Unknotting operations, crosscap numbers, and volume bounds

Noboru Ito
(National Institute of Technology, Ibaraki College)

MSCS Quantum Topology Seminar
 organized by L.H.Kauffman
 $$
\text { August 27, } 2020
$$

Main Result 1.

Let $\mathrm{C}(\mathrm{K})$ be the crosscap number of K .
For any prime alternating knot K,

$$
\mathrm{C}(\mathrm{~K})=\mathrm{u}^{-}(\mathrm{K})
$$

Recalling definition: $\mathrm{u}^{-}(\mathrm{P}), \mathrm{u}^{-}(\mathrm{K})$

- $\mathrm{u}^{-}(\mathrm{P})$ is the minimum number of necessary
splices of type S^{-}among any sequences of S^{-}and RI^{-}to obtain $\mathrm{O} . \mathrm{u}^{-}(\mathrm{K}):=\min _{\mathrm{P}} \mathrm{u}^{-}(\mathrm{P})$.

Plan of proof for $u^{-}(D) \leqq C(K)$

We will compare

$\Sigma \mathrm{u}$: a non-orientable state surface realizing $\mathrm{u}^{-}(\mathrm{D})$
with
Σ_{AK} : a surface realizing $\mathrm{C}(\mathrm{K})$ or $\mathrm{g}(\mathrm{K})$ (Adams-Kindred).

$\Sigma \mathrm{u}:=\Sigma_{\sigma}\left(D_{P}\right)$

Construction of $\sum_{\text {AK }}$

Find m-gon of the smallest m and splice as follows
(P has a 3-gon if $3 \leqq$ Eliahou-Harary-Kauffman, 2008)

Notation 1. $\Sigma_{A K}$ gives a sequence of splices $\left(\sigma_{i}\right)_{i=1}^{n(D)}$:

$$
D=D_{0} \xrightarrow{\sigma_{1}} D_{1} \xrightarrow{\sigma_{2}} D_{2} \xrightarrow{\sigma_{3}} \cdots \xrightarrow{\sigma_{n(D)}} D_{n(D)}
$$

Each orientation of D_{i} is of σ_{i}. ($=$ ori. $\left.S^{-}, S_{\text {join }}^{-}, T_{\text {split }}, T_{\text {join }}\right)$.
It induces

$$
C D_{D}=C D_{0} \xrightarrow{\sigma_{7}} C D_{1} \xrightarrow{\sigma_{2}} C D_{2} \xrightarrow{\sigma_{3}} \cdots \xrightarrow{\sigma_{n(D)}} C D_{n(D)} .
$$

$\left(C D_{D}\right.$ is a Gauss diagram of D; it will be defined.)

Notation 2. - Oriented $T_{\text {split }}, T_{\text {join }}$. Seifert splices.

- Oriented RI^{-}. 1st Reidemeister move.
- Oriented $S^{-}, S_{\text {join }}^{-}$. Target orientation must be chosen.

Property S

\mathbf{S}^{-}
Claìm

Key Lemma

Main Result 1

Property S^{-}

\mathbf{S}^{-}

Claìm
$S^{-T} T$

Key Lemma

$S^{-} T$
to $\mathrm{S}^{-} \mathrm{S}^{-} \mathrm{S}^{-}$

Main Result 1

Definition 1. Let D be a knot diagram whose projection is P. Then there is a generic immersion $g: S^{1} \rightarrow S^{2}$ such that $g\left(S^{1}\right)=P$. It is denoted by $C D_{D}$.

Property S^{-}. The behavior of S^{-}in $C D_{D}$ is as follows. (The difference of cyclic Gauss words is presented as: $\left.c p_{1} p_{2} \ldots p_{2 i} c p_{2 i+1} \ldots p_{2 n} \longrightarrow p_{2 i} p_{2 i-1} \ldots p_{1} p_{2 i+1} p_{2 i+2} \ldots p_{2 n}.\right)$

e.g.

Property S^{-}

\mathbf{S}^{-}
Claim

Key Lemma

Main Result 1

Property \mathbf{S}^{-}
 \mathbf{S}^{-} Claim
 Key Lemma

Main Result 1

Claim.

