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A framework for quantifying the 
relationship between intensity and 
severity of impact of disturbance 
across types of events and species
Aiko Iwasaki  1 & Takashi Noda2

Understanding the impacts of natural disturbances on wildlife populations is a central task for 
ecologists; in general, the severity of impact of a disturbance (e.g., the resulting degree of population 
decline) is likely to depend primarily on the disturbance intensity (i.e., strength of forcing), type of 
disturbance, and species vulnerability. However, differences among disturbance events in the physical 
units of forcing and interspecific differences in the temporal variability of population size under normal 
(non-disturbance) conditions hinder comprehensive analysis of disturbance severity. Here, we propose 
new measures of disturbance intensity and severity, both represented by the return periods. We 
use a meta-analysis to describe the severity–intensity relationship across various disturbance types 
and species. The severity and the range of its 95% confidential interval increased exponentially with 
increasing intensity. This nonlinear relationship suggests that physically intense events may have a 
catastrophic impact, but their severity cannot be extrapolated from the severity–intensity relationship 
for weak, frequent disturbance events. The framework we propose may help to clarify the influence of 
event types and species traits on the severity–intensity relationship, as well as to improve our ability to 
predict the ecological consequences of various disturbance events of unexperienced intensity.

Understanding the impacts of natural disturbances, such as hurricanes, droughts, heat waves, severe cold events, 
volcanic eruptions, and tsunamis, on wildlife populations is a central task for ecologists1–5. In general, the ‘sever-
ity’ of impact of a disturbance, often measured as the percentage mortality of a population or kilograms of bio-
mass removed4,6, is likely to depend primarily on the ‘intensity’ of disturbance, which we define as the strength of 
the disturbing force, such as moment magnitude (Mw) for an earthquake or wind speed (m/s) for a hurricane4,6. 
In addition, severity can vary with the type of disturbance (e.g., earthquake, hurricane, or heat wave) and the 
degree of vulnerability of the species4. Thus, crucial to understanding severity is how it increases with increasing 
intensity, and how the relationship varies across different disturbance types or species1,4,5.

White and Jentsch7 discussed the need to identify the general patterns of severity of natural disturbances 
across species and event types. Peters et al.8 proposed a conceptual framework to quantitatively compare distur-
bance effects across different types of ecosystems and disturbances, and Fey et al.9 evaluated the temporal pattern 
of the magnitude of impact (number of deaths) and the frequency of various types of disturbance event for var-
ious taxa. However, to our knowledge, no study has quantified both intensity and severity across different types 
of disturbance and species and evaluated the severity–intensity relationship comprehensively. Such an analysis is 
hindered by two main obstacles. First, differences in the physical units of the force strength among disturbance 
events (e.g., wind speed for hurricanes and moment magnitude for earthquakes) make it impossible to directly 
compare intensity between different disturbance types. Second, interspecific differences in the temporal variabil-
ity of population size under normal (non-disturbance) conditions make it impossible to use the change in abun-
dance after a disturbance event as a measure of severity: that is, observed population changes might not be caused 
by the disturbance effect alone, but also by the species-specific natural variability in abundance.

To solve these problems, we devised an analytical method that uses two different dimensionless parameters 
for ‘return period’ to characterize both the intensity of a disturbance and the severity of its impact. We define the 
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return period for the intensity of a disturbance as the average interval between occurrences of an event with a 
given force strength in a particular physical unit. In the case of climatic events, the return period is the inverse 
of the occurrence probability of that event. In the case of rare or occasional events such as tsunamis, the return 
period is the length of the recording period divided by the number of events of similar magnitude. To calculate a 
return period for the severity of impacts, we first calculate the effect size of the disturbance on the annual popu-
lation growth rate, with the annual population growth rate calculated as the logarithm of the ratio of abundance 
in two consecutive years. This effect size reflects the difference between the annual population growth rate under 
normal conditions and the rate in the year when the disturbance event occurred. We then calculate the return 
period as the inverse of the occurrence probability of the effect size calculated above. This return period repre-
sents the severity (See Supplementary Fig. S1).

