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Main Result 1.   
Let C(K)  be the crosscap number of K. 

For any prime alternating knot K, 
  

                     C(K) =  u⁻(K).  



Recalling definition: u⁻(P), u⁻(K)
・u⁻(P) is the minimum number of necessary 

splices of type S⁻ among any sequences of S⁻ and 
RI⁻ to obtain O.  u⁻(K) := min  u⁻(P).P



Plan of proof for u⁻(D) ≦ C(K)

We will compare
 
Σu : a non-orientable state surface realizing u⁻(D)  

with

ΣAK : a surface realizing C(K) or g(K)
 (Adams-Kindred).  



Σu:=



Construction of ΣAK

Find m-gon of the smallest m and splice as follows 
(P has a 3-gon if 3≦ m                                         )  Eliahou-Harary-Kauffman, 2008

or



Notation 1. ΣAK gives a sequence of splices (σi)
n(D)
i=1 :

D = D0
σ1→ D1

σ2→ D2
σ3→ · · ·

σn(D)→ Dn(D)

Each orientation of Di is of σi. (= ori. S−, S−
join, Tsplit, Tjoin).

It induces

CDD = CD0
σ1→ CD1

σ2→ CD2
σ3→ · · ·

σn(D)→ CDn(D).

(CD  is a Gauss diagram of D; it will be defined.)D



Notation 2. • Oriented Tsplit, Tjoin. Seifert splices.



• Oriented RI−. 1st Reidemeister move.

• Oriented S−, S−
join. Target orientation must be chosen.
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S⁻ T T

S⁻ T T  
to  S⁻S⁻S⁻



Definition 1. Let D be a knot diagram whose projection is

P . Then there is a generic immersion g : S1 → S2 such that

g(S1) = P . Let k be the number of the crossings of D.It is denoted by CD   .D



Lemma A. The behavior of S− in CDD is as follows.

(The difference of cyclic Gauss words is presented as:

cp1p2 . . . p2icp2i+1 . . . p2n −→ p2ip2i−1 . . . p1p2i+1p2i+2 . . . p2n.)

Property S⁻. 



e.g.
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Lemma 1. Suppose that (σi)
n(D)
i=1 satisfies σ1 = S−, σ2 =

Tsplit, and σ3 = Tjoin. Then, the three chords in CDD corre-

sponding to σ1, σ2, and σ3 are as in

Claim. 



Component-preserving successive “T T” 
should have a chord intersection.

Observation 1 
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Key Lemma . Let D be a prime (alternating or non-

alternating) knot diagram with exactly n(D) (> 1) crossings

with σi != RI− (∀i). Suppose that σ1 = S− and that (σi)
n(D)
i=2

includes at least one Tjoin, S
−
join, or S

−.

Then it is possible to re-index the same set of splices as

(σ′
i)

n(D)
i=1 such that σ′

1 = S− and σ′
2 = S−, and σ′

i != RI−

(∀i).



Roughly speaking, suppose that AK-sequence starts from one S⁻.  if 
“join” or more S⁻  appears in the seq., S⁻ …  → S⁻ S⁻….by reordering．  

Key Lemma . Let D be a prime (alternating or non-

alternating) knot diagram with exactly n(D) (> 1) crossings

with σi != RI− (∀i). Suppose that σ1 = S− and that (σi)
n(D)
i=2

includes at least one Tjoin, S
−
join, or S

−.

Then it is possible to re-index the same set of splices as

(σ′
i)

n(D)
i=1 such that σ′

1 = S− and σ′
2 = S−, and σ′

i != RI−

(∀i).



Key Lemma

Claim
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Proof of Key Lemma

Case (1): (σi)
n(D)
i=2 includes at least one S− or S−

join.

S−T · · ·TS− · · · , or S−T · · ·TS−
join · · · . Moving σm (=

S− or S−
join) to σ′

2,

we obtain S−S− · · · .



Component-preserving pair “T S” should 
have a chord intersection.

Observation 1’ 



Proof of Key Lemma

Case (2): (σi)
n(D)
i=2 includes no splice S− and no splice S−

join,

but includes a splice Tjoin.

We have reordering:

S−Tsplit · · ·TsplitTjoinT · · ·T → S−TsplitTjoinT · · ·T.

• Case: either (X) or (X’) is included:

By property of S−, reordering 123 → 231 or 321 obtains a

sequence S−S−S−...

• Case: there is no (X) and no (X’), but (Y) appears:

By primeness, (X) should be included → contradiction.



Component-preserving pair “T T” should 
have a chord intersection.

