Unknotting operations, crosscap numbers, and volume bounds

Noboru Ito

(National Institute of Technology, Ibaraki College)

MSCS Quantum Topology Seminar organized by L.H.Kauffman August 20, 2020

PDF Information non-arXiv, I will mention the reason today.

- A lower bound of crosscap numbers of alternating knots, JKTR, March 2020
- Crosscap number of knots and volume bounds, submitted to IJM, revised under review.

To access them,

https://researchmap.jp/noboru_ito?lang=en

(from JST researchmap, my portal)

Knot Projections (by NI, 2016/12)

This book includes Perko's pair, introductory contents quoting from Kauffman Lecture note and results of papers Takimura-I. from 2013.

PROJECTIONS

Noboru Ito

Mr. Perko gave "5 stars" for this book, also positive opinions for the paper of "Thirty-two equivalence relations on knot pro (2015)", but commented

—"mostly not Knot theory" (Zbl 06720087).

Knot Projections (by NI, 2016/12)

I agreed his opinions and replied to his message.

NI to Perko (July 25, 2017):

"I think I can write new application to knot from our knot projection theory. Please be looking forward to it."

Knot Projections (NI, 2016)

Prof. Kauffman gave a comment.

—"But the point of doing mathematics is follow the trail as far as you can. He is doing that."

Definition (knot projection)

k: knot in R³

$$p: R^3 \rightarrow R^2 \subset R^2 \cup \{\infty\} \cong S^2$$

p(k): knot projection of k

Let P = p(K), called knot projection.

First Question of NI to Takimura (2016)

What is an appropriate "unknotting-type" number for knot projection?

Dr. Yusuke Takimura: a young person who is a teacher of junior high school, took PhD on 2020.

Takimura's Answer

Let us consider splices and inverses of type S & RI:

Takimura's u(P)

u(P) is the minimum number of necessary operations of type S among any sequences of S and RI to obtain 0-crossing knot projection O.

 $RI^$ e.g.

$$u(\widehat{1_1}) = 0$$
 $u(\widehat{3_1}) = 1$ $u(\widehat{6_2}) = 2$

Example: $u(\widehat{7}_4\sharp\widehat{7}_4) \leq 5$ whereas $u(\widehat{7}_4) = 3$.

U(P) (Takimura made table up to 8 crossings)

Seeing it, NI noticed that this table matched Crosscap numbers of prime alt. knots.

Seeing it, NI noticed that this table matched Crosscap numbers of prime alt. knots.

→NI took S⁻ and RI⁻ only from Takimura's u(P).

Modified Definition: u⁻(P) by NI.

- u⁻(P) is the minimum number of necessary splices of type S⁻ among any sequences of S⁻ and RI⁻ to obtain O.
- u(P) is the minimum number of necessary operations of type S among any sequences of S and RI to obtain O.

*Fact (Khovanov, 1997) Any RI's sequence is arranged to a seq. of only RI-'s / RI+'s.

Modified Def. and Main result

Main Result 1 (our preprint, 2nd revised, under review).

Let $u^{-}(K) = \min \{ u^{-}(D) \mid D : \text{knot diagram of } K \}.$

For any prime alternating knot K,

$$\mathbf{u}^{-}(\mathbf{K}) = \mathbf{C}(\mathbf{K}).$$

We define a splice (= removing band) σ_i corresponding to S⁻ or RI⁻ (1 $\leq i \leq n(P)$).

 S_{σ} : Kauffman state by applying $\sigma = (\sigma_1, \sigma_2 \cdots \sigma_{n(P)})$ to P.

 $|S_{\sigma}|$: the number circles in S_{σ}

We define a splice (= removing band) σ_i corresponding to S⁻ or RI⁻ (1 $\leq i \leq n(P)$).

 S_{σ} : Kauffman state by applying $\sigma = (\sigma_1, \sigma_2 \cdots \sigma_{n(P)})$ to P.

 $|S_{\sigma}|$: the number circles in S_{σ} .