With these new measures, we performed a meta-analysis to examine the severity–intensity relationship of the 
impact of different types of disturbance on various species (see Supplementary Tables S1 and S2). When examin-
ing the causal relationship between intensity and severity, we used only intensity to detect disturbance events10. 
We focused on the severity of impacts of large-scale (≥10 km2) disturbance events that had extreme intensity 
values11 and occurred ≤5% of years or less (≥20-year return period). The hypothetical species experienced such 
events no more than once in two generations (generation time ≤10 years). Large-scale and infrequent distur-
bances—relative to the body size and generation time of affected species—are ecologically important owing to 
their large extents and the persistent damage they cause to populations12; however, our ecological knowledge of 
such events is poor because observations of them have been limited12–15. In addition, we excluded species with 
a generation time of less than 1 year, because such species tend to have very high population growth rates and 
there is a strong likelihood that the growth and reproduction occurring immediately after the disturbance could 
mask the damage at the first census after the event and thus lead to underestimation of the severity. To assure the 
accuracy of our estimation of the severity of such events, we carefully selected populations with sufficient quality 
of abundance data for the analysis (see Methods; Supplementary File S1, section 1; and Supplementary Tables S1 
and S3).

Intensity—a measure of the force of disturbances—generally follows either a normal or an extreme tempo-
ral distribution13,15,16. The return periods of more intense events are represented as becoming longer owing to 
lower occurrence probabilities in the lower, upper, or both tails of the frequency distribution15,16. (For details, see 
Methods and Supplementary Fig. S1a).

To quantify severity, we assessed the impact as an effect size, which is represented as the change in annual 
population growth rate between the year when the disturbance event occurred and under normal conditions. The 
effect size was calculated while accounting for single-subject data (i.e., the event occurred once, so the treatment 
data show no variability, whereas the control data were gathered over multiple years and do show variability)17–20, 
as follows17,21,22:
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where ri ,pd represents the annual population growth rate of species i in the year when the disturbance event 
occurred, ri ,n represents the mean annual population growth rate of the same species under normal conditions, 
and SD r( )i ,n  denotes the standard deviation of the annual population growth rate under normal conditions for 
species i. The return period of a given severity was calculated as the inverse of the occurrence probability of a 
given effect size, which was estimated statistically while assuming a normal distribution (For details, see Methods 
and Supplementary Fig. S1b).

To examine the relationship between intensity and severity, we gathered more than 8000 time series of popu-
lation abundance from the literature. We then strictly examined whether each dataset met the selection criteria 
for accurately quantifying the severity of disturbance events. (For details, see Supplementary File S1, section 1; 
Supplementary Table S3). From this selection, we quantified the intensities of 27 disturbance events represent-
ing five types of disturbance and the severities of their effects on the populations of 50 species across a wide 
range of taxa (eight classes: Mammalia, Aves, Insecta, Crustacea, Bivalvia, Phaeophyceae, Florideophyceae, and 
Phaeophyceae) with generation times ranging from 1 to 10 years, using data from 17 studies (including three 
unpublished studies; see Supplementary Tables S1 and S2).

Results and Discussion
Severity increased exponentially with intensity (Fig. 1a; P = 6.35 × 10−6): the return period was smaller for sever-
ity than for intensity up to an intensity return period of 61 years (log10 = 1.8). For disturbances less frequent 
than that, the return period of severity was greater than that of intensity. Thus, populations could decline more 
in response to physically intense events occurring less frequently than twice in a century than expected from 
the relationship for physically weak but frequent events. This result may reflect the fact that a higher frequency 
of disturbance relative to the life span of an organism must exert strong selection pressure on species to evolve 
disturbance resistance1,23–25.

