On a cobordism realizing crossing change on sl(2) tangle homology and a categorified

Vassiliev skein relation
Joint work with Jun Yoshida (U. Tokyo)
Noboru Ito (NIT, Ibaraki College)
EKOOK Seminar (2020.9.9)
(Slide is made using Yoshida's sources w/ small modification.)

Information.

Recoding \& slide of Yoshida's talk can be seen in web: L. H. Kauffman's web, "Quantum Topology Seminar".

Question.

What is crossing change on Khovanov homology?

Question.

What is crossing change on Khovanov homology? Traditionally, using link cobordisms, we have

$$
\lambda=\lambda \xrightarrow{\text { saddle }}\rangle\left\langle\xrightarrow{R_{1}^{2}} \searrow\langle(\xrightarrow{\text { saddle }} \chi<=X .\right.
$$

It will induce a map

$$
K h(X) \rightarrow K h(X)
$$

However, the degree does not preserve even if the crossing change does not change the knot.

Modified Question.

How to realize crossing change on Khovanov homology preserving the degree of Jones polynomial toward categorified Vassiliev theory?

Modified Question / Answer

How to realize crossing change on Khovanov homology preserving the degree of Jones polynomial toward categorified Vassiliev theory?

Answer: $\Phi:=\square-$?

Modified Question / Answer

How to realize crossing change on Khovanov homology preserving the degree of Jones polynomial toward categorified Vassiliev theory?

Answer: $\Phi:=\square-\infty$; Note:
Lemma 1. The following is a 0 -sequence; i.e. the compositions of adjacent two morphisms vanish:

cf. TQFT $Z_{0,0}: \operatorname{Cob}_{2} \rightarrow \operatorname{Mod}_{k} ; Z_{0,0}\left(S^{1}\right)=A$: Frobenius:

cf. retraction for RI invariance:

$$
\begin{aligned}
& 1) d(x \rightarrow 1) \neq x-x) \neq(1 . \\
& (1) \rightarrow(1)+x(1)-2 x(1)
\end{aligned}
$$

Corollary 1 (Yoshida, I. Categorified Vassiliev skein relation). For every $h, t \in k$, there is a long exact sequence $\cdots \rightarrow H^{i} Z_{h, t} \llbracket \backslash \backslash \xrightarrow{\hat{\Phi}} H^{i} Z_{h, t} \llbracket \backslash \rrbracket \rightarrow H^{i} Z_{h, t} \llbracket X \rrbracket$

$$
\longrightarrow H^{i+1} Z_{h, t} \llbracket \backslash \backslash \xrightarrow{\widehat{\$}} H^{i+1} Z_{h, t} \llbracket \backslash \rrbracket \rightarrow H^{i+1} Z_{h, t} \llbracket X \rrbracket \rightarrow \cdots
$$

Corollary 1 (Yoshida, I. Categorified Vassiliev skein relation). For every $h, t \in k$, there is a long exact sequence
$\cdots \rightarrow H^{i} Z_{h, t} \llbracket \backslash \backslash \xrightarrow{\widehat{\Phi}} H^{i} Z_{h, t} \llbracket \backslash \rrbracket \rightarrow H^{i} Z_{h, t} \llbracket X \rrbracket$

$$
\longrightarrow H^{i+1} Z_{h, t} \llbracket \backslash \backslash \xrightarrow{\widehat{\$}} H^{i+1} Z_{h, t} \llbracket \backslash \rrbracket \rightarrow H^{i+1} Z_{h, t} \llbracket X \rrbracket \rightarrow \cdots
$$

(1) (1) \rightarrow (1) $x+x$ (1) $-2 x$ (1)
$\Phi:=\square-$ A.

Definition 1. Define $\operatorname{Cob}_{2}^{\ell}\left(Y_{0}, Y_{1}\right)$ to be the k-linear additive category generated by

- objects are (oriented) 1-cobordisms $W: Y_{0} \rightarrow Y_{1}$;
- morphisms are (diffeo. classes of) 2-cobordisms with corners (aka. 2-bordisms).

The morphisms are subject to the following relations:
S-relation $S \amalg S^{2} \sim 0$ for $S: W_{0} \rightarrow W_{1}$;
T-relation $S \amalg T^{2} \sim 2 \cdot S$ for $S: W_{0} \rightarrow W_{1}$;

Definition 2. - $c(D)$: the set of crossings in D.

