too long.
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For non-negative integers p, q ≥ 0 and positive integers k, l ≥ 1, we define
polynomials GQ

(p,q)
(k,l) (xn|b) to be

GQ
(p,q)
(k,l) (xn|b) := [u−k

1 u−l
2 ]

(
GQ(n)

p−1(u1|b)GQ
(n)
q−1(u2|b) ·

u2 ⊖ u1
u2 ⊕ u1

)
.

Note that, by Theorem 4.5, we have GQ(k,l)(xn|b) = GQ
(k,l)
(k,l)(xn|b) for pos-

itive integers k > l > 0. Then, by Theorem 4.5, one obtains

GQν(xn|b) =
[ 2m∏
i=1

u−νi
i

](
Pf

(
(1 + βui)

i+1−2m(1 + βuj)
j−2m

× GQ(n)
νi−1(ui|b)GQ

(n)
νj−1(uj |b)×

uj ⊖ ui
uj ⊕ ui

)
1≤i<j≤2m

)
= Pf

(
[u−νi

i u
−νj
j ]

(
(1 + βui)

i+1−2m(1 + βuj)
j−2m

× GQ(n)
νi−1(ui|b)GQ

(n)
νj−1(uj |b)×

uj ⊖ ui
uj ⊕ ui

))
1≤i<j≤2m

= Pf

(
[u−νi

i u
−νj
j ]

( ∞∑
k=0

∞∑
l=0

(
i+ 1− 2m

k

)(
j − 2m

l

)
βk+luki u

l
j

× GQ(n)
νi−1(ui|b)GQ

(n)
νj−1(uj |b) ·

uj ⊖ ui
uj ⊕ ui

))
1≤i<j≤2m

= Pf

( ∞∑
k=0

∞∑
l=0

(
i+ 1− 2m

k

)(
j − 2m

l

)
βk+lGQ

(νi,νj)

(νi+k,νj+l)(xn|b)
)

1≤i<j≤2m

.

Thus we have obtained the following:

Theorem 5.3 (Pfaffian formula for GQν(xn|b)). For a strict partition ν
of length 2m, we have

GQν(xn|b)

= Pf2m

( ∞∑
k=0

∞∑
l=0

(
i+ 1− 2m

k

)(
j − 2m

l

)
βk+lGQ

(νi,νj)

(νi+k,νj+l)(xn|b)
)
.

Remark 5.4.

(1) Putting b = 0 in (5.2), we obtain a generating function for the (non-
factorial) K-theoretic Q-polynomials GQν(xn). On the other hand, dual
K-theoretic P - and Q-polynomials were introduced in our previous pa-
pers [23, §5], [25]. We have a conjecture on a generating function for the
dual K-theoretic Q-polynomials, and their Pfaffian formula (see §6.2).
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(2) The generating function technique can also be applied to derive the de-
terminantal formula for factorial Grothendieck polynomials Gλ(xn|b).
On the other hand, a generating function for the dual Grothendieck
polynomials gλ(xn) (for their definition, see Lascoux–Naruse [18]) can
be obtained in a purely algebraic manner. We shall give the details
in §6.1.

6. Appendix

6.1. Generating function for the dual Grothendieck polynomi-
als. As mentioned in Remark 5.4, we give a generating function for the dual
Grothendieck polynomials. Following Lascoux–Naruse [18], let us introduce
the dual Grothendieck polynomials gλ(yn), where yn = (y1, . . . , yn) is a set
of independent variables and λ ∈ Pn. First we need some notation: Given
two sets A, B of variables (called alphabets as usual), the complete functions
sk(A−B) (k = 0, 1, . . .) are given by the following generating function:

∞∑
k=0

sk(A−B)zk =
∏
a∈A

1

1− az

∏
b∈B

(1− bz).

In particular, when we add r letters specialized to 1, that is, the sequence
{1, . . . , 1} (r times), to one of the alphabets A or B, we have

∞∑
k=0

sk(A−B± r)zk = (1− z)∓r
∏
a∈A

1

1− az

∏
b∈B

(1− bz).