Observation 1 



It’s the highest point of the proof, we’ll go to the next slide!

Proof of Key Lemma
Case (2): (σi)

n(D)
i=2 includes no splice S− and no splice S−

join,

but includes a splice Tjoin.

We have reordering:

S−Tsplit · · ·TsplitTjoinT · · ·T → S−TsplitTjoinT · · ·T.

• Case: either (X) or (X’) is included:

By property of S−, reordering 123 → 231 or 321 obtains a

sequence S−S−S−...

• Case: there is no (X) and no (X’), but (Y) appears:

By primeness, (X) should be included → contradiction.
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Reordering:  123 —> 321 or 231



It’s the highest point of the proof, we’ll go to the next slide!

Proof of Key Lemma
Case (2): (σi)

n(D)
i=2 includes no splice S− and no splice S−

join,

but includes a splice Tjoin.

We have reordering:

S−Tsplit · · ·TsplitTjoinT · · ·T → S−TsplitTjoinT · · ·T.

• Case: either (X) or (X’) is included:

By property of S−, reordering 123 → 231 or 321 obtains a

sequence S−S−S−...

• Case: there is no (X) and no (X’), but (Y) appears:

By primeness, (X) should be included → contradiction.



(Y).



Proof of Key Lemma
Case (2): (σi)

n(D)
i=2 includes no splice S− and no splice S−

join,

but includes a splice Tjoin.

We have reordering:

S−Tsplit · · ·TsplitTjoinT · · ·T → S−TsplitTjoinT · · ·T.

• Case: either (X) or (X’) is included:

By property of S−, reordering 123 → 231 or 321 obtains a

sequence S−S−S−...

• Case: there is no (X) and no (X’), but (Y) appears:

By primeness, (X) should be included → contradiction. ⬜



Applying Key Lemma the sequence of splices repeatedly, we

have:
S− · · ·S−Tsplit · · ·Tsplit

from ΣAK .

Here, in this seq., every Tsplit splits a monogon since there is

no chord intersection after S−S− . . . S− applies.



Any component-preserving pair “T X” 
should have a chord intersection.

X X

Observation 1’’ 



Claim
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S⁻ T T…

S⁻ T T…  
to  S⁻S⁻S⁻

u⁻(D) = C(K) 



Finalizing Proof of Main Result 1 (lower bound)

Case ΣAK is a non-orientable surface with the maximal Eu-

ler characteristic χ. (Note: the seq. has S−; any σi != RI−.)

Thus, by Key Lemma, this seq. realizes u−(D) by reordering.

S−S− . . . S−TsplitTsplit . . . Tsplit.

The reordering process implies Observation 2.



Observation 2. Each reordering may cause:

Tsplit, Tjoin ↔ S−, S− or Tsplit, S
−
join ↔ S−, S−.

Thus,

1− u−(D) = 1− !{S−in seq.}
= 1− 2!Tjoin − 2!S−

join − !S−

= 1 + (!Tsplit − !Tjoin − !S−
join)− n(D)

= χ(ΣAK) = 1− C(K).



Claim

Key Lemma

Main Result 1
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S⁻ T T…
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Finalizing Proof of Main Result 1 (lower bound)

Case ΣAK is a orientable surface with the maximal Euler

characteristic. Note: 2g(K) < C(K) ⇔ C(K) = 2g(K) + 1.

It returns to the non-orientable case since χ (= 1−2g(K))

is changed into 1− (2g(K)+1) (= 1−C(K)) by the replace-

ment:

Seifert splice

! !"# "#
~

!$



Ito-Takimura, 2018, arXiv: 2008.11061

Then for any prime alternating knot diagram D,

u−(K) ≤ min
D

u−(D) = C(K).

Recalling that C(K) ≤ u−(K), it completes the proof. !



By the argument of this proof, we have:  

Main Result 2 (our preprint under review now)  
For any knot K,  if there exists a state realizing the 
maximal Euler characteristic,  

                              u⁻(K) = C(K).  



Proof of Main result 3 (Band Surgery)

Merit: simpler proof, non-
depending on primeness.



Definition(B(D))
Let D be an alternating knot diagram.   
B(D) is the minimum number of necessary band 
surgeries B among any sequences of B and RI⁻ to 
obtain O.  Let B(K) = min

D  
B (D) .

RI



Main Result 3 (Takimura-I., JKTR, 2020)

Γ(K): min of 1st Betti num. of alt. knot K. 

(1) C(K)=B(K)  ⇔ C(K) = Γ(K). 
(2) C(K) = B(K) +1 ⇔ C(K) ≠ Γ(K).                
(3) B(K # K’) = B(K) + B(K’).



