A study of finite type invariants of higher-orders of classical and virtual knots

Noboru Ito (NIT, Ibaraki College) arXiv:2004.14785 J.w.w. Migiwa Sakurai (Shibaura U.)

MSCS Quantum Topology Seminar November 19 (part 2), 2020

3 filtrations of vector spaces

Vassiliev

$$V_1 \supset V_2 \supset \cdots \supset V_n \supset \cdots$$

GPV
$$GPV_1 \supset GPV_2 \supset \cdots \supset GPV_n \supset \cdots$$

Sakurai-I.
$$F_1\supset F_2\supset\cdots\supset F_n\supset\cdots$$

Vassiliev

$$V_1 \supset V_2 \supset \cdots \supset V_n \supset \cdots$$

$$GPV_1\supset GPV_2\supset\cdots\supset GPV_n\supset\cdots$$

$$F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots$$

$$V_1\supset V_2\supset\cdots\supset V_n\supset\cdots$$

Sakurai-I.
$$F_1\supset F_2\supset\cdots\supset F_n\supset\cdots$$

Vassiliev
$$V_1\supset V_2\supset\cdots\supset V_n\supset\cdots$$
 GIV Canonical extension 9

$$GPV_1\supset GPV_2\supset\cdots\supset GPV_n\supset\cdots$$

Sakurai-I.
$$F_1\supset F_2\supset\cdots\supset F_n\supset\cdots$$

Virtual unknotting operations give us 2 kinds of filtrations of finite dim.-vector spaces:

$$GPV_1\supset GPV_2\supset\cdots\supset GPV_n\supset\cdots$$

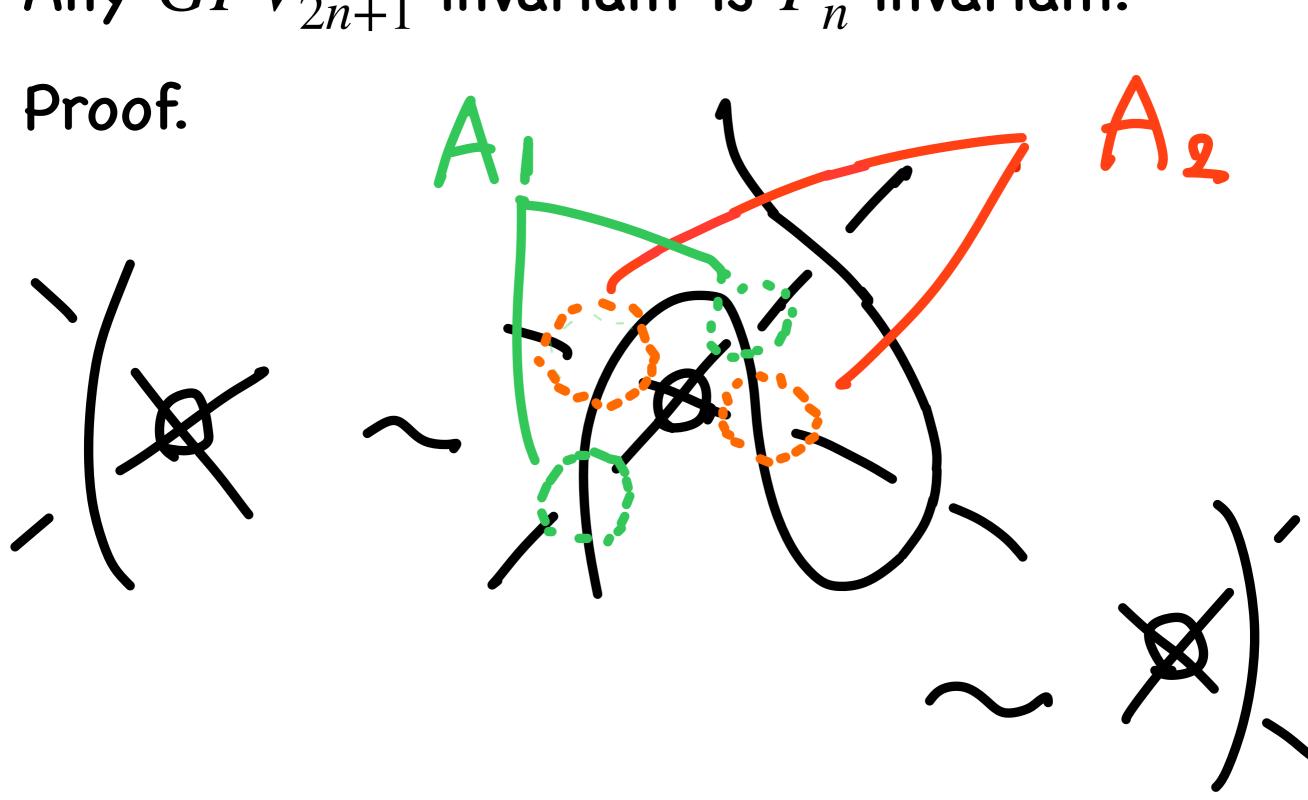
Sakurai-I.
$$F_1\supset F_2\supset\cdots\supset F_n\supset\cdots$$