Suppose that $\left(\sigma_{i}\right)_{i=1}^{n(D)}$ satisfies $\sigma_{1}=S^{-}, \sigma_{2}=$ $T_{\text {split }}$, and $\sigma_{3}=T_{\text {join }}$. Then, the three chords in $C D_{D}$ corresponding to σ_{1}, σ_{2}, and σ_{3} are as in

Observation 1

Component-preserving successive "T T" should have a chord intersection.

Property S ${ }^{-}$
 S^{-} Claim $S^{-T} T$
 Key Lemma

Main Result 1

Key Lemma . Let D be a prime (alternating or nonalternating) knot diagram with exactly $n(D)(>1)$ crossings with $\sigma_{i} \neq \mathrm{RI}^{-}(\forall i)$. Suppose that $\sigma_{1}=S^{-}$and that $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes at least one $T_{\text {join }}, S_{\text {join }}^{-}$, or S^{-}.
Then it is possible to re-index the same set of splices as $\left(\sigma_{i}^{\prime}\right)_{i=1}^{n(D)}$ such that $\sigma_{1}^{\prime}=S^{-}$and $\sigma_{2}^{\prime}=S^{-}$, and $\sigma_{i}^{\prime} \neq \mathrm{RI}^{-}$ ($\forall i$).

Key Lemma . Let D be a prime (alternating or nonalternating) knot diagram with exactly $n(D)(>1)$ crossings with $\sigma_{i} \neq \mathrm{RI}^{-}(\forall i)$. Suppose that $\sigma_{1}=S^{-}$and that $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes at least one $T_{\text {join }}, S_{\text {join }}^{-}$, or S^{-}.
Then it is possible to re-index the same set of splices as $\left(\sigma_{i}^{\prime}\right)_{i=1}^{n(D)}$ such that $\sigma_{1}^{\prime}=S^{-}$and $\sigma_{2}^{\prime}=S^{-}$, and $\sigma_{i}^{\prime} \neq \mathrm{RI}^{-}$ (\forall i).

Roughly speaking, suppose that AK-sequence starts from one S^{-}. if

 "join" or more S^{-}appears in the seq., $\mathrm{S}^{-} \ldots \rightarrow \mathrm{S}^{-} \mathrm{S}^{-}$....by reordering.

Property S
 Claim

S^{-}

S-TT

Key Lemma
$S^{-} T T$
to $\mathrm{S}^{-} \mathrm{S}^{-} \mathrm{S}^{-}$

Main Result 1

Proof of Key Lemma

Case (1): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes at least one S^{-}or $S_{\text {join }}^{-}$.
$S^{-} T \cdots T S^{-} \cdots$, or $S^{-} T \cdots T S_{\text {join }}^{-} \cdots$. Moving $\sigma_{m}(=$
S^{-}or $\left.S_{\text {join }}^{-}\right)$to σ_{2}^{\prime},

we obtain $S^{-} S^{-} \ldots$.

Observation 1'

Component-preserving pair "T S" should have a chord intersection.

Proof of Key Lemma

Case (2): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes no splice S^{-}and no splice $S_{\text {join }}^{-}$, but includes a splice $T_{\text {join }}$.
We have reordering:

$$
S^{-} T_{\text {split }} \cdots T_{\text {split }} T_{\text {join }} T \cdots T \rightarrow S^{-} T_{\text {split }} T_{\text {join }} T \cdots T
$$

- Case: either (X) or $\left(X^{\prime}\right)$ is included:

By property of S^{-}, reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^{-} S^{-} S^{-}$...

- Case: there is no (X) and no $\left(\mathrm{X}^{\prime}\right)$, but (Y) appears:

Observation 1

Component-preserving pair "T T" should

 have a chord intersection.

Proof of Key Lemma

Case (2): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes no splice S^{-}and no splice $S_{\text {join }}^{-}$, but includes a splice $T_{\text {join }}$.
We have reordering:

$$
S^{-} T_{\text {split }} \cdots T_{\text {split }} T_{\text {join }} T \cdots T \rightarrow S^{-} T_{\text {split }} T_{\text {join }} T \cdots T
$$

- Case: either (X) or $\left(X^{\prime}\right)$ is included:

By property of S^{-}, reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^{-} S^{-} S^{-} \ldots$ It's the highest point of the proof, we'll go to the next slide!

