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A numerical knot diagram invariant
extends to knots in the codimension
one stratum by the formula:

V(K) = v(K}) = v(K_)
where K_, K_ are created by
resolving projection-degenerate knot
(= non projection-generic knot)
in positive respectively negative
direction.



Revisiting Vassiliev invariant

The invariant v is said to be of
finite degree if there is a

number 7 such that v(K) =0

whenever K has more than n 1-
degenerate germs. The smallest

such n is the degree of v.



Def (projection-degenerate germs)
[Ostlund PhD thesis, 2001]

(,: standard cusp; the first derivative

of a projection of a knot vanishes,
while 2nd and 34 derivatives are _~/
linearly independent,

(2,: double point with first order self
tangency X

(2;: triple point with pairwise
transversal crossings %



Ostlund wrote: “the concept of degree can be
refined by considering the different types”

A knot diagram invariant of
finite degree 7 in . (i = 1,2,3)
if it takes value zero on any
projection-degenerate knot with

more than n l1-degenerate
germs of €2.



Theorem (Ostlund PhD thesis, 2001)

Let v be a knot diagram invariant that
is unchanged under (2,- and {2;-moves,

and of finite degree in (2,. Then v is a
knot invariant.



Ostlund’s Theorem (Theorem 6 in thesis)

Let v be a knot diagram invariant that
is unchanged under (2,- and {2;-moves,

and of finite degree in (2,. Then v is a
knot invariant.

In the view of finite degree
invariants, {2,-move is superfluous.



If a non-trivial invariant that jumps

only under £2,-moves is found, ..

... It disproves the knot diagram
counterpart of Vassilievs conjecture
for finite degree invariants of knots.



Ostlund’s Question

Whether all self-tangency moves of
plane curves can be replaced by cusp-
and triple point moves is a different
question: The author knows of no
potential counterexample to this
statement.



Can knot diagram invariants based on
state sum models distinguish path-

components of 7\ {knots with projection
self-tangency}?

(So far, all such “"quantum” invariants of
knots and plane curves has been showed
to be expressible in invariants of finite
degree.)



Let’s search for non-trivial
knot projection under RI and RIII !


















By applying T(2), we have (>¢):
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Non-trivial curve given by
Hagge-Yazinski (arXiv: 0812.1241)




There exists a knot diagram of the unknot that needs
RIl to be transformed into the trivial as follows:
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Py can be generalized:
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Invariant of knot projections under RI and RIIL.

Def (Takimura-I. arXiv:2010.10793).
The RII number is the minimum
number of deformations of negative
RII in sequences to obtain the
standard embedding of the circle
from a knot projection.



Theorem (Takimura-I1. Kobe J. M. in Press now,
arXiv:2010.10793)

RII(P(m,n)) = m for the following:
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RII(P(m, n)) > 1.

The number of intersections between “string 1” and
“string 2” are unchanged under RI and RIII
(completely) including Box.
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Polygon has at least four sides.



The number of intersections between “string 1”
and “string 2” are unchanged under Rl and RII|

(completely) including Box.
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For positive RI not within Box,
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For negative RI not within Box,
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String 1 or 2 has at least two crossings.

String 3 connects string 1 or 2.
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If there is a 1-gon not within Box,

box o) : %) box RI |

which implies
contradiction.




RIII not within a box




Part of 3-gon



Possible two cases:
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Sketch of Proof: RII(P(m,n)) > 1.

Induction of the number of RI and RIII. Assumption
of induction implies:
1.RI and RIII within Box — Least Intersections hold.

2. Positive RI not within Box — Retaking Box.

Negative RI not within Box — Non Existence.

RIII not within Box — Retaking Box.




Generalize RII(P(m,n)) > 1 to RII(P(m,n)) > m.

Lemma. P(m,n) = Qy = O = - = 0,

consists of a single negative RII, some RIs, RIIIs.
If O, is negative RII, Q. (0 < i < k) preserves
(m, n) box property and Q. (k+ 1 <i <)

preserves (m — 1, n) box property.



Box Property

The number of intersections between “string 1” and
“string 2” are unchanged under RI and RIII
(completely) including Box.

e
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Polygon has at least four sides.



Theorem (Takimura-I1. Kobe J. M. in Press now,
arXiv:2010.10793)

RII(P(m,n)) = m for the following:
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Generalize RII(P(m,n)) > 1 to RII(P(m,n)) > m.

Lemma. P(m,n) = Qy— Q; — - = 0,

consists of a single negative RII, some RIs, RIIIs.
If O, is negative RII, Q. (0 < i < k) preserves
(m, n) box property and Q; (k+ 1 <i <)

preserves (m — 1, n) box property.

_, Case RII is within a box

Case RII is not within a box
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retaking a box



RII(P(m,n)) < m.

We can find a concrete path by
at most m negative RII-moves.



Moves T(2k-1) and T(2k) by Rl and RIII
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T(2i-1) from T(2i-2)
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Tangle presentation
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Moves T(2k-1) and T(2k) by Rl and RIII
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Tangle presentation
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Finally,

OCr

Thus, RII(P(m,n)) < m.
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We found example of 15 crossings.
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What is an n-crossing

example with n less than 157
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Thank you for your attention!
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