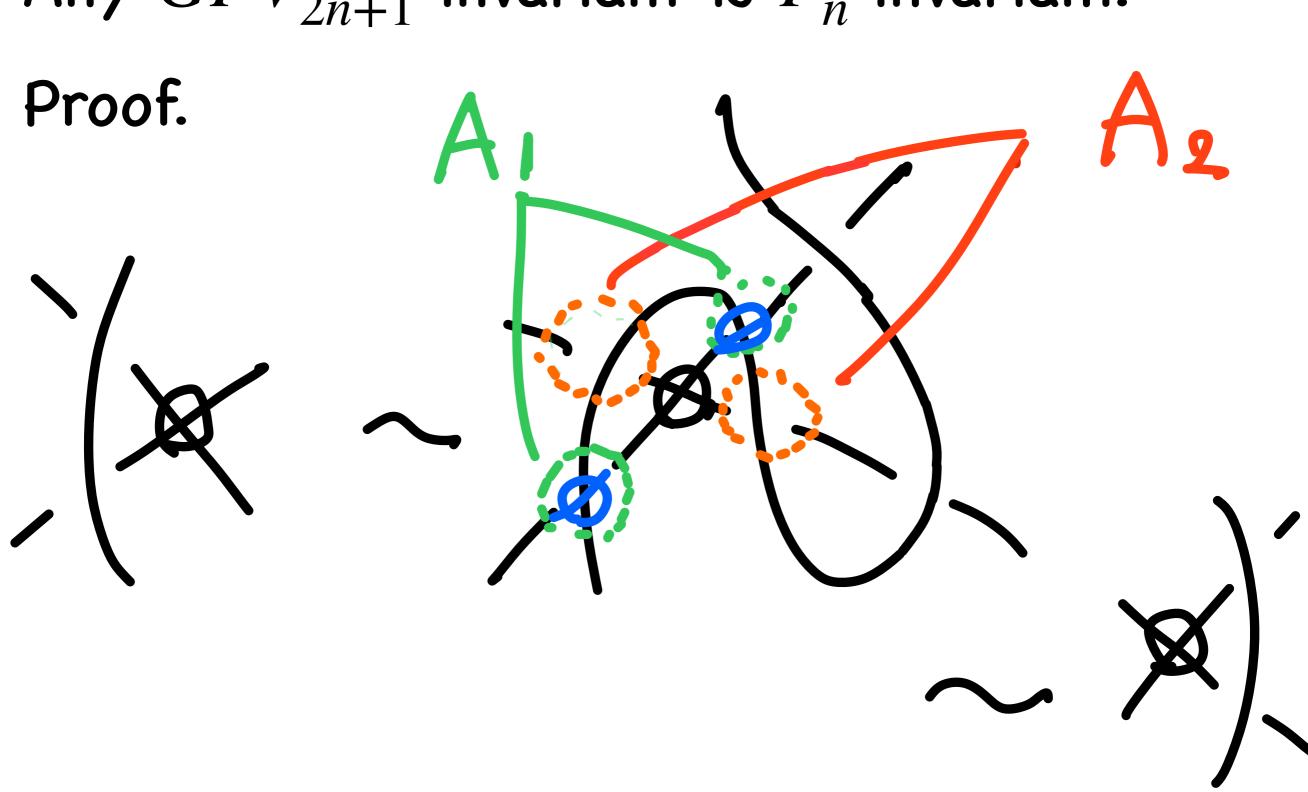
All invariants ${\cal F}_{n+1}$ are strictly stronger than those of ${\cal F}_n$.