Example

*In general, we do not need alt. diag.

$$\Sigma_{\sigma}(D_P)$$

Upper bound

Result (Takimura-I. 2018, IJM). For any knot K,

$$C(K) \leq u^{-}(K)$$
.

Proof of Upper bound

$$\chi(\Sigma_{max}) \ge \chi(\Sigma_{\sigma})$$

where

 Σ max: non-ori. surf. with maximal Euler char.

 Σ_{σ} : non-ori. surf. given by σ .

Letting n(P) := # crossings,

where $Op_i = S^- \text{ or } RI^- (1 \le Op_i \le n(P))$

$$\left(\begin{array}{c} S^{-} \\ \end{array}\right) \xrightarrow{S^{-}} \left(\begin{array}{c} \\ \end{array}\right) \xrightarrow{\text{RI}^{-}} \left(\begin{array}{c} \\ \end{array}\right)$$

$$|S_{\sigma}| = \#\{Op_i \mid Op_i = RI^-\} + 1$$

$$n(P) = \#\{Op_i \mid Op_i = S^-\} + \#\{Op_i \mid Op_i = RI^-\}$$

1 - C(K) =
$$\chi(\Sigma_{max}) \ge \chi(\Sigma_{\sigma}) = |S_{\sigma}| - n(P)$$

=
$$(\#\{Op_i \mid Op_i = RI^-\} + 1) - (\#\{Op_i \mid Op_i = S^-\} + \#\{Op_i \mid Op_i = RI^-\})$$

Proof of Upper bound

$$\begin{aligned} 1 - C(K) &\geq |S_{\sigma}| - n(P) \\ &= (\#\{Op_{i} \mid Op_{i} = RI^{-}\} + 1) - (\#\{Op_{i} \mid Op_{i} = S^{-}\} + \#\{Op_{i} \mid Op_{i} = RI^{-}\}) \\ &= 1 - \#\{Op_{i} \mid Op_{i} = S^{-}\} \\ &= 1 - u^{-}(P) \end{aligned}$$

Proof of Upper bound

$$1 - C(K) \ge |S_{\sigma}| - n(P)$$

=
$$(\#\{Op_i \mid Op_i = RI^-\} + 1) - (\#\{Op_i \mid Op_i = S^-\} + \#\{Op_i \mid Op_i = RI^-\})$$

$$= 1 - \#\{Op_i \mid Op_i = S^-\}$$

$$= 1 - u^{-}(P)$$

$$C(K) \leq u^{-}(P)$$

Lower bound (non-short proof))

$$C(K) \le u^{-}(K)$$
 (Takimura-I. 2018, IJM).

If K is prime alternating, this equality always exists.

Adams-Kindred Theorem (2013, AGT)

For any n-crossing alternating diagram, there exists

a state giving the minimal genus among 2ⁿ candidates.

Adams-Kindred algorithm to obtain (ori/non-ori) state surfaces with the maximal Euler char. Find m-gon of the smallest m and splice as follows (Note that any knot projection P has a 3-gon if 3≤ m by Eliahou-Harary-Kauffman, 2008):

Lower bound (non-short proof)

Compare

Σu: non-ori. state surface realizing u⁻(D)

with

 Σ_{AK} : a surf. with maximal χ by Adams-Kindred.

Sketch

Proof. Σ_{AK} gives a state $\sigma = (\sigma_1, \sigma_2 \cdots \sigma_{n(P)})$, and we give reordered $(\sigma'_1, \sigma'_2 \cdots \sigma'_{n(P)})$ to recover Σ_{u} giving $S^-...S^-RI^-...RI^-$ using an argument of Gauss chord of S^- .

Is u⁻(K) computable?

u⁻(P), Computation

Conditions (A) and (B) are equivalent.

(A)
$$u^{-}(P) = n$$
.

(B) P is obtained from O by applying Move I, "n" times followed by RI+'s.

Component Preserving

u⁻(K), still computable for some K.

If K is alternating, there exists $u^{-}(P)$ such that $C(K) = u^{-}(P)$.

First Example. (Takimura-I., IJM, 2018)

For a prime alternating knot, $(A) \Leftrightarrow (B) \Leftrightarrow (C)$.