The severity–intensity relationship (Fig. 1a) also shows that the 95% confidence interval of severity dramat-
ically increases with increasing intensity. In addition, the two largest deviations of severity from the regression 
curve were for those disturbances with return periods for intensity of >100 years (Fig. 1b). These findings indi-
cate that although intense and rare disturbances could cause catastrophic decline of populations of the most vul-
nerable species, the damage to other components of communities would vary. Therefore, reliable prediction of the 
ecological consequences of intense and rare disturbances will require knowledge of the species traits determining 
disturbance susceptibility, the population recovery processes such as reproduction of surviving individuals and 
recolonization, and the community importance26 of species that are highly susceptible to rare disturbances.
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To demonstrate how the severity–intensity relationship differs among species traits, we used species mobility 
to split our dataset into two groups and then reanalyzed the data. A significant positive relationship between 
intensity and severity was obtained for mobile species, but not for sessile ones (Fig. 2). Unfortunately, because 
of bias in habitat between the two species groups, we could not say that this difference in the severity–intensity 
relationship depended on the mobility of organisms: all sessile species are rocky intertidal organisms, whereas all 
mobile species are terrestrial organisms. Therefore, because of the small sample size for each event and bias in the 
habitats of the species groups, we could not evaluate how the severity–intensity relationship was influenced by 
event types and species traits in this analysis. In particular, event types are closely related to the habitat and traits 
(e.g., morphology or life history) of organisms, so that the combination of disturbance types and species traits 
is likely to have limited variation in the available data. For example, heavy snowfall will likely affect only those 
species in snowy regions and tsunamis will likely affect only coastal species. Analyzing the effects of event type 
and species traits on the severity–intensity relationship requires not only an adequate number of samples but also 
variation in species traits and event types and intensities in each habitat analyzed.

Our findings help to explain a surprising feature of the severity–intensity relationship for a particular event. 
Unexpectedly, the severity of the mega-tsunami caused by the March 2011 earthquake off the Pacific coast of 
the Tohoku region was relatively small for rocky intertidal benthic organisms, despite the high intensity of the 
disturbance27 (Fig. 1b). The relatively low severity of the effect of the tsunami might be related to the tsunami’s 
short duration28,29, because the magnitude of the impact of wave force on rocky intertidal benthic organisms is 
related to the duration30. For example, a storm along the Pacific coast of Tohoku; its return period for intensity 
was 32 years, much shorter than the 290-year return period for the 2011 tsunami (Supplementary Table S1), but 
the storm’s duration was a few days, much longer than that of the tsunami, a few hours. The severity of the effect 
of the storm on the same species in the same region of rocky intertidal shore was of the same order as that of the 
tsunami (Table 1). Thus duration is also an important determinant of the severity of natural disturbance events31. 
Before assessing the effect of duration on severity, we should examine the relationship between intensity and 
duration. This is because intensity in some disturbances is defined independently of duration, but in others in 
terms of it. In the former, we can include duration directly in the analysis as an explanatory variable for severity 
(e.g., earthquakes: seismic intensity). The latter has two cases: when duration is synonymous with intensity (e.g., 

Figure 1. Relationship between severity and intensity. (a) The relationship between severity and intensity of 27 
disturbance events for five types of disturbance. Each circle is the species-level severity value for a disturbance 
event (n = 50). Vertical lines denote bias-corrected 95% confidence intervals17, which were generated by 
bootstrapping procedures (10 000 iterations)39. The blue line represents the estimated mean severity. The darker 
and lighter shading demarcate the slope of the 95% confidence interval and 95% prediction interval for future 
observations, respectively. (b) Variation in the residuals of species-level severity values from a model describing 
the relationship between intensity and severity, using a generalized linear model without taking into account the 
type of disturbance and species. All four severity values (hatched shading) that were detected for tsunamis with 
return periods of intensity (about 300 years) were relatively small, whereas the two largest residuals of severity 
were detected for the other two disturbance events with intensity of over 100 years for the return period.
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severe winters: number of days >5-cm snow depth), we cannot include duration in the analysis, but when dura-
tion is correlated with intensity (e.g., severe winters: maximum snow depth), we can include a composite variable 
of duration and intensity obtained by principal component analysis.

We found that the mean and variance of severity increase exponentially with increasing intensity. From a 
conservation perspective, it is crucial to predict the severities of physically intense events that occur less than 
twice in a century and may cause population decline disproportionate to the intensity because of a species’ poor 
disturbance resistance. However, the severity of the effect of such events cannot be extrapolated from the sever-
ity–intensity relationship derived from data for physically weak and frequent disturbances, the population-level 
consequences of which have been reported extensively31,32.