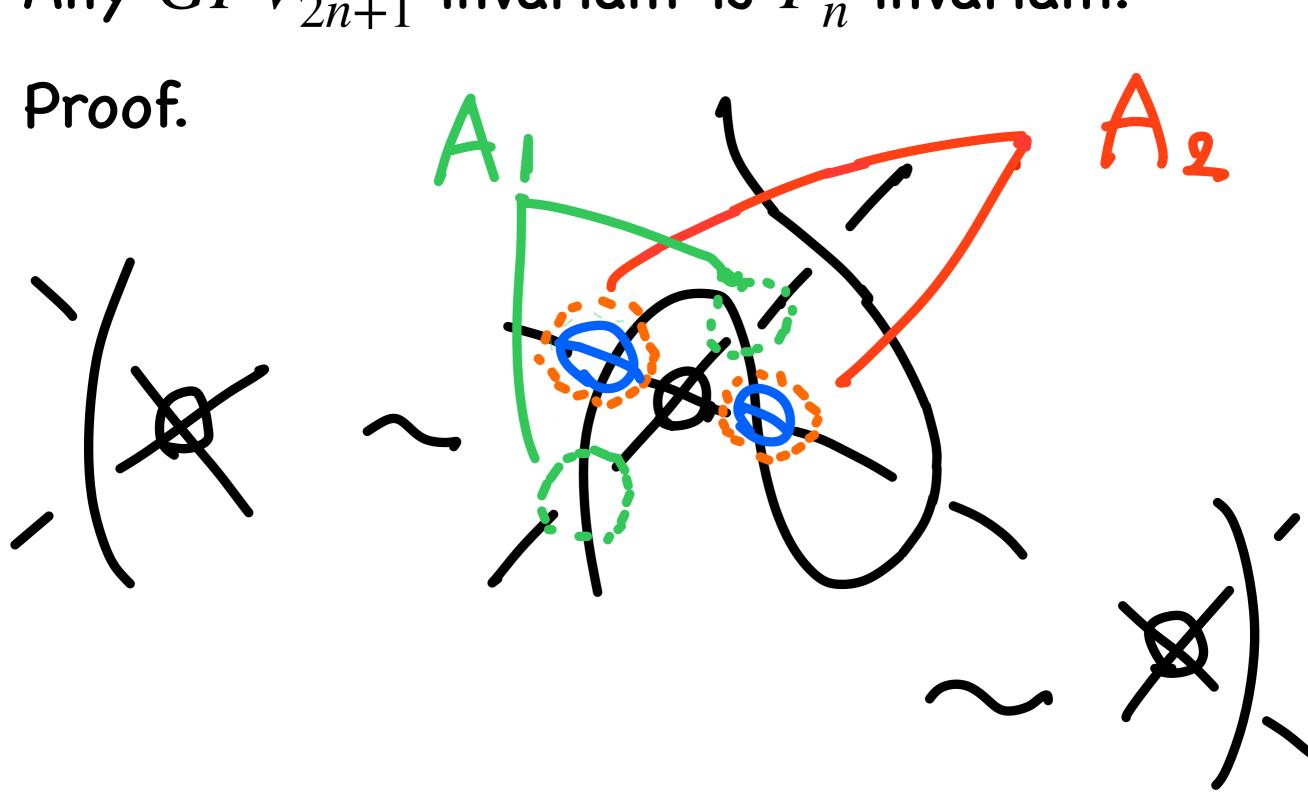
All invariants ${\cal F}_{n+1}$ are strictly stronger than those of ${\cal F}_n$.