Then, for the variables yn = (y1, . . . , yn) and any integer r, we have
∞∑
k=0

sk(yn + r)zk = (1− z)−r
n∏

i=1

1

1− yiz

=

( ∞∑
i=0

(
−r

i

)
(−z)i

)( ∞∑
j=0

hj(yn)z
j
)

=

( ∞∑
i=0

(−1)i
(
r + i− 1

i

)
(−z)i

)( ∞∑
j=0

hj(yn)z
j
)

=

∞∑
k=0

( k∑
i=0

(
r + i− 1

i

)
hk−i(yn)

)
zk,

and hence

(6.1) sk(yn + r) =
k∑

i=0

(
r + i− 1

i

)
hk−i(yn) (k = 0, 1, . . .).
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Using (6.1), the dual Grothendieck polynomial gλ(yn) for λ ∈ Pn of length
r is given by (see Lascoux–Naruse [18, (3)])

gλ(yn) = sλ(yn,yn + 1, . . . ,yn + n− 1)(6.2)
= det (sλi−i+j(yn + i− 1))1≤i,j≤r

= det

( λi−i+j∑
k=0

(
(i− 1) + k − 1

k

)
hλi−i+j−k(yn)

)
1≤i,j≤r

= det

( ∞∑
k=0

(
i+ k − 2

k

)
hλi−i+j−k(yn)

)
1≤i,j≤r

.

We set

H(z) = H(n)(z) :=

n∏
j=1

1

1− yjz
=

∞∑
k=0

hk(yn)z
k,

g(zr) = g(z1, . . . , zr) :=
r∏

i=1

H(zi)
∏

1≤i<j≤r

zi ⊖ zj
zi

.

We shall show that g(zr) is the generating function for the dual Grothendieck
polynomials:

Theorem 6.1 (Generating function for gλ(yn)). For a partition λ =
(λ1, . . . , λr) of length ℓ(λ) = r ≤ n, the dual Grothendieck polynomial gλ(yn)
is the coefficient of zλ = zλ1

1 · · · zλr
r in g(z1, . . . , zr):

gλ(yn) = [zλ](g(zr)).

Proof. By the Vandermonde determinant formula, we have∏
1≤i<j≤r

zi ⊖ zj
zi

=

r−1∏
i=1

r∏
j=i+1

1

1 + βzj
· zi − zj

zi

=

r−1∏
i=1

1

(1 + βzi+1) · · · (1 + βzr)
·
r−1∏
i=1

1

zr−i
i

·
∏

1≤i<j≤r

(zi − zj)

=

r∏
i=1

1

(1 + βzi)i−1
·

r∏
i=1

1

zr−i
i

· det (zr−j
i )1≤i,j≤r

= det ((1 + βzi)
1−izi−j

i )1≤i,j≤r.

Therefore

g(z1, . . . , zr) =
r∏

i=1

H(zi)
∏

1≤i<j≤r

zi ⊖ zj
zi

= det ((1+βzi)
1−izi−j

i H(zi))1≤i,j≤r.
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Extracting the coefficient of the monomial zλ =
∏r

i=1 z
λi
i , we obtain

[zλ](g(z1, . . . , zr)) =
[ r∏
i=1

zλi
i

](
det ((1 + βzi)

1−izi−j
i H(zi))1≤i,j≤r

)
= det

(
[zλi

i ]((1 + βzi)
1−izi−j

i H(zi)
)
1≤i,j≤r

= det

(
[zλi

i ]

( ∞∑
k=0

(
1− i

k

)
βkzki · zi−j

i H(zi)

))
1≤i,j≤r

= det

( ∞∑
k=0

(
1− i

k

)
βkhλi−i+j−k(yn)

)
1≤i,j≤r

= det

( ∞∑
k=0

(
i+ k − 2

k

)
(−β)khλi−i+j−k(yn)

)
1≤i,j≤r

.

Here we have used the identity(
1− i

k

)
=

(
−(i− 1)

k

)
= (−1)k

(
i+ k − 2

k

)
for integers i ≥ 1, k ≥ 0. This last determinant is the dual Grothendieck
polynomial gλ(yn) introduced in (6.2) with β = −1.

