Splice-unknotting operation and crosscap numbers
 Noboru Ito
 (NIT, Ibaraki College)

J. w. w. Yusuke Takimura (Gakushuin Junior High.)

Tohoku Knot Seminar

October 17, 2020

Main Result 1

[Takimura-I.] (IJM2020), [Kindred] (IJM2020)

Let $C(K)$ be the crosscap number of K.

For any prime alternating knot K ,

$$
\mathrm{C}(\mathrm{~K})=\mathrm{u}^{-}(\mathrm{K})
$$

Recalling definition: $\mathrm{u}^{-}(\mathrm{P}), \mathrm{u}^{-}(\mathrm{K})$

- $\mathrm{u}^{-}(\mathrm{P})$ is the minimum number of necessary
splices of type S^{-}among any sequences of S^{-}and RI^{-}to obtain $\mathrm{O} . \mathrm{u}^{-}(\mathrm{K}):=\min _{\mathrm{P}} \mathrm{u}^{-}(\mathrm{P})$.

Plan of proof for $\mathrm{u}^{-}(\mathrm{D}) \leqq \mathrm{C}(\mathrm{K})$

We will compare

$\Sigma \mathrm{u}$: a non-orientable state surface realizing $\mathrm{u}^{-}(\mathrm{D})$
with
Σ_{AK} : a surface realizing $\mathrm{C}(\mathrm{K})$ or $\mathrm{g}(\mathrm{K})$ (Adams-Kindred).

$\Sigma \mathrm{u}:=\Sigma_{\sigma}\left(D_{P}\right)$

Construction of $\sum_{\text {AK }}$

Find m-gon of the smallest m and splice as follows
(P has a 3-gon if $3 \leqq$ m Eliahou-Harary-Kauffman, 2008)

Notation 1. $\Sigma_{A K}$ gives a sequence of splices $\left(\sigma_{i}\right)_{i=1}^{n(D)}$:

$$
D=D_{0} \xrightarrow{\sigma_{1}} D_{1} \xrightarrow{\sigma_{2}} D_{2} \xrightarrow{\sigma_{3}} \cdots \xrightarrow{\sigma_{n(D)}} D_{n(D)}
$$

Each orientation of D_{i} is of σ_{i}. (= ori. $\left.S^{-}, S_{\text {join }}^{-}, T_{\text {split }}, T_{\text {join }}\right)$.
It induces

$$
C D_{D}=C D_{0} \xrightarrow{\sigma_{7}} C D_{1} \xrightarrow{\sigma_{2}} C D_{2} \xrightarrow{\sigma_{3}} \cdots \xrightarrow{\sigma_{n(D)}} C D_{n(D)} .
$$

$\left(C D_{D}\right.$ is a Gauss diagram of D; it will be defined.)

Notation 2. - Oriented $T_{\text {split }}, T_{\text {join }}$. Seifert splices.

- Oriented RI^{-}. 1st Reidemeister move.
- Oriented $S^{-}, S_{\text {join }}^{-}$. Target orientation must be chosen.

Property S

\mathbf{S}^{-}
Claìm

Key Lemma

Main Result 1

Property S^{-}

\mathbf{S}^{-}

Claìm
$S^{-T} T$

Key Lemma

$S^{-} T$
to $\mathrm{S}^{-} \mathrm{S}^{-} \mathrm{S}^{-}$

Main Result 1

Definition 1. Let D be a knot diagram whose projection is P. Then there is a generic immersion $g: S^{1} \rightarrow S^{2}$ such that $g\left(S^{1}\right)=P$. It is denoted by $C D_{D}$.

Property S^{-}. The behavior of S^{-}in $C D_{D}$ is as follows. (The difference of cyclic Gauss words is presented as: $\left.c p_{1} p_{2} \ldots p_{2 i} c p_{2 i+1} \ldots p_{2 n} \longrightarrow p_{2 i} p_{2 i-1} \ldots p_{1} p_{2 i+1} p_{2 i+2} \ldots p_{2 n}.\right)$

e.g.

Property S^{-}

\mathbf{S}^{-}
Claim

Key Lemma

Main Result 1

Property \mathbf{S}^{-}
 \mathbf{S}^{-} Claim
 Key Lemma

Main Result 1

Claim.

Suppose that $\left(\sigma_{i}\right)_{i=1}^{n(D)}$ satisfies $\sigma_{1}=S^{-}, \sigma_{2}=$ $T_{\text {split }}$, and $\sigma_{3}=T_{\text {join }}$. Then, the three chords in $C D_{D}$ corresponding to σ_{1}, σ_{2}, and σ_{3} are as in

Observation 1

Component-preserving successive "T T" should have a chord intersection.

Property S ${ }^{-}$
 S^{-} Claim $S^{-T} T$
 Key Lemma

Main Result 1

Key Lemma . Let D be a prime (alternating or nonalternating) knot diagram with exactly $n(D)(>1)$ crossings with $\sigma_{i} \neq \mathrm{RI}^{-}(\forall i)$. Suppose that $\sigma_{1}=S^{-}$and that $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes at least one $T_{\text {join }}, S_{\text {join }}^{-}$, or S^{-}.
Then it is possible to re-index the same set of splices as $\left(\sigma_{i}^{\prime}\right)_{i=1}^{n(D)}$ such that $\sigma_{1}^{\prime}=S^{-}$and $\sigma_{2}^{\prime}=S^{-}$, and $\sigma_{i}^{\prime} \neq \mathrm{RI}^{-}$ $(\forall i)$.

