On a cobordism realizing crossing change on sl(2) tangle homology and a categorified <u>Vassiliev skein relation</u>

Joint work with Jun Yoshida (U. Tokyo)

Noboru Ito (NIT, Ibaraki College)

EKOOK Seminar (2020.9.9)

(Slide is made using Yoshida's sources w/ small modification.)

Information.

Recoding & slide of Yoshida's talk can be seen in web: L. H. Kauffman's web, "Quantum Topology Seminar".

Question.

What is *crossing change* on Khovanov homology?

Question.

What is *crossing change* on Khovanov homology? Traditionally, using *link cobordisms*, we have

It will induce a map

$$Kh\left(\bigvee\right) \to Kh\left(\bigvee\right)$$
.

However, the degree does not preserve even if the crossing change does not change the knot.

Modified Question.

How to realize *crossing change* on Khovanov homology preserving the degree of Jones polynomial toward categorified Vassiliev theory?

Modified Question / Answer

How to realize *crossing change* on Khovanov homology preserving the degree of Jones polynomial toward categorified Vassiliev theory?

Answer: $\Phi := \boxed{}$

Modified Question / Answer

How to realize *crossing change* on Khovanov homology preserving the degree of Jones polynomial toward categorified Vassiliev theory?

Answer:
$$\Phi = \bigcirc - \bigcirc$$
; Note:

Lemma 1. The following is a 0-sequence; i.e. the compositions of adjacent two morphisms vanish:

$$\left\langle\!\!\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle\!\!\right\rangle \xrightarrow{\delta} \left\langle\!\!\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle\!\!\right\rangle \xrightarrow{\Phi} \left\langle\!\!\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle\!\!\right\rangle \xrightarrow{\delta} \left\langle\!\!\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle\!\!\right\rangle \ .$$

cf. TQFT $Z_{0,0}$: Cob₂ \rightarrow Mod_k; $Z_{0,0}(S^1) = A$: Frobenius:

cf. retraction for RI invariance:

$$1 \times x \rightarrow 1 \times x - x \times 1$$

Corollary 1 (Yoshida, I. Categorified Vassiliev skein relation). For every $h, t \in k$, there is a long exact sequence

Corollary 1 (Yoshida, I. Categorified Vassiliev skein relation). For every $h, t \in k$, there is a long exact sequence

Definition 1. Define $Cob_2^{\ell}(Y_0, Y_1)$ to be the k-linear ad- $ditive\ category\ generated\ by$

- objects are (oriented) 1-cobordisms $W: Y_0 \to Y_1$;
- morphisms are (diffeo. classes of) 2-cobordisms with corners (aka. 2-bordisms).

The morphisms are subject to the following relations:

S-relation
$$S \coprod S^2 \sim 0$$
 for $S: W_0 \to W_1$;

T-relation $S \coprod T^2 \sim 2 \cdot S$ for $S : W_0 \to W_1$;

Definition 2. • c(D): the set of crossings in D.

- Each subset $s \subset c(D)$ is called a *state* on D.
 - $\rightsquigarrow |s|$: the cardinality.
- For each state $s \subset c(D)$, define $D_s \subset \mathbb{R} \times [0,1]$ by the following *smoothing* on each crossing:

$$\begin{array}{c|c}
c \notin s \\
\hline
0-\text{smoothing}
\end{array}
\begin{array}{c}
c \in s \\
\hline
1-\text{smoothing}
\end{array}$$

Definition 3. D: a tangle diag.; s: a state, $c \in c(D) \setminus s$.

