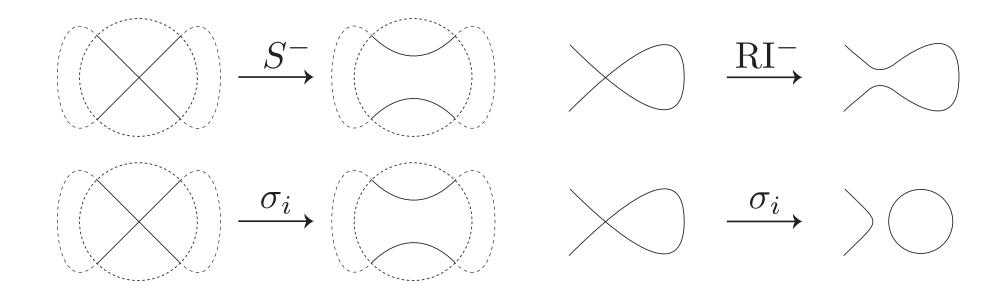
On crosscap numbers of knots

(w/ Yusuke Takimura (Gakushuin Boys' Junior High.))

Noboru Ito (Univ. of Tokyo)

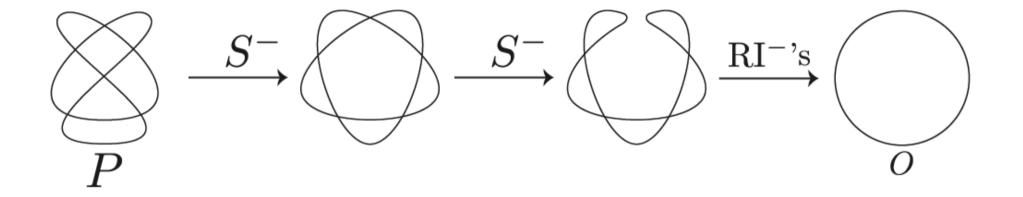
Third Pan-Pacific International Conference on Topology and Applications

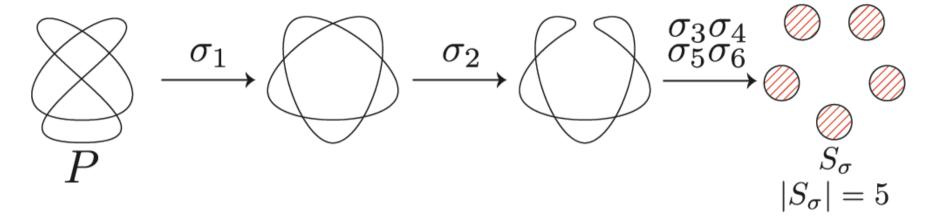


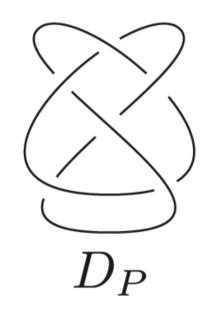
For every knot projection P,

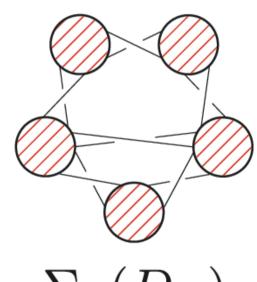
$$u^-(P) := \min_{\text{seq.}} \{S^- \text{ in seq. from } P \text{ to } O \}.$$

$$u^{-}(K) = \min_{P} u^{-}(P).$$









$$\Sigma_{\sigma}(D_P)$$

Theorem 1. Let K be a knot, C(K) a crosscap number of K, n(K) the minimum crossing number, and $u^-(K)$ defined as the above. If K is an prime alternating knot, then

$$C(K) = u^{-}(K).$$

If K is a prime (alternating or non-alternating) knot K,

$$C(K) \le u^-(K) \le \left| \frac{n(K)}{2} \right|$$

(the left inequality holds even if K is non-prime).