- Case: there is no (X) and no $\left(\mathrm{X}^{\prime}\right)$, but (Y) appears:

Reordering: 123 -> 321 or 231

Proof of Key Lemma

Case (2): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes no splice S^{-}and no splice $S_{\text {join }}^{-}$, but includes a splice $T_{\text {join }}$.
We have reordering:

$$
S^{-} T_{\text {split }} \cdots T_{\text {split }} T_{\text {join }} T \cdots T \rightarrow S^{-} T_{\text {split }} T_{\text {join }} T \cdots T
$$

- Case: either (X) or (X^{\prime}) is included:

By property of S^{-}, reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^{-} S^{-} S^{-}$... It's the highest point of the proof, well go to the next slide!

- Case: there is no (X) and no $\left(\mathrm{X}^{\prime}\right)$, but (Y) appears:

Proof of Key Lemma

Case (2): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes no splice S^{-}and no splice $S_{\text {join }}^{-}$, but includes a splice $T_{\text {join }}$.
We have reordering:

$$
S^{-} T_{\text {split }} \cdots T_{\text {split }} T_{\text {join }} T \cdots T \rightarrow S^{-} T_{\text {split }} T_{\text {join }} T \cdots T
$$

- Case: either (X) or $\left(X^{\prime}\right)$ is included:

By property of S^{-}, reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^{-} S^{-} S^{-}$...

- Case: there is no (X) and no $\left(X^{\prime}\right)$, but (Y) appears:

By primeness, (X) should be included \rightarrow contradiction. \square

Applying Key Lemma the sequence of splices repeatedly, we have:

$$
S^{-} \cdots S^{-} T_{\text {split }} \cdots T_{\text {split }}
$$

from $\Sigma_{A K}$.
Here, in this seq., every $T_{\text {split }}$ splits a monogon since there is no chord intersection after $S^{-} S^{-} \ldots S^{-}$applies.

Observation 1"

Any component-preserving pair " $\mathrm{T} X$ " should have a chord intersection.

Property S
 Claim

S^{-}
$\mathrm{s}^{-1} \mathrm{~T}$...

Key Lemma
S^{-}T T...
to $\mathrm{S}^{-} \mathrm{S}^{-} \mathrm{S}^{-}$

$$
u^{-}(D)=C(K)
$$

Main Result 1

Finalizing Proof of Main Result 1 (lower bound)

Case $\Sigma_{A K}$ is a non-orientable surface with the maximal Euler characteristic χ. (Note: the seq. has S^{-}; any $\sigma_{i} \neq \mathrm{RI}^{-}$.) Thus, by Key Lemma, this seq. realizes $u^{-}(D)$ by reordering.

$$
S^{-} S^{-} \ldots S^{-} T_{\text {split }} T_{\text {split }} \ldots T_{\text {split }}
$$

The reordering process implies Observation 2.

Observation 2. Each reordering may cause:

$$
T_{\text {split }}, T_{\text {join }} \leftrightarrow S^{-}, S^{-} \quad \text { or } \quad T_{\text {split }}, S_{\text {join }}^{-} \leftrightarrow S^{-}, S^{-} .
$$

Thus,

$$
\begin{aligned}
1-u^{-}(D) & =1-\sharp\left\{S^{-} \text {in seq. }\right\} \\
& =1-2 \sharp T_{\text {join }}-2 \sharp S_{\text {join }}^{-}-\sharp S^{-} \\
& =1+\left(\sharp T_{\text {split }}-\sharp T_{\text {join }}-\sharp S_{\text {join }}^{-}\right)-n(D) \\
& =\chi\left(\Sigma_{A K}\right)=1-C(K) .
\end{aligned}
$$

Property S
 Claim

S^{-}
$\mathrm{s}^{-\mathrm{T}} \mathrm{T} .$.

