Splice-unknotting operation and crosscap numbers Noboru Ito (NIT, Ibaraki College)

J. w. w. Yusuke Takimura (Gakushuin Junior High.)

Tohoku Knot Seminar October 17, 2020

Main Result 1 [Takimura-I.] (IJM2020), [Kindred] (IJM2020)

Let C(K) be the crosscap number of K.

For any prime alternating knot K,

$$C(K) = u^{-}(K)$$
.

Recalling definition: u⁻(P), u⁻(K)

• $u^-(P)$ is the minimum number of necessary splices of type S^- among any sequences of S^- and RI $^-$ to obtain O. $u^-(K) := \min_P u^-(P)$.

Plan of proof for $u^{-}(D) \leq C(K)$

We will compare

 Σu : a non-orientable state surface realizing $u^{-}(D)$

with

 Σ_{AK} : a surface realizing C(K) or g(K) (Adams-Kindred).

$$\Sigma \mathbf{u} := \Sigma_{\sigma}(D_P)$$

Construction of Σ_{AK}

Find m-gon of the smallest m and splice as follows (P has a 3-gon if 3≤ m Eliahou-Harary-Kauffman, 2008)

Notation 1. Σ_{AK} gives a sequence of splices $(\sigma_i)_{i=1}^{n(D)}$:

$$D = D_0 \stackrel{\sigma_1}{\to} D_1 \stackrel{\sigma_2}{\to} D_2 \stackrel{\sigma_3}{\to} \cdots \stackrel{\sigma_{n(D)}}{\to} D_{n(D)}$$

Each orientation of D_i is of σ_i . (= ori. S^- , S_{join}^- , T_{split} , T_{join}). It induces

$$CD_D = CD_0 \stackrel{\sigma_1}{\to} CD_1 \stackrel{\sigma_2}{\to} CD_2 \stackrel{\sigma_3}{\to} \cdots \stackrel{\sigma_{n(D)}}{\to} CD_{n(D)}.$$

 (CD_D) is a Gauss diagram of D; it will be defined.)

Notation 2.

• Oriented $T_{\rm split}$, $T_{\rm join}$. Seifert splices.

- Oriented RI⁻. 1st Reidemeister move.
- Oriented S^- , $S^-_{\rm join}$. Target orientation must be chosen.

Definition 1. Let D be a knot diagram whose projection is P. Then there is a generic immersion $g:S^1\to S^2$ such that $g(S^1)=P$. It is denoted by CD_D .

Property S⁻. The behavior of S^- in CD_D is as follows. (The difference of cyclic Gauss words is presented as:

$$cp_1p_2...p_{2i}cp_{2i+1}...p_{2n} \longrightarrow p_{2i}p_{2i-1}...p_1p_{2i+1}p_{2i+2}...p_{2n}.$$

e.g.

8b 5b

7b

8b 5b

Claim.

Suppose that $(\sigma_i)_{i=1}^{n(D)}$ satisfies $\sigma_1 = S^-$, $\sigma_2 =$ $T_{\rm split}$, and $\sigma_3=T_{\rm join}$. Then, the three chords in CD_D corresponding to σ_1 , σ_2 , and σ_3 are as in

Observation 1

Component-preserving successive "T T" should have a chord intersection.

Key Lemma. Let D be a prime (alternating or non-alternating) knot diagram with exactly n(D) (> 1) crossings with $\sigma_i \neq \mathrm{RI}^-$ ($\forall i$). Suppose that $\sigma_1 = S^-$ and that $(\sigma_i)_{i=2}^{n(D)}$ includes at least one T_{join} , S_{join}^- , or S^- .

Then it is possible to re-index the same set of splices as $(\sigma'_i)_{i=1}^{n(D)}$ such that $\sigma'_1 = S^-$ and $\sigma'_2 = S^-$, and $\sigma'_i \neq \mathrm{RI}^ (\forall i)$.