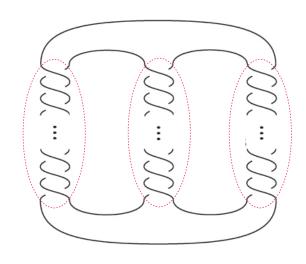
Corollary 1. Let $V_K(q) = a_n q^n + a_{n+1} q^{n+1} + \cdots + a_{m-1} q^{m-1} + a_m q^m$ be the Jones polynomial of a knot K. If K is a prime alternating knot, then (using two results of Murasugi and Dasbach-Lin)

$$C(K) = u^{-}(K) \le \begin{cases} \min\{|a_{n+1}| + |a_{m-1}|, \lfloor \frac{m-n}{2} \rfloor\} \\ if C(K) \ne 2g(K) + 1, \\ \min\{|a_{n+1}| + |a_{m-1}| + 1, \lfloor \frac{m-n}{2} \rfloor\} \\ otherwise. \end{cases}$$

Rmk. $C(K) \leq \min\{\lfloor n(K)/2 \rfloor, t+1\}$ by Murakami-Yasuhara, Kalfagianni-Lee. We use *state surface*, introduced by Ozawa.

Notation 1. • D be a knot diagram of a hyperbolic link K.

- ullet t(D): the twist number of D (Lackenby, 2004),
- v_3 the volume of a regular hyperbolic ideal tetrahedron,
- ullet v_8 the volume of a regular hyperbolic ideal octahedron.
- $vol(S^3 \setminus K)$: the volume of knot compliment.



Corollary 2. Let K be a prime alternating hyperbolic knot.

$$\frac{v_8}{2}(u^-(K) - 3) \le \text{vol}(S^3 \setminus K) \le 10v_3(3u^-(K) - 4).$$

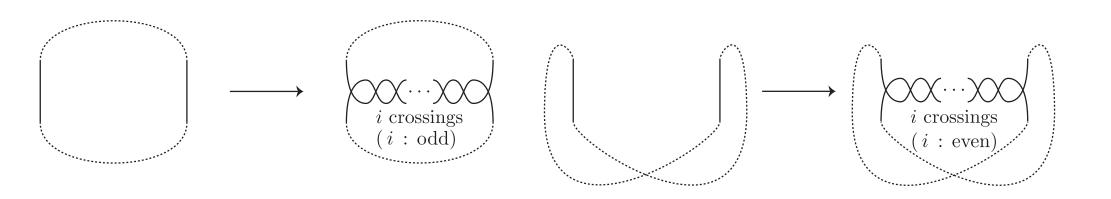
Corollary 3. Let K be a hyperbolic knot that is the closure of a positive braid with at least three crossings in each twist region.

$$vol(S^3 \setminus K) \le 10v_3(3u^-(K) - 4).$$

Corollary 4. Let K be a prime Montesinos hyperbolic knot.

$$vol(S^3 \setminus K) \le 6v_8(u^-(K) - 1).$$

Move 1. For any pair of simple arcs lying on the boundary of a common region, each of the two local replacements as in Figure is obtained by applying operations of type RI^+ i-1 times followed by a single operation of type S^+ .



The computation of $u^-(D)$ of D is systematically discussed by using Move 1 to give $u^-(D)=n$ for any positive integer n.

Proposition 1. Let RI be a splice of type RI $^-$ or its inverse. Let D be a knot diagram and O the knot diagram with no crossings. The following conditions are equivalent.

- (A) D is a knot diagram with $u^{-}(D) = n$.
- (B) D is obtained from O by applying Move 1 successively n times and some $\mathrm{RI}'s$.

Thank you for your listening.

- 1978, Clark, Fixed K s.t. C(K) = 1.
- 1996, H. Murakami-Yasuhara, Fixed connected sum.
- 2004, Teragaito, Fixed torus knots
- 2006, Hirasawa-Teragaito, Fixed 2-bridge knots
- 2006, Ichihara-Mizushima, Fixed most of pretzel knots
- 2013, Adams-Kindred, Algorithm for alternating knots (using state surface, introduced by Ozawa)
- 2016, Kalfagianni-Lee, Lower bounds and Jones polynomial (via Adams-Kindred algorithm)

Thank you for your listening.

