Papers

Peer-reviewed Last author
Oct, 2020

Formation of multiple intermetallic phases in a hypereutectic Al-Fe binary alloy additively manufactured by laser powder bed fusion

INTERMETALLICS
  • Wang Wenyuan
  • ,
  • Takata Naoki
  • ,
  • Suzuki Asuka
  • ,
  • Kobashi Makoto
  • ,
  • Kato Masaki

Volume
125
Number
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1016/j.intermet.2020.106892
Publisher
ELSEVIER SCI LTD

An attempt was made to additively manufacture an Al-Fe binary alloy sample with a hypereutectic composition of 15 wt% Fe using a laser powder bed fusion (LPBF) process. The LPBF-built Al-15Fe alloy sample exhibited a microstructure consisting of a number of melt pools in which regions had locally melted and rapidly solidified due to scanning laser irradiation during the LPBF process. The alpha-Al (fcc) matrix consists of a number of elongated grains with a mean size of approximately 10 mu m. These microstructural features correspond well to previous results of Al alloys additively manufactured by the LPBF process. It was found that relatively coarsened stable theta-Al13Fe4 phases with a length of a few micrometers were localized along the melt pool boundaries. Numerous spherical particles of a metastable Al-Fe intermetallic phase were finely distributed within the nanoscale eutectic microstructure consisting of alpha-Al and metastable Al6Fe phases inside the melt pools. The metastable phase formation corresponds well to the previous results on the rapidly solidified Al-Fe alloys. The refined multiple intermetallic phases produced by the LPBF process contribute to a high hardness of approximately 200 HV. The refined microstructure appeared stable at an elevated temperature of 300 degrees C. The high microstructural stability would sustain sufficient strength in a hostile environment for long-term periods of service at elevated temperatures above 200 degrees C. The present results were utilized to discuss the formation sequence of multiple Al-Fe intermetallic phases in rapid solidification by the LPBF process.

Link information
DOI
https://doi.org/10.1016/j.intermet.2020.106892
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000567771100003&DestApp=WOS_CPL
ID information
  • DOI : 10.1016/j.intermet.2020.106892
  • ISSN : 0966-9795
  • eISSN : 1879-0216
  • Web of Science ID : WOS:000567771100003

Export
BibTeX RIS