Key Lemma . Let D be a prime (alternating or nonalternating) knot diagram with exactly $n(D)(>1)$ crossings with $\sigma_{i} \neq \mathrm{RI}^{-}(\forall i)$. Suppose that $\sigma_{1}=S^{-}$and that $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes at least one $T_{\text {join }}, S_{\text {join }}^{-}$, or S^{-}.
Then it is possible to re-index the same set of splices as $\left(\sigma_{i}^{\prime}\right)_{i=1}^{n(D)}$ such that $\sigma_{1}^{\prime}=S^{-}$and $\sigma_{2}^{\prime}=S^{-}$, and $\sigma_{i}^{\prime} \neq \mathrm{RI}^{-}$ (\forall i).

Roughly speaking, suppose that AK-sequence starts from one S^{-}. if

 "join" or more S^{-}appears in the seq., $\mathrm{S}^{-} \ldots \rightarrow \mathrm{S}^{-} \mathrm{S}^{-}$....by reordering.

Property S
 Claim

S^{-}

S-TT

Key Lemma
$S^{-} T T$
to $\mathrm{S}^{-} \mathrm{S}^{-} \mathrm{S}^{-}$

Main Result 1

Proof of Key Lemma

Case (1): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes at least one S^{-}or $S_{\text {join }}^{-}$.
$S^{-} T \cdots T S^{-} \cdots$, or $S^{-} T \cdots T S_{\text {join }}^{-} \cdots$. Moving $\sigma_{m}(=$
S^{-}or $\left.S_{\text {join }}^{-}\right)$to σ_{2}^{\prime},

we obtain $S^{-} S^{-} \cdots$.

Observation 1'

Component-preserving pair "T S" should have a chord intersection.

Proof of Key Lemma

Case (2): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes no splice S^{-}and no splice $S_{\text {join }}^{-}$, but includes a splice $T_{\text {join }}$.
We have reordering:

$$
S^{-} T_{\text {split }} \cdots T_{\text {split }} T_{\text {join }} T \cdots T \rightarrow S^{-} T_{\text {split }} T_{\text {join }} T \cdots T
$$

- Case: either (X) or $\left(X^{\prime}\right)$ is included:

By property of S^{-}, reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^{-} S^{-} S^{-}$...

- Case: there is no (X) and no $\left(\mathrm{X}^{\prime}\right)$, but (Y) appears:

Observation 1

Component-preserving pair "T T" should

 have a chord intersection.

Proof of Key Lemma

Case (2): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes no splice S^{-}and no splice $S_{\text {join }}^{-}$, but includes a splice $T_{\text {join }}$.
We have reordering:

$$
S^{-} T_{\text {split }} \cdots T_{\text {split }} T_{\text {join }} T \cdots T \rightarrow S^{-} T_{\text {split }} T_{\text {join }} T \cdots T
$$

- Case: either (X) or $\left(X^{\prime}\right)$ is included:

By property of S^{-}, reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^{-} S^{-} S^{-} \ldots$ It's the highest point of the proof, we'll go to the next slide!

- Case: there is no (X) and no $\left(\mathrm{X}^{\prime}\right)$, but (Y) appears:

Reordering: 123 -> 321 or 231

Proof of Key Lemma

Case (2): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes no splice S^{-}and no splice $S_{\text {join }}^{-}$, but includes a splice $T_{\text {join }}$.
We have reordering:

$$
S^{-} T_{\text {split }} \cdots T_{\text {split }} T_{\text {join }} T \cdots T \rightarrow S^{-} T_{\text {split }} T_{\text {join }} T \cdots T
$$

- Case: either (X) or (X^{\prime}) is included:

By property of S^{-}, reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^{-} S^{-} S^{-}$... It's the highest point of the proof, well go to the next slide!

- Case: there is no (X) and no $\left(\mathrm{X}^{\prime}\right)$, but (Y) appears:

Proof of Key Lemma

Case (2): $\left(\sigma_{i}\right)_{i=2}^{n(D)}$ includes no splice S^{-}and no splice $S_{\text {join }}^{-}$, but includes a splice $T_{\text {join }}$.
We have reordering:

$$
S^{-} T_{\text {split }} \cdots T_{\text {split }} T_{\text {join }} T \cdots T \rightarrow S^{-} T_{\text {split }} T_{\text {join }} T \cdots T
$$

- Case: either (X) or $\left(\mathrm{X}^{\prime}\right)$ is included:

By property of S^{-}, reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^{-} S^{-} S^{-}$...

