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Abstract. Every knot projection is simplified to the trivial spherical curve
not increasing double points by using deformations of types 1, 2, and 3 anal-

ogously to Reidemeister moves of types 1, 2, and 3 on knot diagrams. We
introduce RII number of a knot projection that is the minimum number of
deformations of negative type 2 among such sequences. By definition, it is
invariant under deformations of types 1 and 3. This is motivated by Östlund

conjecture: Deformations of type 1 and 3 are sufficient to describe a homo-
topy from any generic immersion of a circle in a two dimensional plane to an
embedding of the circle (2001), which implies RII number always would be
zero. However, Hagge and Yazinski disproved the conjecture by showing the

first counterexample with 16 double points, which implies that RII number is
nontrivial. This paper shows that RII number can be any nonnegative number.

1. Introduction

A knot projection is the image of a generic immersion of a circle into the 2-sphere.
Two knot projections are identified by ambient isotopy. Any self-intersection of a
knot projection is a transverse double point and is simply called a double point. The
trivial spherical curve is a knot projection with no double points. Deformations of
types 1, 2, and 3 are local replacements defined in Fig. 1. This deformations are

Figure 1. Deformations of types 1, 2, and 3

analogously to Reidemeistar moves of knot diagrams. Every knot projection is
related to the trivial spherical curve by a finite sequence of deformations of types
1, 2, and 3.

In 2001 [7], Östlund conjectured the following:

Östlund Conjecture. Deformations of types 1 and 3 are sufficient to obtain a
homotopy from any generic immersion S1 → R2 to an embedding.

In 2014, Hagge and Yazinski [2] disproved this conjecture as follows:
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Hagge-Yazinski Theorem. For PHY that appears as Fig. 2, there is no finite
deformations of types 1 and 3 from PHY to the trivial spherical curve up to ambient
isotopies.

Figure 2. Hagge-Yazinski’s example PHY having 16 double points

In 2016, in [4], the authors obtain a generalization of the Hagge-Yazinski Theo-
rem, that is, we show that there exists an infinite family of knot projections, which
are counterexamples of the Östlund Conjecture for any n double points (n ≥ 15, for
15 double points, see Fig. 3), including P (l, m, n) [4, Remark 1, Page 28, Fig. 13].
Throughout of this paper, let P (m,n) = P (1,m, n) (Fig. 4).

Figure 3. Our example having 15 double points

By experts, Fact 1 is known fact [6, Page 171].

Fact 1 ([6]). Every knot projection is related to the trivial spherical curve by a
finite sequence of deformations of types 1, 2, and 3 not increasing double points.

We define that a deformation of type 2 decreasing double points is of negative
type 2. In this paper, for a given knot projection P , we introduce RII number that is
the minimum number of deformations of negative type 2 among sequences, each of
which consists of deformations of type 1, negative type 2, and type 3. This number
is denoted by RII(P ). By definition, Östlund conjecture implies RII number always
would be zero. Hagge-Yazinski Theorem implies that RII number is nontrivial. In
contrast to them, we have Theorem 1. It is easy to see that there exists a knot
projection P such that RII(P ) = 0. This fact together with Theorem 1 implies that
RII number can be any nonnegative number.

Two knot projections are (1, 3) homotopic if they are related by finite deforma-
tions of types 1 and 3 and ambient isotopies. The relation becomes an equivalence
relation and is called (1, 3) homotopy.
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Theorem 1. Let P be a knot projection. The number RII(P ) is an invariant under
(1, 3) homotopy. For positive integers m ≥ 1, and n ≥ 4, let P (m,n) be a knot
projection, as in Fig. 4. Then, RII(P (m,n)) = m for any (m,n).

…

…

Figure 4. P (m,n). Note that P (1, 4) = PHY .

For a proof of Theorem 1, see Section 3.