Key Lemma
S^{-}T T...
to $\mathrm{S}^{-} \mathrm{S}^{-} \mathrm{S}^{-}$

$$
u^{-}(D)=C(K)
$$

Main Result 1

Finalizing Proof of Main Result 1 (lower bound)
Case $\Sigma_{A K}$ is a orientable surface with the maximal Euler characteristic. Note: $2 g(K)<C(K) \Leftrightarrow C(K)=2 g(K)+1$. It returns to the non-orientable case since $\chi(=1-2 g(K))$ is changed into $1-(2 g(K)+1)(=1-C(K))$ by the replacement:

Then for any prime alternating knot diagram D,

$$
u^{-}(K) \leq \min _{D} u^{-}(D)=C(K)
$$

Recalling that $C(K) \leq u^{-}(K)$, it completes the proof.

Ito-Takimura, 2018, arXiv: 2008.11061

By the argument of this proof, we have:

Main Result 2
For any knot K , if there exists a state realizing the maximal Euler characteristic,

$$
\mathrm{u}^{-}(\mathrm{K})=\mathrm{C}(\mathrm{~K}) .
$$

Proof of Main result 3 (Band Surgery)

> Merit: simpler proof, nondepending on primeness.

Definition(B(D))

Let D be an alternating knot diagram.
$B(D)$ is the minimum number of necessary band surgeries B among any sequences of B and RI^{-}to obtain O. Let $B(K)=\min _{D} B(D)$.

Main Result 3 (Takimura-I., JKTR, 2020)

$\Gamma(\mathrm{K})$: min of $1^{\text {st }}$ Betti num. of alt. knot K .
(1) $\mathrm{C}(\mathrm{K})=\mathrm{B}(\mathrm{K}) \Leftrightarrow \mathrm{C}(\mathrm{K})=\Gamma(\mathrm{K})$.
(2) $\mathrm{C}(\mathrm{K})=\mathrm{B}(\mathrm{K})+1 \Leftrightarrow \mathrm{C}(\mathrm{K}) \neq \Gamma(\mathrm{K})$.
(3) $\mathrm{B}\left(\mathrm{K} \# \mathrm{~K}^{\prime}\right)=\mathrm{B}(\mathrm{K})+\mathrm{B}\left(\mathrm{K}^{\prime}\right)$.

Proof. There exists a state, i.e. a family of splices, implying a spanning surface with the maximal Euler characteristic for alter. knot. Thus,

$$
B(K) \leqq \Gamma(K) . \begin{aligned}
& \Gamma(K) \text { is } 1^{\text {st }} \text { Betti num. } \\
& =\min \{C(K), 2 g(K)\} .
\end{aligned}
$$

$\xrightarrow{\mathrm{RI}^{-}}$

Splice

Proof $\Gamma(K) \leqq B(K)$ for Case $C(K)=\Gamma(K)$

$C(K)(=\Gamma(K))$

$=\min \{\#$ necessary bands to obtain a disk\}
$\leqq \min \{\#$ necessary bands to obtain a disk from "a" state non-ori. surface of $D\}$
$=B(K)$.

Proof: Case $C(K) \neq \Gamma(K)$

$2 \mathrm{~g}(\mathrm{~K})(=\Gamma(\mathrm{K}))$

$=\min \{\#$ necessary bands to obtain a disk\}
$\leqq \min \{\#$ necessary bands to obtain a disk from "a" state ori. surface of $D\}$
$=B(K)$.

Another expression of Main Result 3.

Main Result 3 (Ito-Takimura, JKTR2020).

For any alternating knot K ,
$\mathrm{B}(\mathrm{K})=\mathrm{C}(\mathrm{K})$ if and only if $\mathrm{C}(\mathrm{K}) \leqq 2 \mathrm{~g}(\mathrm{~K})$, $\mathrm{B}(\mathrm{K})=\mathrm{C}(\mathrm{K})-1$ if and only if $\mathrm{C}(\mathrm{K})>2 \mathrm{~g}(\mathrm{~K})$.