The framework we propose has broad applicability. First, it can be applied at various spatial or temporal scales 
and for species with various generation times. For example, the disturbance severity can be estimated for more 
frequent disturbances (e.g., heavy rain) or species with shorter generation times (e.g., microorganisms) at smaller 
spatial scales by using time series of abundance and physical measures of disturbance recorded at a shorter inter-
val. Second, it can be used to assess the impacts of disturbances on properties at the community level (e.g., spe-
cies diversity) and ecosystem level (e.g., productivity), as well as at the population level (e.g., population growth 
rate in this study). In these cases, we can estimate the impact of a disturbance on the focal response property by 
using time series data on the response property and estimating the return period of the magnitude of change 
in the value caused by disturbance. Note, however, that the estimated impact at the community and ecosystem 
levels includes the indirect influence of disturbance. Third, anthropogenic disturbances are also very important 
and are usually mixed with natural disturbances affecting ecosystems. Nevertheless, it is difficult to quantify the 
intensity of some anthropogenic disturbances, such as land-use change, pollution, and fishing and harvesting, 
because such disturbances act irreversibly (e.g., land use), slowly (e.g., pollution), or chronically (e.g., fishing and 
harvesting), so that our framework for quantifying the severity–intensity relationship is not directly applicable 
to these disturbances. However, the framework can be used to assess the interactive effect of anthropogenic dis-
turbances and natural disturbances by comparing the severities of natural disturbances between habitats that are 
affected and not affected by anthropogenic disturbances. Fourth, the severities of most intentional anthropogenic 

Figure 2. An example of the relationship between intensity and severity in (a) mobile and (b) sessile groups. 
Each point is a single species-level severity value. Lines represent the fitted curve estimated by a generalized 
linear model, with the solid line statistically significant and the dashed line not. Shading demarcates the slope of 
the 95% confidence intervals.

Event
Intensity (log10 
return period, years)

Mean severity (±SE) (log10 
return period, years)

Storm in 2006 1.51 4.79 (±4.78)

Tsunami in 2011 2.46 2.88 (±2.89)

Table 1. Comparison of the intensity and severity of the impact of a storm in 2006 and a tsunami in 2011 on 
rocky intertidal benthic organisms in the Tohoku region, Japan. Mean severity is the average of four species-
level severity values for each event.
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disturbances, such as logging and use of pesticides, can be relatively readily quantified. By considering their sever-
ities in the severity–intensity relationship obtained from natural disturbances, we can calculate the intensities of 
such anthropogenic disturbances by assuming that the severities are comparable to those caused by natural dis-
turbances; such calculations may contribute to the risk management of intentional anthropogenic disturbances.

Deciphering the influence of event types and species traits on the severity–intensity relationship would 
greatly improve our understanding of the role of natural selection and phylogenetic constraints on evolutionary 
responses to disturbance. It would also allow us to predict the ecological consequences of various kinds of dis-
turbance events of unexperienced intensity, including extreme weather events caused by climate change16,33–35 at 
multiple ecological levels (e.g., population, community, and ecosystem). Unfortunately, the current lack of studies 
and the biased datasets make these analyses impossible, highlighting the urgent need to conduct long-term cen-
suses of various kinds of organisms in different habitats.

Methods
Here, we describe the steps in the analysis of the relationship between the intensity of various types of disturbance 
and the severity of impact on various species. First, to estimate the severity of impact of various disturbance 
types on species, we collected high-quality time series of population abundance. Second, by using time series of 
measured disturbance intensity or historical evidence of a focal disturbance event, we estimated the return period 
of disturbance intensity in the period during which abundance was surveyed. We then extracted the time series 
of abundance for populations that experienced a disturbance event with an intensity return period of ≥20 years. 
Third, we estimated the severity of the impact of the disturbance event by comparing the population growth rate 
in the year the disturbance occurred with that under normal conditions. Finally, we statistically analyzed the 
severity–intensity relationship from 27 disturbance events of five types.

Time series of abundance. To quantify the severity for various species of various disturbance events with 
a ≥20-year return period of intensity, we obtained primary time series for the abundance of populations affected 
by such events during the study period (8–42 years) from three sources: (1) Google Scholar; (2) the Global 
Population Dynamics Database (ver. 2); and (3) our long-term research study of a rocky intertidal shore. The 
sources and search strategy are described in Supplementary File S1, section 1.

The time series obtained for abundance were pre-processed as needed. From among the pre-processed time 
series, we then extracted those that satisfied the basic requirements for use in the analysis. Details of the proce-
dures are given in Supplementary File S1, section 1.

