Invariance of Khovanov homology and quantum code 伊藤昇 (東大)

ある LDPC 量子誤り訂正 code は, ホモロジーとして捉えられる.

ホモロジーの不変性は"図形"の形を判別する。

Jones 1984	ジョーンズ多項式 $J(K)$ を発見
Khovanov	TQFT から $J(K)$ より判別が高度な $H(K)$ を
2000	発見 . $J(K) = \sum_{j} q^{j} \sum_{i} (-1)^{i} \dim H^{i,j}(K)$.
Viro 2004	H(K) の基底を記述, Type I 不変性を再証明.
発表者 2011	続いて Type II, Type III 不変性を再証明.
Audoux 2014	[Viro2004, Ito2011] を Quantum code へ応用.

分野横断ワークショップ, 量子コンピュータ研究開発の現在とこれから, 文部科学省, 2020.1.

KHOVANOV HOMOLOGY AND QUANTUM CODE

NOBORU ITO (UNIV. OF TOKYO)

noboru@ms.u-tokyo.ac.jp

RESULTS

Theorem 1 ([Viro (2004)], [Ito (2011)]). Explicit correspondences between generators of Khovanov homology groups for each of Reidemeister moves of type I (Viro) and of types II and III (Ito) are given as follows.

(**Type I, Viro**) Invariance under \nearrow \sim \longrightarrow is given by $\mathcal{C}\left(\nearrow\right) = \mathcal{C} \oplus \mathcal{C}_{\mathrm{contr}} \stackrel{\rho_1}{\to}$

 $\mathcal{C} \stackrel{\mathrm{isom_1}}{ o} \mathcal{C} \left(\stackrel{\mathrm{lsom_1}}{ o} \right)$ with a chain homotopy, here ho_1 is defined by

$$p(x) \mapsto p(x) - p \cdot x(1), \quad p(1) \mapsto 0, \text{ and } p \mapsto 0.$$

(**Type II, Ito**) Invariance under \bigcirc \sim \bigcirc (is given by \mathcal{C} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 $\mathcal{C} \stackrel{\mathrm{isom}_2}{ o} \mathcal{C} \left(\right) \right)$ with a chain homotopy, here ho_2 is defined by

$$p \mapsto q \mapsto p \mapsto q + \underbrace{q:p}, \quad x \mapsto -p:q \mapsto q:p \quad -\underbrace{q:p}, \quad (q:p):(q:p)$$
 otherwise $\mapsto 0$.

(Type III, Ito) Invariance under

 $\mathcal{C}' \oplus \mathcal{C}'_{\mathrm{contr}}$

and a chain homotopy, here ρ_3 is defined by

REFERENCES

[Viro (2004)] O. Viro, Khovanov homology, its definitions and ramifications, *Fund. Math.* 184 (2004), 317–342.
[Ito (2011)] N. Ito, Chain homotopy maps for Khovanov homology, *J. Knot Theory Ramifications* 20 (2011) 127–139.
[Audoux (2014)] B. Audoux, An application of Khovanov homology to quantum codes, *Ann. Inst. Henri Poincaré D* 1 (2014), 185–223.

QUANTUM CODE

An application of Theorem 1 to quantum code is given by B. Audoux.

Theorem [Audoux (2014)] Let $d(\cdot)$ be the minimum distance of a code, i.e. $d(\cdot)$ is the minimal weight of a non detectable error that does alter codewords for a Khovanov complex of a link diagram. Then,

(Type I)

$$d^i\left(\right) = 2d^i\left(\right),$$

(Type II)

$$\frac{1}{3}d^{i} \bigcirc \bigcirc \bigcirc \le d^{i+1} \bigcirc \bigcirc \bigcirc \bigcirc \ge 2d^{i} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

(Type Ⅲ)

KHOWANOW HOMOLOCY

Khovanov homology is a bigraded homology and a link invariant such that (Type I)

$$\mathcal{H}^{i,j}\left(igwedge)\simeq\mathcal{H}^{i,j}\left(igwedge)
ight),$$

(Type II)

$$\mathcal{H}^{i,j}\left(igcirc igcolumnes \mathcal{H}^{i,j}\left(igcirc igcolumnes \mathcal{H}^{i,j}\left(igcirc igcolumnes \mathcal{H}^{i,j}\left(igcirc igcolumnes \mathcal{H}^{i,j}\left(igcirc igcolumnes \mathcal{H}^{i,j}\left(igcolumnes \mathcal{H}^{i,j}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$$

(Type III)

and inducing Jones polynomial

$$V_L(q+q^{-1}) = \sum_j q^j \sum_i (-1)^i \text{rank} \mathcal{H}^{i,j}(L).$$

FORMULATION

The differential of \mathcal{H}^i is indued by a saddle for TQFT : $\mathbf{Cob}_2 \to \mathbf{Mod}_k$ associated with a Frobenius Algebra $A \ (= \mathbb{Z}[x]/(x^2)$).