2. Preliminaries

Definition 1 (RII number RII(P )). Let P be a knot projection. The RII number is
the minimum number of deformations of negative type 2 among sequences, each of
which consists of deformations of type 1, negative type 2, and type 3. The number
is denoted by RII(P ).

Definition 2 ((3, 3)-tangle). An unoriented (3, 3)-tangle is the image of a generic
immersion of 3 arcs into [0, 1] × [0, 1] such that:

• The boundary points of the arcs map bijectively to 6 points{
1
4
,
2
4
,
3
4

}
× {1},

{
1
4
,
2
4
,
3
4

}
× {0}.

• Near the endpoints, the arcs are perpendicular to the boundary [0, 1].
In a (3, 3)-tangle, we call an image of the map of a single arc a strand.

Definition 3. Let P be a knot projection and F the closure of a connected com-
ponent in S2 \ P . Let n be a positive integer. Suppose that the double points of
P that lie on ∂F are removed, the reminder consists of n connected components,
each of which is homeomorphic to an open interval. Then, ∂F is called an n-gon.
When we do not specify n, an n-gon is called a polygon.

Notation 1 ([1]). Let P and P ′ be two knot projections that are equivalent under
deformations of type 1 and type 3, i.e., there exists a finite sequence of knot projec-
tions P = P0, P1, . . . , Pm = P ′, where Pi is obtained from Pi−1 by a deformation
of type 1 or type 3. Then, Opi denotes the deformation from Pi−1 to Pi, and the
setting are expressed by using the notation:

P = P0
Op1→ P1

Op2→ · · · Opm→ Pm = P ′.
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3. Proof of Theorem 1

Before starting the proof, we explain our plan of the proof.
• We show that RII(P ) is invariant under (1, 3) homotopy.
• We show that P (m,n) ≥ m. Most of the part is obtained from a similar

proof of Hagge-Yazinski Theorem [2] or [4]. Therefore, a reader who is
familiar to [2] can skip this part except for Section 3.6. Since it is elementary
to prove it, we prove it here. We use the terminology used in [2].

• We show that P (m,n) ≤ m. We introduce new techniques and show this
part.

• Proof of the invariance of RII(P ). Suppose that arbitrary two knot projections
P and P ′ are (1, 3) homotopic. Let m = RII(P ′), hence, there exists a sequence of
deformations consisting of deformations of type 1, negative type 2, or type 3, and it
contains exactly m deformations of negative type 2. By combining the deformations
from P and P ′, and P ′ to the trivial spherical curve, we obtain a sequence from
P to the trivial spherical curve which contains exactly m deformities of negative
type 2. This shows that RII(P ) ≤ RII(P ′). Since the argument is symmetric, we
see that RII(P ) ≥ RII(P ′) holds, too. Hence, RII(P ) = RII(P ′).

3.1. Proof of P (m,n) ≥ 1. For any P (m,n), there exist 2n boxes such that the
intersections of P (m,n) and 2n boxes are (3, 3)-tangles, and arcs with no double
points outside the boxes (Figs. 4 and 5). Each box is equivalent to [0, 1] × [0, 1]
corresponding to a (3, 3)-tangle. For example, for the case m = 1 and n = 4, 8
boxes are shown in Fig. 5. Each P (m,n) satisfies the following two conditions:

Figure 5. P (1, 4) with boxes (left), strands 1, 2, and 3 (right)

(1) No double points are placed outside the boxes. Three arcs connect two
adjacent boxes concentrically. There exist exactly two polygons, each of
which has at least n sides partially outside boxes.

(2) If we fix our gazing direction from infinity, which is selected as shown Figs. 4
and 5, we define the left-side and right-side of each box. In each box,
strand 1 (2, resp. ) is a strand that begins and ends on the left-side (right-
side, resp.). In each box, strand 3 has one endpoint on the left-side and
another endpoint the right-side. There exists a pair of strand 1 and strand
2; for each pair, strand 1 and strand 2 intersect at exactly 2m double points.
Strand 1 of a pair cannot intersect strand 2 belonging to a different pair.