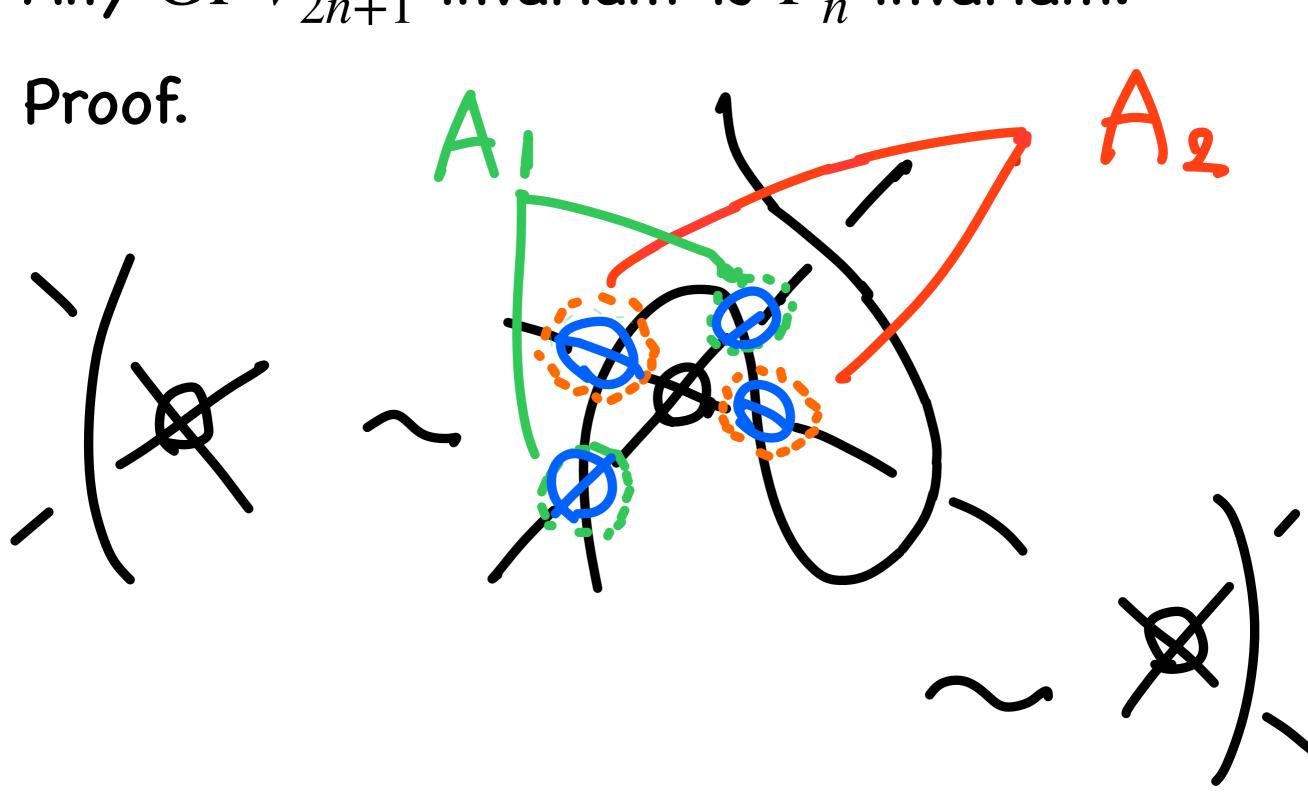
Question. How to estimate the difference between GPV_i and F_i ?

All invariants F_{n+1} are strictly stronger than those of GPV_{2n+1} .









