Lorentz Symmetry Violation in the Fermion Number Anomaly with the Chiral Overlap Operator

Hiroki Makino and *Okuto Morikawa* (Kyushu Univ.) arXiv:1609.08376 [hep-lat]

1. Introduction

- QFT has succeeded as the **perturbation** theory.
- For vectorlike gauge theories, the lattice regularization gives a lacksquarenon-perturbative definition (e.g., Lattice QCD).
- No definition of non-perturbative chiral gauge theories yet

A proposal of Grabowska and Kaplan [2015, 2016]

> A 5d domain-wall lattice formulation of chiral gauge theories > A 4d lattice formulation based on the chiral overlap operator

(which is derived from the above domain-wall formulation) The fermion number anomaly in this formulation has important phenomenological implications. [Okumura & Suzuki 2016]

3. Fermion Number Anomaly

Ginsparg-Wilson relation: $\gamma_5 D_{\chi} + D_{\chi} \gamma_5 = a D_{\chi} \gamma_5 D_{\chi}$ Modifications

- γ_5 : $\hat{\gamma}_5 \equiv \gamma_5 (1 a \mathcal{D}_{\chi})$
- Chiral projection operators: $\hat{P}_{\pm} \equiv (1 \pm \hat{\gamma}_5)/2$ ullet
- Chiral components: $\hat{P}_{-}\psi_{L}(x) = \psi_{L}(x), \bar{\psi}_{L}(x)P_{+} = \bar{\psi}_{L}(x),$ ullet $\hat{P}_{+}\psi_{R}(x) = \psi_{R}(x), \bar{\psi}_{R}(x)P_{-} = \bar{\psi}_{R}(x).$ Decomposition $\psi \mathcal{D}_{\chi} \psi = \psi_L \mathcal{D}_{\chi} \psi_L + \psi_R \mathcal{D}_{\chi} \psi_R$

We discuss the continuum limit of this fermion number anomaly.

2. Chiral Lattice Formulation

To make the wave function overlap vanish, $L \to \infty$. \bullet

Combining the gradient flow (gauge covariant smearing)

Fermion number anomaly

Consider the fermion number U(1) transformation $\psi_L \to e^{i\theta} \psi_L, \bar{\psi}_L \to e^{-i\theta} \bar{\psi}_L.$ Fermion number anomaly on the lattice associated with the *left-handed fermion* [Okumura & Suzuki 2016] $\mathcal{A}_{L}^{(a)}(x) \equiv \langle \partial_{\mu} j_{L\mu}(x) \rangle$ $= \operatorname{tr}[\hat{P}_{-}(x,x) - P_{+}\delta(x,x)] = -\operatorname{tr}\hat{\gamma}_{5}(x,x)/2$ \rightarrow the continuum limit $\lim_{a \to 0} \mathcal{A}_L^{(a)}(x)$

Properties of $\mathcal{A}_{L}^{(a)}$

- Symmetry under the exchange of A and A_{\star} in parity-odd/even parts
- $\mathcal{A}_{L}^{(a)} = \mathcal{A}_{L}^{(a)\text{odd}} + \mathcal{A}_{L}^{(a)\text{even}} \to \frac{\mathcal{A}_{L}^{(a)\text{odd}}[A_{\star}, A] = +\mathcal{A}_{L}^{(a)\text{odd}}[A, A_{\star}]}{\mathcal{A}_{L}^{(a)\text{even}}[A_{\star}, A] = -\mathcal{A}_{L}^{(a)\text{even}}[A, A_{\star}]}$

• When
$$A_{\star} = A$$
, $\mathcal{A}_L^{(a)}(x)[A,A] = \operatorname{tr} \epsilon(x,x)/2$

Integral over spacetime $a^4 \sum \mathcal{A}_L^{(a)}(x) = \frac{1}{2}a^4 \sum \operatorname{tr} \epsilon(x, x)$

 q_L

- Flow time $\tau(s)$: a monotonically increasing function of sulletwith $\tau(0) = 0, \tau(L) = \infty$
- Flow equation [Lüscher 2010] ~ diffusion equation $\partial_{\tau} \mathcal{A}_{\mu}(x,s) = D_{\nu} \mathcal{F}_{\nu\mu}$
- **Boundary condition** $\mathcal{A}_{\mu}(x, s=0) = A_{\mu}(x)$

Gradient flow

 \succ The physical modes in A_{μ}

damps exponentially as the flow time increases.

 $A_{\star\mu}(x) \equiv \mathcal{A}_{\mu}(x, s = L)$

 $\mathcal{A}_{\mu}(x,s)$

 q_R

S

 \succ The right-handed fermion would **decouple** from A_{μ} .

taking the limit $L \to \infty$,

4. Discussion

In this chiral lattice formulation,

- $d'_1 \partial_\mu \operatorname{tr} \left[C^3_\mu \right] \propto$ the gauge anomaly coefficient $\operatorname{tr} T^a \{ T^b, T^c \}$.
 - Then, for the fermion number U(1), anomaly-free \rightarrow only **contributes**.
- For more general U(1) charges, anomaly-free $\rightarrow d'_1 \partial_\mu \operatorname{tr} \left[C^3_\mu \right]$ does not necessarily vanish. **Lorentz symmetry** and **gauge anomaly** are linked in this way.

In the sudden flow model,

the right-handed fermion seems not to successfully decouple, so we may have to choose a gradual flow scenario.