Let m and n be positive integers (m ≥ 1, n ≥ 4). In general, for a knot projection
Q, we say that Q satisfies (2m, 2n) box property if there exist 2n boxes Bi (1 ≤ i ≤
2n) in S2, as shown in Fig. 6, satisfying the following (A) and (B).
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(A) There exist no double points of Q in S2 \ (B1 ∪B2 ∪ . . . B2n), and Q∩ (S2 \
(B1 ∪ B2 ∪ . . . B2n)) consists of 3 × 2n simple arcs as in Fig. 6.

Figure 6. Boxes B1, B2, . . . , B2n

(B) For each i (1 ≤ i ≤ 2n), Q ∩Bi is a (3, 3)-tangle that is the union of three
immersed arcs. Then it satisfies the following condition.

Figure 7. Types (a) and (b)

• If i is an odd (even, resp.), the endpoints of the three arcs are located
on ∂Bi as in Fig. 7 (a) ((b), resp.), where we name the immersed arcs
1, 2, 3 as in Fig. 7 (a) ((b), resp.). Further, there exist at least 2m
double points formed by a subarc of 1, and a subarc of 2.

• Proof of RII(P (m,n)) ≥ 1. We consider an inductive proof with respect to the
number of deformations, type 1 or 3, applied to P (m,n). This induction proves
Claim 1, which implies that P (m,n) cannot be (1, 3) homotopic to the trivial
spherical curve; that is, RII(P (m,n)) ≥ 1. Recall Notation 1.

Claim 1. Let Q be a knot projection satisfying a (2m, 2n) box property. Then, for
each sequence of knot projections.

Q = Q0
Op1→ Q1

Op2→ · · · Opr→ Qr

such that each Opi (1 ≤ i ≤ r) is of type 1 or 3, we have:
by retaking the boxes if necessary, each Qi (0 ≤ i ≤ r − 1) satisfies (2m, 2n) box

property.

First, for Q0, it is clear that Claim 1 holds. Second, we suppose that Claim 1
holds for Qr−1 and prove it Qr.
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3.2. On a deformation of type 1 or type 3 occurring within a box. Suppose
that the Opr is a single deformation (type 1 or type 3) occurring entirely within a
box. This deformation fixes the endpoints of the strands, and thus Claim 1 holds.

3.3. On a deformation of type 1 not occurring within a box and increasing
double points. Suppose that Opr is a single deformation of type 1 increasing
double points. If the new 1-gon produced by Opr is outside the boxes, by retaking
the box by a sphere isotopy, as shown in Fig. 8, Opr is entirely within a box.
If the new 1-gon produced by Opr is not completely outside the boxes, a similar
modification works to retake the box.

Figure 8. Retaking a box

3.4. On a deformation of type 1 not occurring within a box and decreas-
ing double points. Suppose that the Opr does not occur within a box. Since
Opr is a deformation of type 1 decreasing double points, there exists a 1-gon to be
removed in Qr−1. The two possibilities of appearing of a 1-gon are considered as
follows.

• Suppose that the 1-gon contains a region having one side, as shown in
Fig. 9. By the induction assumption of Pr−1, the region has at least four
sides, which is a contradiction.

• Suppose that there exists the 1-gon containing a region having two sides
outside the boxes, as shown in Fig. 10. If one of the two sides is directly

Figure 9. A region having one side in S2 \ (B1 ∪ B2 ∪ . . . B2n)
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Figure 10. Each of endpoints (1), (2), (3), and (4) connects to
strand 1, 2, or 3.

connected to either strand 1 or 2, then the 1-gon has at least two double
points, which is a contradiction (there is no 1-gon with two double points).
If one of the two sides is directly connected to strand 3 that is connected
strand 1 or 2 in the adjacent box, then this also implies a contradiction
which is similar to the case above.

