論文

本文へのリンクあり
2019年12月6日

More on a dessin on the base: Kodaira exceptional fibers and mutually (non-)local branes

Physics Letters B
  • Shin Fukuchi
  • ,
  • Naoto Kan
  • ,
  • Rinto Kuramochi
  • ,
  • Shun'ya Mizoguchi
  • ,
  • Hitomi Tashiro

803
開始ページ
135333
終了ページ
135333
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.physletb.2020.135333
出版者・発行元
Elsevier {BV}

A "dessin d'enfant" is a graph embedded on a two-dimensional oriented surface
named by Grothendieck. Recently we have developed a new way to keep track of
non-localness among 7-branes in F-theory on an elliptic fibration over $P^1$ by
drawing a triangulated "dessin" on the base. To further demonstrate the
usefulness of this method, we provide three examples of its use. We first
consider a deformation of the $I_0^*$ Kodaira fiber. With a dessin, we can
immediately find out which pairs of 7-branes are (non-)local and compute their
monodromies. We next identify the paths of string(-junction)s on the dessin by
solving the mass geodesic equation. By numerically computing their total
masses, we find that the Hanany-Witten effect has not occurred in this example.
Finally, we consider the orientifold limit in the spectral cover/Higgs bundle
approach. We observe the characteristic configuration presenting the cluster
sub-structure of an O-plane found previously.

リンク情報
DOI
https://doi.org/10.1016/j.physletb.2020.135333
arXiv
http://arxiv.org/abs/arXiv:1912.02974
URL
http://arxiv.org/abs/1912.02974v1
URL
http://arxiv.org/pdf/1912.02974v1 本文へのリンクあり
ID情報
  • DOI : 10.1016/j.physletb.2020.135333
  • ISSN : 0370-2693
  • ORCIDのPut Code : 114355883
  • arXiv ID : arXiv:1912.02974

エクスポート
BibTeX RIS