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Factorial growth of perturbation series

@ Perturbation theory (PT) of QM/QFT is a quite successful tool.
@ But, perturbative series are typically divergent as

F(\) = Z e\, ¢, ~ n! at large n.
n=0
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@ Accuracy of perturbative predictions is limited. ..
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Factorial growth of perturbation series

e E.g., ground state energy in QM (Rayleigh-Schrédinger PT):

Perturbative coefficients

Zeeman effect ~ (=1)"(2n)!
Stark effect ~ (2n)!
Anharmonic oscillator
V(6) ~ & ~T(n+1/2)
V(6) ~ ¢* ~ (~1)T(n +1/2)
Double well ~ n!
periodic cosine well ~ n!

@ These are due to the factorial growth of the number of Feynman
diagrams.
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Borel resummation

@ The Borel (re)summation is useful for summing divergent
asymptotic series.

@ For the perturbative series of a quantity (),

o A n+1
f()\) ~ anof;] (E) )

we define the Borel transform by
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Borel resummation

@ Iff,~ b "nl as n — oo,

1

B(u) = 1——u/b

This possesses a pole singularity at v = b.

@ The integral is convergent for b < 0 (alternating series).

Im
o If b > 0, the Borel sum becomes A | u
ill-defined. = non-Borel summable Tir

@ Then, one should avoid the pole by

contour deformation. / Re
@ This induces the imaginary ambiguity ¢ \'

proportional to ~ e

—4mb/\
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Resurgence theory and semi-classical picture

e f(A) is not analytic at A = 0, but an asymptotic series.
@ Asymptotic nature of perturbative series is related to
@ possible instability of quantum theories,
[Dyson '52, Hurst '52, Thirring '53, ...]
@ nonperturbative effects such as quantum tunneling.
[Vainshtein '64, Bender-Wu '73, Lipatov '77, ...]

@ Ambiguity oc a nonperturbative factor e~<°"st/A

ICanceIIation (Resurgence structure)

Ambiguity associated with nonperturbative effects
» Instanton calculus [Bogomolny 1980, Zinn-Justin 1981]

1
V(x) = Z( 2_1)2 —  Solution to EoM: x(7) = tanh

T—1T0
V2

@ Reading out nonperturbative effects from PT: Resurgence theory
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Renormalon and bion

@ Another source of n-factorial: renormalon ['t Hooft 1979]
@ Amplitude of a single Feynman diagram ~ Sgn!.
(Bo: one-loop coefficient of the beta function)

£

@ It is conjectured that renormalon ambiguities disappear thanks
to the so-called bion [Argyres—Unsal '12, Dunne-Unsal '12, ...].

@ Bion: a pair of fractional instanton/anti-instanton

~~

on R9~1 x S1 with twisted boundary conditions (BC)
e It is important to clarify the renormalon structure on R?~1 x S,
e We study the 2D CP"~! model in the large N limit.
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2D (supersymmetric) CPN=1 model
e Complex projective space CPV=1 = S2N=1/()(1): for z* € C,

(24,22, 2V ~ (czt, %, ..., cZY)  (ceC,c#0)

— 72 =1 (Jc| = 1) and U(1) gauge invariance (arg(c)).

@ Action of the 2D (supersymmetric) CPN~1 model:
N
S= 3 / d?x [—ZADMDMZA +50+ XD+ 5Py + UP,)XA}

where D, = 0, + iA,, 75 = —i7xYy, P+ = (1 £15)/2, and we
impose 74z = 1 and z4\* = 0.

e U(1) gauge symmetry: z* — gz*, x* — gx*,
and A, — A, + ig '0,g with g € U(1).

e Lagrange multiplier fields f and (n, 7);

N
S =S+ 3 / d’x [f(272" — 1) + 272" + 25" 2"] .
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Zy invariant twisted BC

@ We assume the following BC

A(x,y + 27R) = e7"MRZA(x, y),

XA(X,y 4 27TR) — e2ﬂ-imARXA(X’y)’

where

A/NR forA=1,2,...,N-1
ma =
0 for A= N.

@ We impose periodic BC for all auxiliary fields A,, f, o, .
e Kaluza—Klein momentum along S* is given by p, = n/R.
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Gauge field propagator in N — oo
@ We consider NRA — oo where A is a dynamical scale.
o Effective action S for fluctuations of the auxiliary fields

AL = A +9A,, f =fy+of, o = o0g + 0o,

around the large N saddle point fy = Gqoo = A2, 19 = 0.
@ Seff|rx st NZpo Sesf|rz in [D'Adda—Di Vecchia—Lischer '78&'79].
e E.g., A, propagator in the SUSY CP"~! model is given by

4 6, + 4Npup,/(p

(57 p)3ANa)) = PO L 55, 4 .)20R

where

Loo(p) 2 (ﬂ* ?)

FIMBA (MARHFERIARE) IR renormalon in CPV— 2019/12/23 BfF-AL K 10/ 14

p?(p* + 4/%)




IR renormalon in gluon condensate

e We compute the gluon (photon) condensate in N — oo, and

study Borel singularities associated with it.
@ Gluon condensate in the large N limit

<FuV(X)FW(X)>
47 [ dp, 1 2p?

N J 27 27R . (p? +4N?) Lo (p)

o Positive powers of A2 = p2e=47/2=(1*) are regarded as the
L

non-perturbative part; (FF) in PT is given by

47 [ dp, 1 p?
F F. =— [ —
(Fu(x)Fy (X)>PT N o iR - In(p2/2)

expansion in Ag(1?)

Note that £..(p) = 3 In(p?/A%) + O(A?).

P
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Renormalon ambiguity in RY

e Noting Ag(p?) = 47/ In(p?/A?), (FF)pt is a typical form from
which a renormalon appears. Generally, on R?, we have

ddp ( 2)a )\R(pz) :/ ZI nfH_ )‘R( ) "
(2m)? 7 (4m)?r2 4myin]
Note that In(p?/A?) = In(p?/u?) + 47/ Ar(1?).
@ Focusing on the IR region by introducing a cutoff g (p? < ¢°),

ddp ) MZ u M2u q2oc+d 2u
B = N—=] = )
() /,,Zqu om) ) <p2) (47)92T(d/2) o+ d /2 —

@ The Borel singularity at u = o+ d/2 = 2 gives rise to

<F,LW(X) FIW(X)>renormalon on R? (at u=2) = :l:ﬂ-l/\4/N
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Renormalon ambiguity in R9~! x S!

@ On the other hand, on R9"1 x S1,

/ (Zwl)) */ (;’W)"Z%R 2

pd:n/R, nez

@ Now, only the p;, = 0 term can be singular; the dimension of the
momentum integration is effectively reduced:

LA et
u=a+—- s a+——
2 2

@ The Borel singularity at u = 3/2 gives rise to the renormalon:

<F,LW(X)FIW(X)>renormalon - :l:T”T('RN

Peculiar to the compactified space R x S!!
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Discussion and conclusion

@ The Borel singularity is generally shifted by —1/2
under the S! compactification and the following assumptions:

© volume independence of a loop integrand of a renormalon
diagram

@ loop momentum variable along S! associated with the
periodic BC (not twisted!)

@ Then, in the large-N (SUSY) CPN=! model, we find an
unfamiliar renormalon singularity at v = 3/2.

@ But bion calculus — u = 2 [Fujimori et al].

Thus, no obvious semi-classical interpretation so far.
e 4D SU(N) QCD(adj.) on R® x S' = Takaura-san’s talk
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