3.5. On a deformation of type 3 not occurring within a box. If Opr is a
single deformation of type 3, we focus on the 3-gon Tr−1 in Qr−1 with respect to
the single deformation of type 3, as shown in Fig. 11.

• Suppose that Tr−1 contains a region having one side, as shown in Fig. 9.
By the induction assumption of Qr−1, the region has at least four sides,
which is a contradiction.

Figure 11. 3-gon Tr−1 in Qr−1 with respect to a single deforma-
tion of type 3

• Suppose that Tr−1 contains a region having two sides outside the boxes, as
shown in Fig. 12.

Figure 12. A region surrounded by the 3-gon Tr−1 appearing in Qr−1
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(1) Suppose that Tr−1 does not have at least one double point inside a
box. There is an arc inside a box, as shown in Fig. 13, which starts
and ends on the same side. Then, by the induction assumption of

Figure 13. Impossible case

Qr−1, the arc should be either subsrc 1 or 2, which is a contradiction
because an arc has no intersection whereas both subarcs 1 and 2 have
intersections.

(2) Suppose that Tr−1 has at least one double point in a box. By the
induction assumption, there is no double point outside the boxes for
Qr−1. Thus, if Tr−1 is not inside a box, there are exactly two cases.

(a) Case 1. A double point of Tr−1 is inside a box and the other
two double points of Tr−1 are in another box, as shown in the
left figure of Fig. 14.

(b) Case 2. The three double points of Tr−1 are in three different
boxes, respectively, as shown in the right figure of Fig. 14.

Figure 14. Case 1 (left) and Case 2 (right)

As a result, for Case 1 (Case 2, resp.), by a sphere isotopy, by retaking
one box (two boxes, resp.), as shown in Fig. 15, Tr−1 is contained
entirely within a box.

This completes the proof of RII(P (m,n)) ≥ 1.

3.6. Proof of RII(P (m, n)) ≥ m. Recall Claim 1. By the argument of the above
proof of Claim 1, we have Lemma 1.
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Figure 15. Retaking box(es) for Case 1 (upper) and Case 2 (lower)

Lemma 1. Let k be an integer (0 ≤ k ≤ r). Let Q0 = P (m,n) and Qk be the knot
projection obtained from P (m,n) by Opk using Notation 1:

P (m,n) = Q0
Op1→ Q1

Op2→ · · · Opr→ Qr,

where the sequence consists of a single deformation of negative type 2 and defor-
mations of type 1 and 3. Suppose that Opk+1 is a deformation of negative type 2
within a box.

Then, we have two following statements.
(1) Each of {Q0, Q1, . . . , Qk} preserves (2m, 2n) box property.
(2) Qk+1 satisfies (2m − 2, 2n) box property.
(3) Each of {Qk+2, Qk+3, . . . , Qr} preserves (2m − 2, 2n) box property.

Proof. (1) ((3), resp.) By using the argument of the proof of Claim 1, we may
suppose that every Opj (j 6= k + 1) is a deformation of type 1 or 3 within a
box by retaking boxes. Since Opj of type 1 or 3 within a box preserve (2m, 2n)
((2m − 2, 2n), resp.) box property, the statement (1) ((3), resp.) holds.
(2) The deformation of negative type 2 decreases or preserve double points formed
by a subarc of 1 and a subarc of 2. It implies the statement (2). �

Lemma 1 immediately implies RII(P (m,n)) ≥ m.

3.7. Proof of P (m,n) ≤ m. We prepare Lemma 2.

Lemma 2. Let k be a positive integer. Each of replacements T (2k − 1) and T (2k)
as in Fig. 16 is always possible under (1, 3) homotopy.

Proof. The statement holds in the induction with respect to k for T (2k) and T (2k−
1).

• Case k = 1: for T (1), the statement is clear. T (2) holds as in Fig. 17.
• Case k = i: Suppose that T (2i − 2) is a possible local replacement under

(1, 3) homotopy. In this case, T (2i − 1) holds, which also implies T (2i).
See Fig. 18.