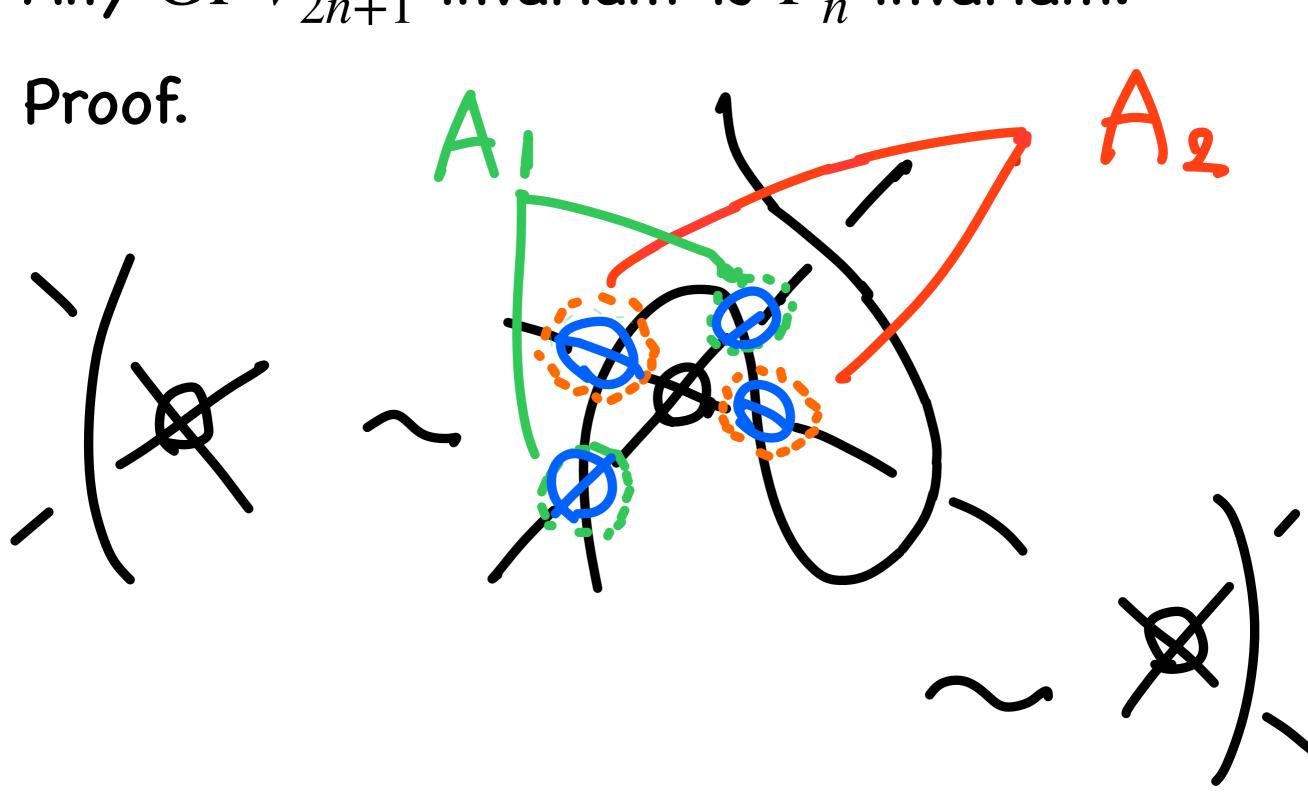
Any GPV_{2n+1} invariant is F_n invariant.

Under Proof.

Any GPV_{2n+1} invariant is F_n invariant.

Proof.

$$v_{2n+1}^{GPV}(D_{n+1}^{\text{triple}}) = \sum v_{2n+1}^{GPV}(D_{2(n+1)}^{\text{semi-virtual}}) = 0. \square$$



All invariants ${\cal F}_{n+1}$ are strictly stronger than those of ${\cal F}_n$.

Proof.