(A)
$$C(K) = 1$$
.

(B)
$$u^{-}(K) = 1$$
.

(C) K is as in the right.

Second Example (Takimura-I., IJM, 2018) For any prime alt. knot K, (A) \Leftrightarrow (B) \Leftrightarrow (C). (A) C(K) = 2, (B) u- (K) = 2, (C) K is as below.

Is there nothing nonalternating knots?

By the argument of this proof, we have:

Main Result 2 (our preprint under review now)
For any knot K, if there exists a state realizing the maximal Euler characteristic,

$$u^{-}(K) = C(K).$$

Example (taught by T. Kindred)

u⁻(K), still computable for some K.

If K is alternating, everything works.

<sufficient condition>

Comment.

There is a possibility to generalize the above condition (as Main Result 2).

Is "primeness" essential?

 $u^{-}(K_1 \sharp K_2) = u^{-}(K_1) + u^{-}(K_2)$, but

 7_4

 $C(7_4) = 3$

 $7_4\sharp 7_4$

 $C(7_4 \# 7_4) = 5$

by Murakami-Yasuhara, PJM, 1997.

Note: there is an interesting example. $u^{-}(7_4 \# 7_4) = 6$, but Takimura's original u satisfies $u(7_4 \# 7_4) \le 5$. Question: Which prime knot K does satisfy $u(K) = u^{-}(K)$?

Can we give lower bound even non-prime knots easily?

Can we give lower bound even non-prime knots easily?

—>Yes, we do by "band surgery" though we drop convenience for computation & results for non-alternating knots.

My answer: for alt. knots, via band surgery

Definition (Band surgery "B" for diagram).

Definition(B(D))

Let D be an alternating knot diagram.

B(D) is the minimum number of necessary band surgeries B among any sequences of B and RI⁻ to obtain O.

Alternating knot invariant B(K).

K: alternating knot,

Z(K): the set of alt. knot diag. of K,

$$B(K) := \min_{D \in Z(K)} B(D).$$

Note: Takimura has given B(P) for any knot projection P. I use it.

Main Result 3 (Takimura-I., JKTR, 2020)

 $\Gamma(K)$: min of 1st Betti num. of alt. knot K.

(1)
$$C(K)=B(K) \Leftrightarrow C(K)=\Gamma(K)$$
.

(2)
$$C(K) = B(K) + 1 \Leftrightarrow C(K) \neq \Gamma(K)$$
.

(3)
$$B(K \# K') = B(K) + B(K')$$
.

NOTE: $C(K) \neq \Gamma(K) \Leftrightarrow C(K) = 2g(K)+1$.

- 1978, Clark, Fixed K s.t. C(K) = 1.
- 1996, H. Murakami-Yasuhara, Fixed condi., connected sum.
- 2004, Teragaito, Fixed C(K), torus knots

Hatcher-Thurston, 1985

- 2006, Hirasawa-Teragaito, Fixed C(K), 2-bridge knots
- 2006, Ichihara-Mizushima, Fixed C(K), many pretzel knots
- 2013, Adams-Kindred, Algorithm for alternating knots

(using state surface, introduced by Ozawa)

Hatcher-Ortel, 1989

- 2016, Kalfagianni-Lee, Lower bounds w/ Jones polynomial (via Adams-Kindred algorithm)
- 2019, by us, crosscap number n of alt. knots., also by Kindred.

Time line (by us, and Kindred)

- 2019, March 8, we submitted a paper for B(K) to JKTR.
- 2019, April 4, we submitted a paper for u (K).
- 2019, May 17, <u>Kindred</u> contacted me that he was working for the same equality $C(K) = u^{-}(K)$.
- I like arXiv, but do not like "arXiv competition", thus, I did not post our papers to arXiv and said OK for him.
- 2019, May 27, Kindred submitted his paper to arXiv.
- 2020, March 20, Our B(K) result was published (JKTR).
- 2020, June 25, Kindred's u (K)-paper was published (IJM).
- 2020, July 26, we submitted 2nd revised ver. to IJM.