It completes the induction step. �
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Figure 16. Definitions of T (2k − 1) and T (2k)

Figure 17. T (2)

• Proof of RII(P (m,n)) ≤ m. By applying m deformations of negative type 2 to
a (3, 3)-tangle corresponding to a box and a (1, 3) homotopy, we may suppose
that there is no double point within the box. Then, we apply T (2m) 2m times
decreasing double points to erase each single box as in Fig. 19.

Finally, we apply m deformations of type 1 as in Fig. 20.
�

Remark 1. The operation T (n) (n ∈ Z>0) of Lemma 2 corresponds to a generaliza-
tion of a type of an edge of a complex [1] or the operation α [3].

4. Applications

4.1. Every pretzel knot projection is (1, 3) homotopic to the trivial spher-
ical curve.

Notation 2. A part consisting of m double points of a knot projection as in Fig. 4,
it is called a twist.
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Figure 18. An inductive argument of T (2i − 1) and T (2i)

Proposition 1. Every pretzel knot projection as in Fig. 21 is (1, 3) homotopic to
the trivial spherical curve.



12 NOBORU ITO AND YUSUKE TAKIMURA

…

…=

Figure 19. Applications of Lemma 2

Figure 20. 2m deformations of type 1

Let P (a1, a2, . . . , an) be a knot projection as in Fig. 21, where each ai presents
double points of a twist (1 ≤ i ≤ n).

Figure 21. Pretzel knot projection P (a1, a2, . . . , an)

It is sufficient to consider the two cases.
• Case 1: for each i, ai are odd double points and n is an odd positive number.
• Case 2: a1 are even double points and for i 6= 1, ai are odd double points.

It is easy to see that every (2, 2p + 1)-torus knot projection (p ∈ N), as shown
in Fig. 22, is (1, 3) homotopic to the trivial spherical curve by applying T (2p + 1)
and applying deformations of type 1 decreasing double points.

For Case 1, we apply T (ai) to each twist, and we have a (2, 2p + 1)-torus knot
projection where 2p+1 =

∑n
i=1 ai. For Case 2, since ai (i 6= 1) is an odd number, we

apply T (ai) to each twist corresponding to ai double points (i 6= 1), and apply T (a1)
(
∑n

i=2 ai times) to the resulting knot projection, which implies a knot projection
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Figure 22. (2, 2p + 1)-torus knot projection

having exactly a1 double points. After that, deformations of type 1 decreasing
double points obtain the trivial spherical curve.

4.2. Every two-bridge knot projection is (1, 3) homotopic to the trivial
spherical curve.

Proposition 2. Every two-bridge knot projection as in Fig. 23 is (1, 3) homotopic
to the trivial spherical curve.

Figure 23. Two-bridge knot projection P (a1, a2, . . . , an)

Let P (a1, a2, . . . , an) be a knot projection as in Fig. 23, where each ai presents
double points of a twist (1 ≤ i ≤ n).

• Case 1: Suppose that a1 is an odd number corresponding to a1 double
points. By applying a single T (a1), two twists a1 and a2 merge a twist
consisting of a1 + a2 double points.

• Case 2: Suppose that a1 is an even number corresponding to a1 double
points. By applying T (a1) a2 times, a2 double points are resolved, which
implies a twist disappears.

By an induction of the number of twists, we resolve every twist.

Remark 2. By using Lemma 2, for a knot projection P consisting of two-bridge
knot projections via tangle sums or connected sums, it is elementary to show that
such P is (1, 3) homotopic to the trivial spherical curve by using Propositions 1
and 2.
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[7] O.-P. Östlund, Invariants of knot diagrams and diagrammatic knot invariants, Ph.D. Thesis,

Uppsala Univ., 2001.

The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan

E-mail address: noboru@ms.u-tokyo.jp

Gakushuin Boys’ Junior High School, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-0031,
Japan

E-mail address: Yusuke.Takimura@gakushuin.ac.jp


