On crosscap numbers of knots

(w/ Yusuke Takimura (Gakushuin Boys' Junior High.))

Noboru Ito (Univ. of Tokyo)

Third Pan-Pacific International Conference on Topology and Applications

For every knot projection P,

$$
\begin{gathered}
u^{-}(P):=\min _{\text {seq. }}\left\{S^{-} \text {in seq. from } P \text { to } O\right\} . \\
u^{-}(K)=\min _{P} u^{-}(P) .
\end{gathered}
$$

$\Sigma_{\sigma}\left(D_{P}\right)$

Theorem 1. Let K be a knot, $C(K)$ a crosscap number of $K, n(K)$ the minimum crossing number, and $u^{-}(K)$ defined as the above. If K is an prime alternating knot, then

$$
C(K)=u^{-}(K) .
$$

If K is a prime (alternating or non-alternating) knot K,

$$
C(K) \leq u^{-}(K) \leq\left\lfloor\frac{n(K)}{2}\right\rfloor
$$

(the left inequality holds even if K is non-prime).

Corollary 1. Let $V_{K}(q)=a_{n} q^{n}+a_{n+1} q^{n+1}+\cdots+$ $a_{m-1} q^{m-1}+a_{m} q^{m}$ be the Jones polynomial of a knot K. If K is a prime alternating knot, then (using two results of Murasugi and Dasbach-Lin)

$$
C(K)=u^{-}(K) \leq\left\{\begin{array}{l}
\min \left\{\left|a_{n+1}\right|+\left|a_{m-1}\right|,\left\lfloor\frac{m-n}{2}\right\rfloor\right\} \\
\text { if } C(K) \neq 2 g(K)+1, \\
\min \left\{\left|a_{n+1}\right|+\left|a_{m-1}\right|+1,\left\lfloor\frac{m-n}{2}\right\rfloor\right\} \\
\text { otherwise. }
\end{array}\right.
$$

Rmk. $C(K) \leq \min \{\lfloor n(K) / 2\rfloor, t+1\}$ by Murakami-Yasuhara, Kalfagianni-Lee. We use state surface, introduced by Ozawa.

Notation 1. - D be a knot diagram of a hyperbolic link K.

- $t(D)$: the twist number of D (Lackenby, 2004),
- v_{3} the volume of a regular hyperbolic ideal tetrahedron,
- v_{8} the volume of a regular hyperbolic ideal octahedron.
- $\operatorname{vol}\left(S^{3} \backslash K\right)$: the volume of knot compliment.

Corollary 2. Let K be a prime alternating hyperbolic knot.

$$
\frac{v_{8}}{2}\left(u^{-}(K)-3\right) \leq \operatorname{vol}\left(S^{3} \backslash K\right) \leq 10 v_{3}\left(3 u^{-}(K)-4\right) .
$$

Corollary 3. Let K be a hyperbolic knot that is the closure of a positive braid with at least three crossings in each twist region.

$$
\operatorname{vol}\left(S^{3} \backslash K\right) \leq 10 v_{3}\left(3 u^{-}(K)-4\right)
$$

Corollary 4. Let K be a prime Montesinos hyperbolic knot.

$$
\operatorname{vol}\left(S^{3} \backslash K\right) \leq 6 v_{8}\left(u^{-}(K)-1\right)
$$

Move 1. For any pair of simple arcs lying on the boundary of a common region, each of the two local replacements as in Figure is obtained by applying operations of type $\mathrm{RI}^{+} i-1$ times followed by a single operation of type S^{+}.

The computation of $u^{-}(D)$ of D is systematically discussed by using Move 1 to give $u^{-}(D)=n$ for any positive integer n.

Proposition 1. Let RI be a splice of type RI^{-}or its inverse. Let D be a knot diagram and O the knot diagram with no crossings. The following conditions are equivalent.
(A) D is a knot diagram with $u^{-}(D)=n$.
(B) D is obtained from O by applying Move 1 successively n times and some RI's.

Thank you for your listening.
1978, Clark, Fixed K s.t. $C(K)=1$.
1996, H. Murakami-Yasuhara, Fixed connected sum.
2004, Teragaito, Fixed torus knots
2006, Hirasawa-Teragaito, Fixed 2-bridge knots
2006, Ichihara-Mizushima, Fixed most of pretzel knots
2013, Adams-Kindred, Algorithm for alternating knots
(using state surface, introduced by Ozawa)
2016, Kalfagianni-Lee, Lower bounds and Jones polynomial
(via Adams-Kindred algorithm)

$$
\begin{aligned}
& p-10 x-0 \\
& x-\phi \quad .
\end{aligned}
$$