Key Lemma . Let D be a prime (alternating or non-alternating) knot diagram with exactly n(D) (> 1) crossings with $\sigma_i \neq \mathrm{RI}^-$ ($\forall i$). Suppose that $\sigma_1 = S^-$ and that $(\sigma_i)_{i=2}^{n(D)}$ includes at least one T_{join} , S_{join}^- , or S^- .

Then it is possible to re-index the same set of splices as $(\sigma'_i)_{i=1}^{n(D)}$ such that $\sigma'_1 = S^-$ and $\sigma'_2 = S^-$, and $\sigma'_i \neq \mathrm{RI}^ (\forall i)$.

Roughly speaking, suppose that AK-sequence starts from one S⁻. if "join" or more S⁻ appears in the seq., S⁻... \rightarrow S⁻ S⁻....by reordering.

Proof of Key Lemma

Case (1): $(\sigma_i)_{i=2}^{n(D)}$ includes at least one S^- or S^-_{join} . $S^-T\cdots TS^-\cdots$, or $S^-T\cdots TS^-_{\mathrm{join}}\cdots$. Moving σ_m (= S^- or S^-_{join}) to σ_2' ,

we obtain $S^-S^-\cdots$.

Observation 1'

Component-preserving pair "T S" should have a chord intersection.

Proof of Key Lemma

Case (2): $(\sigma_i)_{i=2}^{n(D)}$ includes no splice S^- and no splice S^-_{join} , but includes a splice T_{join} .

We have reordering:

$$S^-T_{\mathrm{split}}\cdots T_{\mathrm{split}}T_{\mathrm{join}}T\cdots T\to S^-T_{\mathrm{split}}T_{\mathrm{join}}T\cdots T.$$

Case: either (X) or (X') is included:

By property of S^- , reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^-S^-S^-...$

Case: there is no (X) and no (X'), but (Y) appears:

Observation 1

Component-preserving pair "T T" should have a chord intersection.

Proof of Key Lemma

Case (2): $(\sigma_i)_{i=2}^{n(D)}$ includes no splice S^- and no splice S^-_{join} , but includes a splice T_{join} .

We have reordering:

$$S^-T_{\mathrm{split}}\cdots T_{\mathrm{split}}T_{\mathrm{join}}T\cdots T\to S^-T_{\mathrm{split}}T_{\mathrm{join}}T\cdots T.$$

Case: either (X) or (X') is included:

By property of S^- , reordering $123 \to 231$ or 321 obtains a sequence $S^-S^-S^-$... It's the highest point of the proof, we'll go to the next slide!

Case: there is no (X) and no (X'), but (Y) appears:

Reordering: 123 —> 321 or 231

Proof of Key Lemma

Case (2): $(\sigma_i)_{i=2}^{n(D)}$ includes no splice S^- and no splice S^-_{join} , but includes a splice T_{join} .

We have reordering:

$$S^-T_{\text{split}}\cdots T_{\text{split}}T_{\text{join}}T\cdots T\to S^-T_{\text{split}}T_{\text{join}}T\cdots T.$$

Case: either (X) or (X') is included:

By property of S^- , reordering $123 \to 231$ or 321 obtains a sequence $S^-S^-S^-$... It's the highest point of the proof, we'll go to the next slide!

Case: there is no (X) and no (X'), but (Y) appears:

Proof of Key Lemma

Case (2): $(\sigma_i)_{i=2}^{n(D)}$ includes no splice S^- and no splice S^-_{join} , but includes a splice T_{join} .

We have reordering:

$$S^-T_{\rm split}\cdots T_{\rm split}T_{\rm join}T\cdots T\to S^-T_{\rm split}T_{\rm join}T\cdots T.$$

Case: either (X) or (X') is included:

By property of S^- , reordering $123 \rightarrow 231$ or 321 obtains a sequence $S^-S^-S^-...$

Case: there is no (X) and no (X'), but (Y) appears:

By primeness, (X) should be included \rightarrow contradiction.

Applying Key Lemma the sequence of splices repeatedly, we have:

$$S^- \cdots S^- T_{\text{split}} \cdots T_{\text{split}}$$

from Σ_{AK} .

Here, in this seq., every $T_{\rm split}$ splits a monogon since there is no chord intersection after $S^-S^-\dots S^-$ applies.