Applications

- Relationship with Jones polynomials
- Relationship with hyperbolic volume bounds
- $\mathrm{u}^{-}(\mathrm{K})$ is flype invariant

Corollary 1. Let $V_{K}(q)=a_{n} q^{n}+a_{n+1} q^{n+1}+\cdots+$ $a_{m-1} q^{m-1}+a_{m} q^{m}$ be the Jones polynomial of a knot K. If K is a prime alternating knot, then

Tait Conj. Kauffman, Murasugi, Thistlethwaite (1987)

$$
C(K)=u^{-}(K) \leq\left\{\begin{array}{l}
\min \left\{\left\lfloor\frac{m-n}{2}\right\rfloor,\left|a_{n+1}\right|+\left|a_{m-1}\right|\right\} \\
\text { if } C(K)=\Gamma(K), \\
\min \left\{\left\lfloor\frac{m-n}{2}\right\rfloor,\left|a_{n+1}\right|+\left|a_{m-1}\right|+1\right\} \\
\text { if } C(K) \neq \Gamma(K) .
\end{array}\right.
$$

Rmk. $C(K) \leq \min \{\lfloor n(K) / 2\rfloor, t+1\}$. $\quad \mathrm{t}$: twisted number

Notation.

- D be a knot diagram of a hyperbolic link K.
- $t(D)$: the twist number of D (Lackenby, 2004),
- v_{3} the volume of a regular hyperbolic ideal tetrahedron,
- v_{8} the volume of a regular hyperbolic ideal octahedron.
- $\operatorname{vol}\left(S^{3} \backslash K\right)$: the volume of knot compliment.

Agol-Strom-Thurston

Corollary 2. Let K be a prime alternating hyperbolic knot.

$$
v_{8}\left(u^{-}(K)-3\right) / 2 \leq \operatorname{vol}\left(S^{3} \backslash K\right) \leq 10 v_{3}\left(3 u^{-}(K)-4\right) .
$$

Futer-Kalfagianni-Purcell

Corollary 3. Let K be a hyperbolic knot that is the closure of a positive braid with at least three crossings in each twist region.

$$
\operatorname{vol}\left(S^{3} \backslash K\right) \leq 10 v_{3}\left(3 u^{-}(K)-4\right)
$$

Futer-Kalfagianni-Purcell

Corollary 4. Let K be a prime Montesinos hyperbolic knot.

$$
\operatorname{vol}\left(S^{3} \backslash K\right) \leq 6 v_{8}\left(u^{-}(K)-1\right)
$$

Corollary 5.

$$
C(K) \leq u^{-}(K) \leq\left\lfloor\frac{n(K)}{2}\right\rfloor
$$

(the left inequality holds even if K is non-prime) when K is a prime (alternating or non-alternating) knot K.

Corollary 6. Let K be a prime (alternating or non-alternating) knot and for the twist number t, suppose $t \geq 2$.
Then, $C(K) \leq u^{-}(K) \leq \min \left\{t,\left\lfloor\frac{n(K)}{2}\right\rfloor\right\}$ if the diagram has a non-orientable state surface whose Euler characteristic is at least as large as that of the diagram's Seifert state surface, $C(K) \leq u^{-}(K) \leq \min \left\{t+1,\left\lfloor\frac{n(K)}{2}\right\rfloor\right\}$ otherwise.

Corollary 7. If D and D^{\prime} are prime reduced (alternating or non-alternating) knot diagrams that are related by flypes, $u^{-}(D)=u^{-}\left(D^{\prime}\right)$.

> Tait Flyping Conj. Menasco-Thistlethwaite

Corollary 8. Let K be a non-alternating knot having the same prime reduced knot projection as that of an alternating knot diagram of an alternating knot $K^{\text {alt }}$. Then,

$$
C(K) \leq u^{-}(K) \leq u^{-}\left(K^{\text {alt }}\right)=C\left(K^{a l t}\right) .
$$

Next target

- Categorification of $C(K)$. Can we relate sl(2) homology to crosscap? (cf. HFK determines orientable genera.) This relates to the comment by Prof. J.S Carter in this seminar.
- Can we have more refined/new volume bounds?

Next target

 Thank you for your attention!- Categorification of $C(K)$. Can we relate sl(2) homology to crosscap? (cf. HFK determines orientable genera.) This relates to the comment by Prof. J.S Carter in this seminar.
- Can we have more refined/new volume bounds ?