Estimation of disturbance intensity. Calculation of return period of intensity. The return period of 
intensity was calculated by using two different methods, depending on the type of disturbance event, namely 
(1) a climatic disturbance event (drought, low temperature, severe winter, and storm); or (2) an occasional or 
rare disturbance event (tsunami) (see Supplementary Figure S1a). For a climatic disturbance event, the physical 
measure of intensity was recorded annually as the environmental fluctuation, such as the deviation from mean 
temperature for a severe winter or deviation from mean precipitation for a drought. We statistically estimated 
the return period of intensity as the inverse of the occurrence probability of the focal disturbance event per year 
by using long-term time series of force-strength measurements. The occurrence probability of the force strength 
was assumed to follow either a normal distribution36 or a general extreme distribution15,16. The occurrence prob-
ability of the force strength will follow a normal distribution when the measure is represented by the average or 
cumulative value (e.g., average temperature or cumulative precipitation). Before assuming a normal distribution, 
we tested the normality of the data distribution by using the Shapiro–Wilk W-test. We log-transformed the data 
to follow a normal distribution when the assumption was not valid. The occurrence probability of force strength 
will follow a general extreme distribution when the measure is represented by the maximum or minimum value 
or a value based on a threshold (e.g., the maximum wind speed or the number of days with >5 cm of snow depth). 
In both cases, the distribution parameters were estimated from the observed data by using maximum-likelihood 
estimation. The return period of the event was then calculated from the fitted distribution36.

For an occasional or rare disturbance event, the physical measure of the intensity was not recorded annually 
(e.g., wave height for a tsunami). Therefore, we estimated the return period of intensity as the average interval of 
occurrence in the reference data of such an event with equal or greater intensity27. The interval was estimated by 
extrapolation based on historical evidence of the event rather than by using direct observational data such as sed-
iment deposits37. For each selected time series of abundance, the intensity of the disturbance event was estimated 
by using the procedure described in Supplementary File S1, section 2.

Estimation of disturbance severity. Calculation of return period of severity and annual population growth 
rates. For each species, the return period of severity was calculated on the basis of the effect size on the annual 
population growth rate in the year when the disturbance occurred by using equation (1) for each selected time 
series of abundance. (See also Supplementary Fig. S1b.) The return period representing a given severity was calcu-
lated as the inverse of the occurrence probability of a given effect size, which was statistically estimated assuming 
a normal distribution.

To estimate the effect size of severity, we calculated the annual population growth rates under normal condi-
tions and those in the year the disturbance event occurred in each selected time series (Supplementary Fig. S1b). 
To calculate these population growth rates, we obtained 1-year interval time series of abundance, as follows. If 
multiple abundance measures were made within each year, we selected a single value measured in the same sea-
son as the first census conducted after the focal disturbance event. Then abundances with an average value of zero 
were treated as missing data.
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The annual population growth rates under normal conditions, which were defined as those not influenced 
by the focal disturbance event or other events or stresses such as anthropogenic disturbances, were calculated as 
follows. First, if it was reported in the original literature that the time series were influenced by such other events 
or stresses during part of the recording period, we excluded the abundance data during that period from the 
analysis. Second, if the focal disturbance event influenced the abundance data measured not only immediately 
after the event but also in subsequent years, we excluded the abundance data during that period from the analysis 
to minimize, as much as possible, the bias of the indirect influence of the event on estimated severity. For exam-
ple, an exponential increase in abundance subsequent to a population decline can be indirectly caused by the 
disturbance event. To detect the temporal trend in abundance that seemed to be caused by the indirect effect of 
the focal disturbance event in part of the second and subsequent annual abundance data collected after the event, 
we examined the relationship between abundance and year by using linear regression. If the temporal trend in 
abundance was significant (P < 0.05), we excluded data influenced by the indirect effect of the focal disturbance 
event by removing data beginning with the oldest census; we included in the analysis only the part of the annual 
abundance data that did not represent the significant temporal trend.

The population growth rate in the year the disturbance event occurred was calculated by using the two abun-
dance measures recorded immediately before and after the disturbance event. If a disturbance event drives the 
mean abundance of a population to zero immediately after the event, then the effect size, as the basis of severity, 
should be calculated by using the abundance plus a small number in order to avoid an infinite value (i.e., to 
prevent division by zero); however, the database we used for the meta-analysis did not include such cases. The 
detailed procedures to estimate the severity of the effect of a disturbance are described in Supplementary File S1, 
section 3.