- Each subset $s \subset c(D)$ is called a state on D.
$\rightsquigarrow|s|$: the cardinality.
- For each state $s \subset c(D)$, define $D_{s} \subset \mathbb{R} \times[0,1]$ by the following smoothing on each crossing:

$$
\frac{C \notin S}{0-\text { smoothing }}
$$

$$
\chi_{c}
$$

Definition 3. D : a tangle diag.; s : a state, $c \in c(D) \backslash s$.

- Define $\delta_{c}: D_{s} \rightarrow D_{s \cup\{c\}} \in \operatorname{Cob}_{2}^{\ell}\left(\partial_{0} D, \partial_{1} D\right):$

$$
\delta_{c}=5: \precsim \rightarrow><.
$$

- Define a chain complex $\left\langle\langle D\rangle\right.$ in $\operatorname{Cob}_{2}^{\ell}\left(\partial_{0} D, \partial_{1} D\right)$ by

$$
\langle D\rangle\rangle^{i}:=\bigoplus D_{s} \otimes E_{s}, \quad d:=\sum \delta_{c} \otimes(\wedge c)
$$

$\bullet \llbracket D \rrbracket^{i}:=\langle\langle D\rangle\rangle^{i+n_{-}}, \quad d_{\llbracket D \rrbracket}=(-1)^{n_{-}} d_{\langle D\rangle}$.

Known Theorem 1 (Khovanov2000). A bigraded chain complex $C^{*, \star}(D)$ (of abelian groups) for each link diagram D so that

$$
K h^{i, j}(D):=H^{i}\left(C^{*, j}(D)\right)
$$

is invariant under Reidemeister moves.
This is nowadays called Khovanov homology.
Known Theorem 2 (Bar-Natan2005). The complex $\llbracket D \rrbracket$ is invariant under Reidemeister moves up to chain homotopy equivalences.

Theorem 1 (Yoshida, I., arXiv:2005.12664). There is a non-trivial map

$$
\widehat{\Phi}: K h(X) \rightarrow K h(X)
$$

of bidegree $(0,0)$. Furthermore, it is invariant under moves with respect to double points.

Definition 4. We define $\Phi:\langle\langle \rangle\rangle\rangle \rightarrow\langle\rangle\rangle\rangle$ by

$$
\Phi:=\square-\Gamma: \ggg \ggg
$$

Lemma 1. The following is a 0 -sequence; i.e. the compositions of adjacent two morphisms vanish:

$$
\langle\langle\cong\rangle \xrightarrow{\delta}\langle\rangle\rangle\rangle \xrightarrow{\Phi}\langle\rangle\rangle\rangle \xrightarrow{\delta}\langle\langle\cong\rangle\rangle .
$$

$$
\text { Proof: } 5 \bigcirc \text { and } O \text { A }
$$

Goal

1. Construction of $\widehat{\Phi}$ in terms of cobordisms.
2. $\widehat{\Phi}$ extends Khovanov homology to singular links via a categorified Vassiliev skein relation.
3. A categorified FI relation; i.e. $K h(\not \bigcirc)=0$ as the first formula of weight system.

Recall that

$$
\begin{aligned}
& \langle\rangle\rangle\rangle\rangle \cong \operatorname{Cone}(\langle\langle\searrow\rangle\rangle \xrightarrow{-\delta}\langle\rangle\rangle\rangle)[1] \\
& \langle\rangle\rangle\rangle \cong \operatorname{Cone}(\langle\rangle\rangle\rangle \xrightarrow{-\delta}\langle\langle\cong\rangle\rangle)[1] .
\end{aligned}
$$

Definition 5. We define the genus-one morphism induced by the sequence in Lemma 1:

$$
\widehat{\Phi}:\langle\langle \rangle\rangle\rangle\rangle \rightarrow\langle\langle\rangle\rangle\rangle[1]
$$

Remark 2. After the normalization of degree and grading, we get a morphism of bidegree $(0,0)$:

$$
\widehat{\Phi}: \llbracket \backslash \rrbracket \rightarrow \llbracket \backslash \rrbracket .
$$

Proposition 3. The genus-one morphism is invariant under the moves above; i.e. there are homotopy commutative squares

$$
\begin{aligned}
& \simeq \downarrow \\
& \llbracket X] \stackrel{\omega}{\sim}[X]
\end{aligned}
$$

Proposition 4. Suppose we are given a chain-homotopy commutative diagram

with $g f=0, h g=0, g^{\prime} f^{\prime}=0, h^{\prime} g^{\prime}=0, \Psi=\left\{\Psi^{i}: X^{\prime i} \rightarrow\right.$ $\left.Z^{i-2}\right\}_{i}, \Xi=\left\{\Xi^{i}: Y^{\prime i} \rightarrow W^{i-2}\right\}_{i}$ satisfying $d \Psi-\Psi d=g F+G f^{\prime}, d \Xi-\Xi d=h G+H g^{\prime}, h \Psi-\Xi f^{\prime}=0$.