Observation 1"

Any component-preserving pair "T X" should have a chord intersection.

Finalizing Proof of Main Result 1 (lower bound)

Case Σ_{AK} is a non-orientable surface with the maximal Euler characteristic χ . (Note: the seq. has S^- ; any $\sigma_i \neq \mathrm{RI}^-$.) Thus, by **Key Lemma**, this seq. realizes $u^-(D)$ by reordering.

$$S^-S^- \dots S^-T_{\text{split}}T_{\text{split}} \dots T_{\text{split}}$$

The reordering process implies Observation 2.

Observation 2. Each reordering may cause:

$$T_{\mathrm{split}}, T_{\mathrm{join}} \leftrightarrow S^{-}, S^{-}$$
 or $T_{\mathrm{split}}, S_{\mathrm{join}}^{-} \leftrightarrow S^{-}, S^{-}$.

Thus,

$$1 - u^{-}(D) = 1 - \sharp \{S^{-} \text{in seq.}\}$$

$$= 1 - 2 \sharp T_{\text{join}} - 2 \sharp S_{\text{join}}^{-} - \sharp S^{-}$$

$$= 1 + (\sharp T_{\text{split}} - \sharp T_{\text{join}} - \sharp S_{\text{join}}^{-}) - n(D)$$

$$= \chi(\Sigma_{AK}) = 1 - C(K).$$

Finalizing Proof of Main Result 1 (lower bound)

Case Σ_{AK} is a **orientable** surface with the maximal Euler characteristic. **Note**: $2g(K) < C(K) \Leftrightarrow C(K) = 2g(K) + 1$. It **returns to the non-orientable case** since χ (= 1 - 2g(K)) is changed into 1 - (2g(K) + 1) (= 1 - C(K)) by the replacement:

Then for any prime alternating knot diagram D,

$$u^{-}(K) \le \min_{D} u^{-}(D) = C(K).$$

Recalling that $C(K) \leq u^{-}(K)$, it completes the proof.

Ito-Takimura, 2018, arXiv: 2008.11061

By the argument of this proof, we have:

Main Result 2 [Takimura-I. IJM2020]

For any knot K, if there exists a state realizing the maximal Euler characteristic,

$$u^{-}(K) = C(K).$$

Next target

- Categorification of C(K). Can we relate sl(2) homology to crosscap? (cf. HFK determines orientable genera.)
 Comment by Prof. J.S Carter.
- Can we have more volume bounds?

Thank you for your attention!

文献など(敬称略)

Clark (1978) 定義の導入とC(K)=1の決定 [IJMS]

<80年代に Hatcher-Thurston [Invent. Math, 1985] Hacher-Oertel [Topology, 1989] >

村上斉-安原 (1995) 加法性が成り立つ必要十分条件 (特にC(K)=2g(K)+1のKにおいては加法性が崩れる) [PJM]

別所 (1996) 結び目補空間によるクロスキャップの計算およびC(K)=2g(K)+1の無限列 [阪大修士論文]

寺垣内 (2004) torus knot のcrosscap numberの決定 [Topology Appl.]

寺垣内-平澤 (2006) 2-bridge knotのcrosscap numberの決定 [Topology]

市原-水嶋 (2006) many pretzel knot のcrosscap number の決定 [Topology Appl.]

小沢 (2011) state surfaceの導入 [J. Aust. Math.Soc.]

Adams-Kindred (2013) alternating knotのcrosscap numberの理論的な決定 [AGT]

Kalfagianni-Lee (2016) (colored) Jones polynomialとの関係 [Advanced Math]

Takimura-I. (2018) u-(P)の導入, crosscap two alternating knotsの決定[IJM] (cf. 2016, Ichihara-Masai [CAG])

Takimura-I. (2019) crosscap n alternating knots via band surgery [JKTR]

Kindred (2020) crosscap n alternating knots by splice-unknotting number Takimura-I. u- and fylpes [IJM]

Takimura-I. (2020) crosscap n alternating knots by u- and Jones polynomial [IJM]