• Define $\delta_c: D_s \to D_{s \cup \{c\}} \in \mathcal{C}ob_2^{\ell}(\partial_0 D, \partial_1 D):$

$$\delta_c = \sum_{c} : \bigotimes_{c} \rightarrow \bigotimes_{c} .$$

• Define a chain complex $\langle\!\langle D \rangle\!\rangle$ in $\mathcal{C}ob_2^{\ell}(\partial_0 D, \partial_1 D)$ by

$$\langle\!\langle D \rangle\!\rangle^i := \bigoplus_{\substack{c \subset c(D) \\ |c|=i}} D_s \otimes E_s , \quad d := \sum_{c \in c(D)} \delta_c \otimes (\wedge c) .$$

 $\bullet \ \llbracket D \rrbracket^i \coloneqq \langle \! \langle D \rangle \! \rangle^{i+n_-} \ , \quad d_{\llbracket D \rrbracket} = (-1)^{n_-} d_{\langle \! \langle D \rangle \! \rangle} \quad .$

Known Theorem 1 (Khovanov2000). A bigraded chain complex $C^{*,*}(D)$ (of abelian groups) for each link diagram D so that

$$Kh^{i,j}(D) := H^i(C^{*,j}(D))$$

is invariant under Reidemeister moves.

This is nowadays called *Khovanov homology*.

Known Theorem 2 (Bar-Natan2005). The complex $[\![D]\!]$ is invariant under Reidemeister moves up to chain homotopy equivalences.

Theorem 1 (Yoshida, I., arXiv:2005.12664). There is a non-trivial map

$$\widehat{\Phi}: Kh\left(\bigvee\right) \to Kh\left(\bigvee\right)$$

of bidegree (0,0). Furthermore, it is invariant under moves with respect to double points.

Definition 4. We define $\Phi : \langle \langle \rangle \rangle \rightarrow \langle \langle \rangle \rangle$ by

$$\Phi \coloneqq \boxed{} \cdot \boxed{} : \bigcirc \bigcirc \rightarrow \bigcirc \bigcirc .$$

Lemma 1. The following is a 0-sequence; i.e. the compositions of adjacent two morphisms vanish:

$$\left\langle\!\!\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle\!\!\right\rangle \xrightarrow{\delta} \left\langle\!\!\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle\!\!\right\rangle \xrightarrow{\delta} \left\langle\!\!\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle\!\!\right\rangle \xrightarrow{\delta} \left\langle\!\!\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle\!\!\right\rangle \ .$$

Proof:
$$\cong$$
 \cong \cong and \cong \cong \cong \cong . \square

Goal

- 1. Construction of $\widehat{\Phi}$ in terms of cobordisms.
- 2. $\widehat{\Phi}$ extends Khovanov homology to singular links via a categorified Vassiliev skein relation.
- 3. A categorified FI relation; i.e. $Kh\left(X\right) = 0$ as the first formula of weight system.

Recall that
$$\left\langle \left\langle \right\rangle \right\rangle \cong \operatorname{Cone}\left(\left\langle \left\langle \right\rangle \right\rangle \right) \xrightarrow{-\delta} \left\langle \left\langle \right\rangle \right\rangle \right) [1]$$
, $\left\langle \left\langle \right\rangle \right\rangle \cong \operatorname{Cone}\left(\left\langle \left\langle \right\rangle \right\rangle \right) \xrightarrow{-\delta} \left\langle \left\langle \right\rangle \right\rangle \right) [1]$.

Definition 5. We define the *genus-one morphism* induced by the sequence in Lemma 1:

$$\widehat{\Phi}: \left\langle \left\langle \right\rangle \right\rangle \rightarrow \left\langle \left\langle \right\rangle \right\rangle [1]$$
.

Remark 2. After the normalization of degree and grading, we get a morphism of bidegree (0,0):

$$\widehat{\Phi}: \boxed{\searrow} \rightarrow \boxed{\searrow} \quad .$$

Proposition 3. The genus-one morphism is invariant under the moves above; i.e. there are homotopy commutative squares

Proposition 4. Suppose we are given a chain-homotopy commutative diagram

with
$$gf = 0$$
, $hg = 0$, $g'f' = 0$, $h'g' = 0$, $\Psi = \{\Psi^i : X'^i \to Z^{i-2}\}_i$, $\Xi = \{\Xi^i : Y'^i \to W^{i-2}\}_i$ satisfying

$$d\Psi - \Psi d = gF + Gf', d\Xi - \Xi d = hG + Hg', h\Psi - \Xi f' = 0$$
.