Let c_{2n} be the coefficient of degree 2n of Conway polynomial. Then, $c_{2n} \in GPV_{2n}$.

We will prove $c_{2n} \in GPV_{2n} \backslash GPV_{2n-1}$.

Let $\lambda_i^{(2m)}$ be a coefficient. By $GPV_{2n} \subset F_n$, we have a presentation:

$$c_{2m} = \lambda_m^{(2m)} v_m^F + \sum_{i < m-1} \lambda_i^{(2m)} v_i^F.$$

In particular,

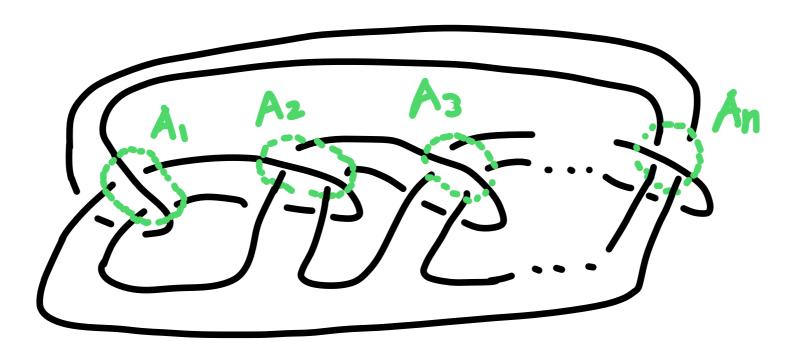
$$c_{2n+2} = \lambda_{n+1}^{(2n+2)} v_{n+1}^F + \sum_{i \le n} \lambda_i^{(2n+2)} v_i^F.$$

Suppose that $\lambda^{(2i)} \neq 0 \ (i \leq n)$.

Then,

$$c_{2n+2} = \lambda_{n+1}^{(2n+2)} v_{n+1}^F + \sum_{i \le n} \mu_i c_{2i} \ (\mu_i \ne 0) \ .$$

If $\lambda_{n+1}^{(2n+2)}=0$, for K_{2n+2} , the above is zero, whereas $c_{2n+2}(K_{2n+2})=-2$, which implies the contradiction.



Then, for
$$c_{2m}=\lambda_m^{(2m)}v_m^F+\sum_{i\leq m-1}\lambda_i^{(2m)}v_i^F$$
,

If
$$\lambda_i^{2i} \neq 0$$
 $(i \leq n)$, then $\lambda_{n+1}^{2(n+1)} \neq 0$. (Thus, induction works.)

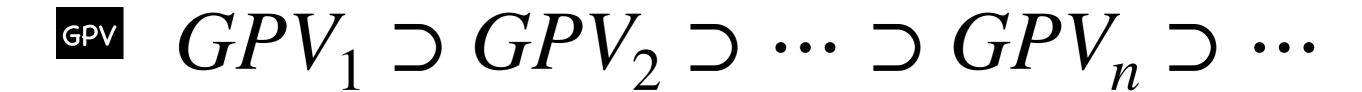
It implies
$$c_{2n} \in F_n \backslash F_{n-1}$$
. \square

Corollary (Sakurai-I.) from the proof and Theorem A. All invariants GPV_{2n+2} are strictly stronger than those of GPV_{2n} .

For example, each coefficient of the Conway polynomials of knots is in GPV_{2n} .

Results for higher-order

- Any GPV_{2n+1} invariant is F_n invariant.
- \cdot All invariants F_{n+1} are strictly stronger
- than those of F_n .
 - \cdot All invariants GPV_{2n+2} are strictly stronger
- than those of GPV_{2n} .



Sakurai-I.
$$F_1\supset F_2\supset\cdots\supset F_n\supset\cdots$$

Thank you for your attention!

- Any GPV_{2n+1} invariant is F_n invariant.
- \cdot All invariants F_{n+1} are strictly stronger
- than those of F_n .
 - \cdot All invariants GPV_{2n+2} are strictly stronger
- than those of GPV_{2n} .