- Case: there is no (X) and no $\left(X^{\prime}\right)$, but (Y) appears:

By primeness, (X) should be included \rightarrow contradiction. \square

Applying Key Lemma the sequence of splices repeatedly, we have:

$$
S^{-} \cdots S^{-} T_{\text {split }} \cdots T_{\text {split }}
$$

from $\Sigma_{A K}$.
Here, in this seq., every $T_{\text {split }}$ splits a monogon since there is no chord intersection after $S^{-} S^{-} \ldots S^{-}$applies.

Observation 1"

Any component-preserving pair " $\mathrm{T} X$ " should have a chord intersection.

Property S
 Clàim

S^{-}
$\mathrm{s}^{-1} \mathrm{~T}$...

Key Lemma
S^{-}T T...
to $\mathrm{S}^{-} \mathrm{S}^{-} \mathrm{S}^{-}$

$$
u^{-}(D)=C(K)
$$

Main Result 1

Finalizing Proof of Main Result 1 (lower bound)

Case $\Sigma_{A K}$ is a non-orientable surface with the maximal Euler characteristic χ. (Note: the seq. has S^{-}; any $\sigma_{i} \neq \mathrm{RI}^{-}$.) Thus, by Key Lemma, this seq. realizes $u^{-}(D)$ by reordering.

$$
S^{-} S^{-} \ldots S^{-} T_{\text {split }} T_{\text {split }} \ldots T_{\text {split }}
$$

The reordering process implies Observation 2.

Observation 2. Each reordering may cause:

$$
T_{\text {split }}, T_{\text {join }} \leftrightarrow S^{-}, S^{-} \quad \text { or } \quad T_{\text {split }}, S_{\text {join }}^{-} \leftrightarrow S^{-}, S^{-} .
$$

Thus,

$$
\begin{aligned}
1-u^{-}(D) & =1-\sharp\left\{S^{-} \text {in seq. }\right\} \\
& =1-2 \sharp T_{\text {join }}-2 \sharp S_{\text {join }}^{-}-\sharp S^{-} \\
& =1+\left(\sharp T_{\text {split }}-\sharp T_{\text {join }}-\sharp S_{\text {join }}^{-}\right)-n(D) \\
& =\chi\left(\Sigma_{A K}\right)=1-C(K) .
\end{aligned}
$$

Property S
 Claim

S^{-}
$\mathrm{s}^{-\mathrm{T}} \mathrm{T} .$.

Key Lemma
S^{-}T T...
to $\mathrm{S}^{-} \mathrm{S}^{-} \mathrm{S}^{-}$

$$
u^{-}(D)=C(K)
$$

Main Result 1

Finalizing Proof of Main Result 1 (lower bound)
Case $\Sigma_{A K}$ is a orientable surface with the maximal Euler characteristic. Note: $2 g(K)<C(K) \Leftrightarrow C(K)=2 g(K)+1$. It returns to the non-orientable case since $\chi(=1-2 g(K))$ is changed into $1-(2 g(K)+1)(=1-C(K))$ by the replacement:

Then for any prime alternating knot diagram D,

$$
u^{-}(K) \leq \min _{D} u^{-}(D)=C(K)
$$

Recalling that $C(K) \leq u^{-}(K)$, it completes the proof.

Ito-Takimura, 2018, arXiv: 2008.11061

By the argument of this proof, we have:

Main Result 2 [Takimura-I. IJM2020]
For any knot K , if there exists a state realizing the maximal Euler characteristic,

$$
u^{-}(\mathrm{K})=\mathrm{C}(\mathrm{~K}) .
$$

Next target

- Categorification of $C(K)$. Can we relate sl(2) homology to crosscap? (cf. HFK determines orientable genera.) Comment by Prof. J.S Carter.
- Can we have more volume bounds ?

Thank you for your attention！

文献など（敬称略）

Clark（1978）定義の導入と $C(K)=1$ の決定［IJMS］
＜80年代に Hatcher－Thurston［Invent．Math，1985］Hacher－Oertel［Topology，1989］＞
村上斉－安原（1995）加法性が成り立つ必要十分条件（特にC $(K)=2 g(K)+1$ の K においては加法性が崩れる）［PJM］別所（1996）結び目補空間によるクロスキャップの計算およびC（K）$=2 \mathrm{~g}(\mathrm{~K})+1$ の無限列［阪大修士論文］
寺垣内（2004）torus knot のcrosscap numberの決定［Topology Appl．］
寺垣内－平澤（2006）2－bridge knotのcrosscap numberの決定［Topology］
市原－水嶋（2006）many pretzel knot のcrosscap number の決定［Topology Appl．］
小沢（2011）state surfaceの導入［J．Aust．Math．Soc．］
Adams－Kindred（2013）alternating knotのcrosscap numberの理論的な決定［AGT］
Kalfagianni－Lee（2016）（colored）Jones polynomialとの関係［Advanced Math］
Takimura－I．（2018）u－（P）の導入，crosscap two alternating knotsの決定［IJM］（cf．2016，Ichihara－Masai［CAG］）
Takimura－I．（2019）crosscap n alternating knots via band surgery［JKTR］
Kindred（2020）crosscap n alternating knots by splice－unknotting number Takimura－I．u－and fylpes［IJM］
Takimura－I．（2020）crosscap n alternating knots by u－and Jones polynomial［IJM］