Then, there is a chain-homotopy commutative square
Cone $\left(f^{\prime}\right) \longrightarrow \operatorname{Cone}\left(h^{\prime}\right)[1]$
$\stackrel{F_{*} \downarrow}{\operatorname{Cone}(f)} \longleftrightarrow \underset{\text { Cone }(h)[1]}{\downarrow H_{*}}$

Invariance under R_{IV}. Apply Proposition 4 to

with

$$
\Psi=\square \otimes \breve{b} \breve{a}, \quad \Xi=\square \otimes \breve{b} \breve{a} .
$$

Invariance under R_{V}. The direct computation shows the following (strictly) square commutes:

$$
\begin{aligned}
& \left\langle\rangle(\rangle\rangle[1] \xrightarrow{\overline{\mathrm{R}}_{\mathrm{II}}}\left\langle\left\langle\gamma^{\prime}{ }^{\prime}\right\rangle\right\rangle\right. \\
& \bar{R}_{\text {II }} \downarrow \quad \downarrow_{a} \\
& \left\langle\left\rangle{ }^{\prime} b\right\rangle\right\rangle \xrightarrow{\hat{\Phi}_{b}}\left\langle\left\rangle\left\langle\begin{array}{c}
\\
\end{array} \frac{a}{b}\right\rangle\right\rangle[1]\right.
\end{aligned}
$$

here $\overline{\mathrm{R}}_{\text {II }}$ is the chain-homotopy equivalence for 2nd RII.

Theorem 5 (Yoshida, I. [ItoYoshida2020]). For every singular tangle diagram D, there exists a complex $\llbracket D \rrbracket$ in $\operatorname{Cob}_{2}^{\ell}\left(\partial_{0} D, \partial_{1} D\right)$ having an isomorphism

$$
\llbracket X \rrbracket \cong \operatorname{Cone}(\llbracket \backslash \rrbracket \xrightarrow{\Phi} \llbracket \backslash \rrbracket)
$$

$\llbracket D \rrbracket$ is invariant under the moves of singular tangle diagrams.
\rightsquigarrow Applying the $T Q F T Z_{h, t}$, we obtain extensions of $s l_{2}$ homologies, e.g. $K h$ (with arbitrary coeff., $h=t=0$), Lee $(\mathbb{Q}, h=0, t=1), B N(\mathbb{Z} / 2, t=0)$, etc. to singular link diagrams.

Corollary 1 (Yoshida, I. Categorified Vassiliev skein relation). For every $h, t \in k$, there is a long exact sequence
$\left.\cdots \rightarrow H^{i} Z_{h, t} \llbracket \lambda\right] \xrightarrow{\Phi} H^{i} Z_{h, t} \llbracket \backslash \rrbracket \rightarrow H^{i} Z_{h, t} \llbracket X \rrbracket$

$$
\longrightarrow H^{i+1} Z_{h, t} \llbracket \backslash \backslash \xrightarrow{\widehat{\$}} H^{i+1} Z_{h, t} \llbracket 久 \rrbracket \rightarrow H^{i+1} Z_{h, t} \llbracket X \rrbracket \rightarrow \cdots
$$

Its decategorification is the Vassiliev skein relation:
$\chi\left(H^{*} Z_{h, t} \llbracket \backslash \rrbracket\right)-\chi\left(H^{*} Z_{h, t} \llbracket \backslash \rrbracket\right)+\chi\left(H^{*} Z_{h, t} \llbracket X \rrbracket\right)=0$.

Theorem 6 (Yoshida, I. The FI relation). If a singular tangle diagram D contains a local tangle of the form

then $\llbracket D \rrbracket$ is contractible; i.e. the identity is null-homotopic.
cf. the FI relation is obtained by comparing the two paths:

Proof.

The triangle below commutes:

because using categorified Vassiliev skein rel., we have $\llbracket D \rrbracket \simeq 0 \Longleftrightarrow \widehat{\Phi}: \llbracket\rangle \rrbracket \rightarrow \llbracket \backslash / \rrbracket \rrbracket:$ homotopy-equivalence.

Next Targets

Kauffman's questions at Quantum Topology Seminar:

- How about categorifying weight system ?
- How about $s l_{n}$?

