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Main Result 1
[Takimura-1.] (1IJM2020), [Kindred] (1JM2020)

Let C(K) be the crosscap number of K.

For any prime alternating knot K,

C(K) = u(K).



Recalling definition: u (P)., u (K

* u (P) 1s the minimum number of necessary

splices of type S among any sequences of S and
RI" to obtain O. u (K) :=min,u (P).
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Plan of proof for u=(D) = C(K)

We will compare

2U : a non-orientable state surface realizing u (D)

2.4k : a surface realizing C(K) or g(K)
(Adams-Kindred).






Construction of 2.AK

Find m-gon of the smallest m and splice as follows

(P has a 3-gon if 3= m

0—|c

Eliahou-Harary-Kauffman, 2008

D

)



Notation 1. Y i gives a sequence of splices (07;)?:(11)) :

9n(D)

D=Dy> Dy 3Dy 3 -+ =" Dypy

Each orientation of D; isof ;. (=ori. S7, S._.., Tsplit, Ljoin)-

join’

It induces

On(D)

CDp =CDy = CD; 3CDy 3 -+ =" CDyy(py.

(CD, is a Gauss diagram of D; it will be defined.)



Notation 2. o Oriented Tspit, Tioin. Seifert splices.
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e Oriented R1™. 1st Reidemeister move.

o Oriented S—, S._. . Target orientation must be chosen.

join”
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Definition 1. Let D be a knot diagram whose projection is

P. Then there is a generic immersion g : S' — S? such that

g(S')=P. Itis denoted by CD,.




LU BN The behavior of S~ in CDp is as follows.

(The difference of cyclic Gauss words is presented as:

Cp1P2 - . .P2;CP2i+1 - --P2n — P2iP2i—1 - -P1P2i+1P2i+2 - - -p2n-)

D2i DP2n

P1 P2i+1
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Property S S”

Key Lemma
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Suppose that (o;);~ ( ) satisfies 01 = S~, g =

Tepiit, and o3 = Tioin. Then, the three chords in C'Dp corre-
sponding to o1, 02, and o3 are as in

_/\T T/\T T
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Observation 1

Component-preserving successive “T T”
should have a chord intersection.
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Key Lemma . Let D be a prime (alternating or non-

alternating) knot diagram with exactly n(D) (> 1) crossings

with o; = RI™ (V7). Suppose that 01 = S~ and that (ai)?:(g)
or S™.

Then it is possible to re-index the same set of splices as

(o)) ™) such that o) = S~ and o, = S—, and o] # RI™

(V).

includes at least one Tioin, S,

join’



Key Lemma . Let D be a prime (alternating or non-

alternating) knot diagram with exactly n(D) (> 1) crossings
with o; # RI™ (Vi). Suppose that 01 = S~ and that (ai)n(l;)

1=

includes at least one Tjoin, S0, OF S~ .

Then it is possible to re-index the same set of splices as
(O’,E)?:(ll)) such that oy = S~ and o5, = S, and o, # RI™
(V).

Roughly speaking, suppose that AK-sequence starts from one S~. if

“join” or more S™ appears in the seq., S™... - S~ S....by reordering.



PropTrty S” S”

Claim S“TT

- T

(X) (X?) (Y)
/Sf\s\ S TT
\

S to $7S°S°

Main Result 1



Proof of Key Lemma

Case (1): (ai)?:(l;) includes at least one S~ or S .
S™r---TS™---, or ST---TS; ---. Moving o, (
S or Si,,) to o3,

S B

we obtain S— S5 - ...



Observation 1’

Component-preserving pair “T S” should

have a chord intersection.
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Proof of Key Lemma

Case (2): (ai)?:(g) includes no splice S~ and no splice S;;

but includes a splice Tjqip.