Then, there is a chain-homotopy commutative square

$$\operatorname{Cone}(f') \longrightarrow \operatorname{Cone}(h')[1]$$

$$F_* \downarrow \qquad \downarrow_{H_*}$$

$$\operatorname{Cone}(f) \longrightarrow \operatorname{Cone}(h)[1]$$

Invariance under R_{IV} . Apply Proposition 4 to

with

$$\Psi = \widetilde{b}\widetilde{a} , \quad \Xi = \widetilde{b}\widetilde{a} \otimes \widecheck{b}\widetilde{a} .$$

Invariance under R_V . The direct computation shows the following (strictly) square commutes:

$$\begin{array}{c} \left\langle \left\langle \right\rangle \right\rangle \left[1\right] \xrightarrow{\overline{R}_{II}} \left\langle \left\langle \right\rangle \right\rangle \\
\overline{R}_{II} \downarrow \qquad \qquad \downarrow \widehat{\Phi}_{a} \qquad , \\
\left\langle \left\langle \right\rangle \right\rangle \left\langle \left\langle \right\rangle \right\rangle \xrightarrow{\widehat{\Phi}_{b}} \left\langle \left\langle \left\langle \right\rangle \right\rangle \left[1\right]
\end{array}$$

here \overline{R}_{II} is the chain-homotopy equivalence for 2nd RII.

Theorem 5 (Yoshida, I. [ItoYoshida2020]). For every singular tangle diagram D, there exists a complex [D] in $Cob_2^{\ell}(\partial_0 D, \partial_1 D)$ having an isomorphism

$$\boxed{\hspace{-2mm} \begin{bmatrix} \times \\ \end{bmatrix}} \cong \operatorname{Cone} \left(\boxed{\hspace{-2mm} \begin{bmatrix} \times \\ \end{bmatrix}} \stackrel{\widehat{\Phi}}{\to} \boxed{\hspace{-2mm} \begin{bmatrix} \times \\ \end{bmatrix}} \right) ;$$

 $[\![D]\!]$ is invariant under the moves of singular tangle diagrams.

 \rightsquigarrow Applying the $TQFT\ Z_{h,t}$, we obtain extensions of sl_2 homologies, e.g. Kh (with arbitrary coeff., h=t=0), $Lee\ (\mathbb{Q},\ h=0,t=1),\ BN\ (\mathbb{Z}/2,\ t=0),\ etc.$ to singular link diagrams.

Corollary 1 (Yoshida, I. Categorified Vassiliev skein relation). For every $h, t \in k$, there is a long exact sequence

$$\cdots \to H^i Z_{h,t} \left[\begin{array}{c} \searrow \\ \end{array} \right] \xrightarrow{\widehat{\Phi}} H^i Z_{h,t} \left[\begin{array}{c} \searrow \\ \end{array} \right] \longrightarrow H^i Z_{h,t} \left[\begin{array}{c} \searrow \\ \end{array} \right] \longrightarrow$$

Its decategorification is the Vassiliev skein relation:

$$\chi\left(H^*Z_{h,t}\left[\!\left[\!\right]\!\right]\right) - \chi\left(H^*Z_{h,t}\left[\!\left[\!\right]\!\right]\right) + \chi\left(H^*Z_{h,t}\left[\!\left[\!\right]\!\right]\right) = 0.$$

Theorem 6 (Yoshida, I. The FI relation). If a singular tangle diagram D contains a local tangle of the form

then $[\![D]\!]$ is contractible; i.e. the identity is null-homotopic.

cf. the FI relation is obtained by comparing the two paths:

Proof.

The triangle below commutes:

because using categorified Vassiliev skein rel., we have

$$\llbracket D \rrbracket \simeq 0 \iff \widehat{\Phi} : \llbracket \searrow \rrbracket \to \llbracket \searrow \rrbracket : \text{homotopy-equivalence.}$$

Next Targets

Kauffman's questions at Quantum Topology Seminar:

- How about categorifying weight system?
- How about sl_n ?