Statistical analysis. The relationship between log10 of the return periods of intensity and severity was ana-
lyzed by using a generalized linear model, taking severity as the response variable and intensity as the explana-
tory variable. The error distribution and link function in the generalized linear model were based on the value 
of Akaike’s information criterion and the Schwarz Bayesian information criterion for each potential model (the 
model with the smallest value was chosen); this resulted in gamma-distributed errors with a log-link function 
(see Supplementary Table S4). All analyses were performed with version 3.02 of the R programming language 
(www.r-project.org)38.

References
 1. Sousa, W. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984).
 2. Overpeck, J. T., Rind, D. & Goldberg, R. Climate-induced changes in forest disturbance and vegetation. Nature 343, 51–53 (1990).
 3. Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Hurricanes and Caribbean coral reefs: impacts, recovery patterns, 

and role in long-term decline. Ecology 86, 174–184 (2005).
 4. Pickett, S. T. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics (Elsevier, 1985).
 5. Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
 6. Walker, L. R. The biology of disturbed habitats. (Oxford University Press, 2012).
 7. White, P. S. & Jentsch, A. The search for generality in studies of disturbance and ecosystem dynamics. In Progress in Botany (ed. 

Esser, K., Luttge, U., Kadereit, J. W. & Beyschlag, W.) pp 399–450 (Springer, Berlin, 2001).
 8. Peters, D. P. et al. Cross‐system comparisons elucidate disturbance complexities and generalities. Ecosphere 2(7), 1–26 (2011).
 9. Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. USA 

112(4), 1083–1088 (2015).
 10. Jentsch, A. et al. Climate extremes initiate ecosystem‐regulating functions while maintaining productivity. J. Ecol. 99(3), 689–702 

(2011).
 11. Zscheischler, J., Mahecha, M. D., Harmeling, S. & Reichstein, M. Detection and attribution of large spatiotemporal extreme events 

in Earth observation data. Ecol. Inform. 15, 66–73 (2013).
 12. Turner, M. G. & Dale, V. H. Comparing large, infrequent disturbances: What have we learned? Ecosystems 1, 493–496 (1998).
 13. Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. 

Ecol. 99, 656–663 (2011).
 14. Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 

3, 78–82 (2013).
 15. Gaines, S. D. & Denny, M. W. The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74, 1677–1692 

(1993).
 16. Katz, R. W., Brush, G. S. & Parlange, M. B. Statistics of extremes: modeling ecological disturbances. Ecology 86, 1124–1134 (2005).
 17. Busk, P. & Serlin, R. Meta-analysis for single-case research. In Single-case Research Design and Analysis (eds Kratochwill, T. & Levin, 

J.) pp 187–212 (Erlbaum, Hillsdale, NJ, 1992).
 18. Olive, M. L. & Smith, B. W. Effect size calculations and single subject designs. Educ. Psychol. 25, 313–324 (2005).
 19. Petursdottir, A. L. et al. Brief experimental analysis of early reading interventions. J. Sch. Psychol. 47, 215–243 (2009).
 20. Hurwitz, J. T., Kratochwill, T. R. & Serlin, R. C. Size and consistency of problem-solving consultation outcomes: an empirical 

analysis. J. Sch. Psychol. 53, 161–178 (2015).
 21. Glass, G. V. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8 (1976).
 22. Busse, R. T., Kratochwill, T. R. & Elliott, S. N. Meta-analysis for single-case consultation outcomes: applications to research and 

practice. J. Sch. Psychol. 33, 269–285 (1996).
 23. Harper, J. L. Population Biology of Plants (Academic Press, 1977).
 24. LaJeunesse, T. C. et al. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to 

environmental disturbance. Proc. R. Soc. Lond. B Biol. Sci. 277, 2925–2934 (2010).
 25. Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 

947–952 (2006).
 26. Power, M. E. et al. Challenges in the quest for keystones. BioScience 46, 609–620 (1996).
 27. Ishimura, D. & Miyauchi, T. Historical and paleo-tsunami deposits during the last 4000 years and their correlations with historical 

tsunami events in Koyadori on the Sanriku Coast, northeastern Japan. Prog Earth and Planetary Sci 2, 1 (2015).
 28. Japan Meteorological Agency. Report on the 2011 off the pacific coast of Tohoku Earthquake, Technical Report of the Japan 