6.2. Conjecture on a generating function for gqν(yn). In [14, §3.4],
Ikeda–Naruse introduced the K-theoretic P - and Q-functions GPν(x) and
GQν(x) in countably many variables x = (x1, x2, . . .). Let GΓ ′(x) denote
the ring of symmetric functions satisfying the K-theoretic Q-cancellation
property (see [14, Definition 1.1]). Similarly, let GΓ (x) denote the subring
of GΓ ′(x) consisting of all functions f such that f(t, x2, . . .) − f(0, x2, . . .)
is divisible by t ⊕ t (7). Ikeda–Naruse showed that GPν(x)’s and GQν(x)’s
(ν strict) form a formal Z[β]-basis of GΓ ′(x) and GΓ (x) respectively. Using
this “basis theorem” and the “Cauchy kernel”

∆(x;y) =

∞∏
i=1

∞∏
j=1

1− xiyj
1− xiyj

,

where y = (y1, y2, . . .) is another set of independent variables, we can define
the dual K-theoretic P - and Q-functions, denoted by gpν(y) and gqν(y), as
follows (see also Nakagawa–Naruse [23, Definition 5.3, Remark 5.4]):

Definition 6.2 (Dual K-theoretic Schur P - and Q-functions). Let SP
denote the set of all strict partitions. We define gpν(y) and gqν(y) for a

(7) We have slightly changed the notation of [14], where GΓ ′(x) and GΓ (x) are
written as GΓ and GΓ+ respectively.
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strict partition ν ∈ SP by the identities

(6.3)

∆(x;y) =
∞∏
i=1

∞∏
j=1

1− xiyj
1− xiyj

=
∑
ν∈SP

GPν(x)gqν(y) =
∑
ν∈SP

GQν(x)gpν(y).

One can check that gpν(y) and gqν(y) are actually symmetric functions,
i.e., they are elements of Λ(y) ⊗ Z[β], where Λ(y) is the ring of symmetric
functions in the variables y = (y1, y2, . . .) over Z. For each positive integer n,
one can define a surjective ring homomorphism ρ(n) : Λ(y) ↠ Λ(yn) by
putting yn+1 = yn+2 = · · · = 0. Here Λ(yn) = Z[y1, . . . , yn]Sn is the ring of
symmetric polynomials in yn = (y1, . . . , yn) under the usual action of the
symmetric group Sn. We also denote by ρ(n) its extension over Z[β]. Then we
define the dual K-theoretic Schur P - and Q-polynomials, denoted by gpν(yn)
and gqν(yn) for a strict partition ν of length ≤ n, by gpν(yn) = ρ(n)(gpν(y))
and gqν(yn) = ρ(n)(gqν(y)) respectively.

Next we set

gq(z) =
n∏

j=1

1− yjz

1− yjz
=

∞∑
k=0

gqk(yn)z
k,

gq(zr) = gq(z1, . . . , zr) :=

r∏
i=1

gq(zi)
∏

1≤i<j≤r

zi ⊖ zj
zi ⊕ zj

.

We make the following conjectures:

Conjecture 6.3 (Generating function for gqν(yn)). For a strict par-
tition ν = (ν1, . . . , νr) of length ℓ(ν) = r ≤ n, the dual K-theoretic Q-
polynomial gqν(yn) is the coefficient of zr = zν11 zν22 · · · zνrr in gq(z1, . . . , zr):

gqν(yn) = [zν ](gq(zr)).

We have checked that the above conjecture holds for r ≤ 2. As a corollary
to the above conjecture, we immediately obtain the following formula:

Corollary 6.4 (Pfaffian formula for gqν(yn)). For a strict partition ν
of length 2m, we have

gqν(yn) = Pf

( i−1∑
k=0

j∑
l=0

βk+l

(
i− 1

k

)(
j

l

)
gq(νi−k,νj−l)(yn)

)
1≤i<j≤2m

.
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