We have reordering:
S_Tsplit T Tsplitfz—jjoinT ol — S_Tsplitf[}oinT i

e Case: either (X) or (X') is included:

By property of S, reordering 123 — 231 or 321 obtains a
sequence ST S5 ...

e Case: there is no (X) and no (X'), but (YY) appears:



Observation 1

Component-preserving pair “T T” should

have a chord intersection.
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Proof of Key Lemma

Case (2): (Ui)?:(g) includes no splice S~ and no splice 5, ,

but includes a splice Tjqip.

We have reordering:
S_Tsplit T TsplittrjoinT 1= S_TsplitTjjoinT R

e Case: either (X) or (X') is included:
By property of S—, reordering 123 — 231 or 321 obtains a

sequence N IS I 't's the highest point of the proof, we’ll go to the next slide!

e Case: there is no (X) and no (X'), but (Y) appears:
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Proof of Key Lemma

n(D) .

Case (2): (0i);=5  includes no splice S~ and no splice S,

but includes a splice Ty .

We have reordering:
S_Tsplit "t TsplitjjioinT 1= S_TsplitjjjoinT R

e Case: either (X) or (X') is included:
By property of S, reordering 123 — 231 or 321 obtains a

sequence SIS I Sl |t's the highest point of the proof, we’ll go to the next slide!

e Case: there is no (X) and no (X'), but (Y) appears:






Proof of Key Lemma

Case (2): (ai)?:(g) includes no splice S~ and no splice S;_

join’

but includes a splice Tjqiy.

We have reordering:
S_Tsplit "t Tsplitcz_}oinT el — S_Tsplitcz—joinT R

e Case: either (X) or (X') is included:

By property of S—, reordering 123 — 231 or 321 obtains a
sequence ST S5 ...

e Case: there is no (X) and no (X'), but (Y) appears:

By primeness, (X) should be included — contradiction.




Applying Key Lemma the sequence of splices repeatedly, we

have:
ST S_Tsplit " Tsplit

from XAk .

Here, in this seq., every T, splits a monogon since there is

no chord intersection after S5~ ... 5™ applies.



Observation 1”

Any component-preserving pair “T X”

should have a chord intersection.
Tsplit
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PropTrty S” S”

Claim S“TT..

|

Key Lemma S TT..
to $°S°S”

u~(D) = C(K) Main Result 1




Finalizing Proof of Main Result 1 (lower bound)

Case Y. 4 is a non-orientable surface with the maximal Eu-

ler characteristic x. (Note: the seq. has S7; any o; # RI™.)
Thus, by Key Lemma, this seq. realizes v~ (D) by reordering.

S™S™ ... S Tt Topiit - - - Tuplit.

The reordering process implies Observation 2.



Observation 2. Each reordering may cause:
Tsplitatz—jjoin HS_,S_ or Splltas_ A S_,S_.

join

Thus,

l—u (D)=1—-4{S"in seq.}
=1 — 28Tj0in — 285,05, — 85~
=14 (1Tsptit — BT join — BSj0in) — (D)
=x(Zarx)=1—-C(K).
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u~(D) = C(K) Main Result 1




Finalizing Proof of Main Result 1 (lower bound)

Case X 4 is a orientable surface with the maximal Euler
characteristic. Note: 2¢g(K) < C(K) & C(K) = 2g(K) + 1.
It returns to the non-orientable case since xy (=1—-2¢g(K))
is changed into 1 — (2¢9(K)+1) (= 1—C(K)) by the replace-

ment:

Seifert splice

state > C /\
band % ;%g\



Then for any prime alternating knot diagram D,




By the argument of this proof, we have:

Main Result 2 [Takimura-I. IJM2020]
For any knot K, 1f there exists a state realizing the
maximal Euler characteristic,

u"(K) = C(K).



Next target

o Categorification of C(K). Can we relate
sl(2) homology to crosscap? (cf. HFK
determines orientable genera.)
Comment by Prof. J.S Carter.

e Can we have more volume bounds ?



Thank you for your attention!
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