Meteorological Agency, http://www.data.jma.go.jp/svd/eqev/data/2011_03_11_tohoku/tsunami_jp.pdf (In Japanese) (2012).
 29. Mori, N. & Takahashi, T. The 2011 Tohoku Earthquake Tsunami Joint Survey Group. Nationwide post event survey and analysis of 

the 2011 Tohoku earthquake tsunami. Coast Eng. J. 54, 1250001 (2012).

http://www.r-project.org
http://www.data.jma.go.jp/svd/eqev/data/2011_03_11_tohoku/tsunami_jp.pdf


www.nature.com/scientificreports/

7Scientific REPORTS |  (2018) 8:795  | DOI:10.1038/s41598-017-19048-5

 30. Denny, M. Predicting physical disturbance: mechanistic approaches to the study of survivorship on wave-swept shores. Ecol. 
Monogr. 65, 371–418 (1995).

 31. Sousa, W. P. Natural disturbance and the dynamics of marine benthic communities. In Marine Community Ecology (eds Bertness, M. 
D., Gaines, S. D. & Hay, M. E.) 85–130 (Sinauer, 2001).

 32. White, P. S. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45, 229–299 (1979).
 33. Dale, V. H., Lugo, A. E., MacMahon, J. A. & Pickett, S. T. Ecosystem management in the context of large, infrequent disturbances. 

Ecosystems 1, 546–557 (1998).
 34. Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate‐change experiments: events, not trends. Front. Ecol. 

Environ. 5, 365–374 (2007).
 35. Scholze, M., Knorr, W., Arnell, N. W. & Prentice, I. C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA 

103, 13116–13120 (2006).
 36. Schär, C. et al. The role of increasing temperature variability in European summer heat waves. Nature 427, 332–336 (2004).
 37. Goff, J., Chagué-Goff, C. & Nichol, S. Palaeotsunami deposits: a New Zealand perspective. Sediment Geol. 143, 1–6 (2001).
 38. R Development Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
 39. Kirby, K. N. & Gerlanc, D. BootES: an R package for bootstrap confidence intervals on effect sizes. Behav. Res. Methods 45, 905–927 

(2013).

Acknowledgements
We are grateful to T. Hagino, Dr. T. Okuda, Dr. M. Tsujino, M. Iida, R. Sahara, M. Sakaguchi, M. Ohira, Y. 
Kanamori, Y. Hiraka, and S. Ko for field assistance. We thank Dr. K. Fukaya for field assistance and helpful 
comments about the manuscript. We also thank Dr. Y. Nishimura for helpful comments regarding tsunamis. 
For field and laboratory facilities, we are grateful to the staff and students of the International Coastal Research 
Center of the Atmosphere and Ocean Research Institute, The University of Tokyo. This study was made possible 
by the generous support and encouragement of local fishers and the fishery office of the Fisherman’s Cooperative 
Associations in Iwate. This research was supported by the Cooperative Program of the Atmosphere and Ocean 
Research Institute, The University of Tokyo (Nos. 108, 104, 107, 101, and 103 in 2006, 2007, 2008, 2009, and 2010, 
respectively, to TN), and was supported partly by Japan Society for the Promotion of Science (JSPS) KAKENHI 
Grants (Nos. 20570012, 24570012, and 15K07208 to TN) and the Tohoku Ecosystem-Associated Marine Sciences 
(TEAMS) project. The funders had no role in study design, data collection and analysis, decision to publish, or 
preparation of the manuscript.

Author Contributions
A.I. and T.N. designed the study. A.I. performed the study and the data analysis. A.I. and T.N. wrote the 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-19048-5.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-017-19048-5
http://creativecommons.org/licenses/by/4.0/

	A framework for quantifying the relationship between intensity and severity of impact of disturbance across types of events ...
	Results and Discussion
	Methods
	Time series of abundance. 
	Estimation of disturbance intensity. 
	Calculation of return period of intensity. 

	Estimation of disturbance severity. 
	Calculation of return period of severity and annual population growth rates. 

	Statistical analysis. 

	Acknowledgements
	Figure 1 Relationship between severity and intensity.
	Figure 2 An example of the relationship between intensity and severity in (a) mobile and (b) sessile groups.
	Table 1 Comparison of the intensity and severity of the impact of a storm in 2006 and a tsunami in 2011 on rocky intertidal benthic organisms in the Tohoku region, Japan.