   B(K) ≦ Γ(K). 

Proof.  There exists a state, i.e. a family of splices, implying a 
spanning surface with the maximal Euler characteristic for alter. 
knot.  Thus, 

Splice

Γ(K) is 1st Betti num. 
= min{C(K), 2g(K)}.



Proof Γ(K) ≦ B(K) for Case C(K) = Γ(K)
C(K) (=Γ (K)) 

= b1 (                                                                       ) 

= min {# necessary bands to obtain a disk} 
≦ min {# necessary bands to obtain a disk    
                   from “a” state non-ori. surface of D} 
 = B(K).  



Proof: Case C(K) ≠ Γ(K)
2g(K) (=Γ (K)) 

= b1 (                                                                      ) 

= min {# necessary bands to obtain a disk} 
≦ min {# necessary bands to obtain a disk    
                   from “a” state ori. surface of D} 
 = B(K). 　　　　　　　　　　　　　　　□  



Main Result 3 (Ito-Takimura, JKTR2020).  

For any alternating knot K, 

B(K) = C(K) if and only if C(K) ≦ 2g(K), 
B(K) = C(K)-1 if and only if C(K) > 2g(K).

Another expression of Main Result 3. 



Applications

• Relationship with Jones polynomials 
• Relationship with hyperbolic volume bounds 

• u⁻(K) is flype invariant 



Corollary 1. Let VK(q) = anqn + an+1qn+1 + · · ·+
am−1qm−1 + amqm be the Jones polynomial of a knot K. If

K is a prime alternating knot, then

C(K) = u−(K) ≤






min{
⌊
m−n

2

⌋
, |an+1|+ |am−1|}

if C(K) = Γ(K),

min{
⌊
m−n

2

⌋
, |an+1|+ |am−1|+ 1}

if C(K) "= Γ(K).

Rmk. C(K) ≤ min{#n(K)/2$ , t+ 1}.

Dasbach-Lin (2007)Tait Conj. Kauffman,  Murasugi, Thistlethwaite (1987)

Murakami-Yasuhara (1997) Kalfagianni-Lee (2016)

t: twisted number



Notation 1. • D be a knot diagram of a hyperbolic link K.

• t(D) : the twist number of D (Lackenby, 2004),

• v3 the volume of a regular hyperbolic ideal tetrahedron,

• v8 the volume of a regular hyperbolic ideal octahedron.

• vol(S3 \K): the volume of knot compliment.

.



Corollary 2. Let K be a prime alternating hyperbolic knot.

v8(u
−(K)− 3)/2 ≤ vol(S3 \K) ≤ 10v3(3u

−(K)− 4).

Corollary 3. Let K be a hyperbolic knot that is the closure

of a positive braid with at least three crossings in each twist

region.
vol(S3 \K) ≤ 10v3(3u

−(K)− 4).

Corollary 4. Let K be a prime Montesinos hyperbolic knot.

vol(S3 \K) ≤ 6v8(u
−(K)− 1).

Agol-Strom-Thurston

Futer-Kalfagianni-Purcell

Futer-Kalfagianni-Purcell



Corollary 5.

C(K) ≤ u−(K) ≤
⌊
n(K)

2

⌋

(the left inequality holds even if K is non-prime)

when K is a prime (alternating or non-alternating) knot K.



Corollary 6. Let K be a prime (alternating or non-alternating)

knot and for the twist number t, suppose t ≥ 2.

Then, C(K) ≤ u−(K) ≤ min{t,
⌊
n(K)

2

⌋
} if the diagram has

a non-orientable state surface whose Euler characteristic is at

least as large as that of the diagram’s Seifert state surface,

C(K) ≤ u−(K) ≤ min{t+ 1,
⌊
n(K)

2

⌋
} otherwise.



Corollary 7. If D and D′ are prime reduced (alternating or

non-alternating) knot diagrams that are related by flypes,

u−(D) = u−(D′).

Tait Flyping Conj. Menasco-Thistlethwaite



Corollary 8. Let K be a non-alternating knot having the same

prime reduced knot projection as that of an alternating knot

diagram of an alternating knot Kalt. Then,

C(K) ≤ u−(K) ≤ u−(Kalt) = C(Kalt).



Next target 

• Categorification of C(K).  Can we relate 
sl(2) homology to crosscap?  (cf. HFK 
determines orientable genera.)    This 
relates to the comment by Prof. J.S Carter 
in this seminar.                
• Can we have more refined/new volume 

bounds ? 
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Thank you for your attention!


