Lorentz Symmetry Violation in the Fermion Number Anomaly with the Chiral Overlap Operator

Hiroki Makino and Okuto Morikawa (Kyushu Univ.) arXiv:1609.08376 [hep-lat]

1. Introduction

- QFT has succeeded as the perturbation theory.
- For vectorlike gauge theories, the lattice regularization gives a non-perturbative definition (e.g., Lattice QCD).
- No definition of non-perturbative chiral gauge theories yet

A proposal of Grabowska and Kaplan [2015, 2016]
$>$ A 5d domain-wall lattice formulation of chiral gauge theories
\rightarrow A 4d lattice formulation based on the chiral overlap operator (which is derived from the above domain-wall formulation)
The fermion number anomaly in this formulation has important phenomenological implications. [Okumura \& Suzuki 2016]

We discuss the continuum limit of this fermion number anomaly.

2. Chiral Lattice Formulation

[Grabowska \& Kaplan 2015, 2016]

Domain-wall setup

[Kaplan 1992]
5d lattice space (x, s) with an extra dimension s

- Chiral zero modes are localized near two 4d domain-walls.

- To make the wave function overlap vanish, $L \rightarrow \infty$.

Combining the gradient flow (gauge covariant smearing)

- Flow time $\tau(s)$:a monotonically increasing function of s with $\tau(0)=0, \tau(L)=\infty$
- Flow equation [Lüscher 2010] \sim diffusion equation $\partial_{\tau} \mathcal{A}_{\mu}(x, s)=D_{\nu} \mathcal{F}_{\nu \mu}$
- Boundary condition $\mathcal{A}_{\mu}(x, s=0)=A_{\mu}(x)$

Gradient flow
$>$ The physical modes in A_{μ}
 damps exponentially as the flow time increases.

$$
A_{\star \mu}(x) \equiv \mathcal{A}_{\mu}(x, s=L)
$$

$>$ The right-handed fermion would decouple from A_{μ}.

Chiral overlap operator

In the model figured on the right, taking the limit $L \rightarrow \infty$, we can obtain a 4d effective theory $\mathcal{L}=\bar{\psi}(x) \mathcal{D}_{\chi} \psi(x)$
in a closed form.
The chiral overlap operator \mathcal{D}_{χ} is given by

$$
a \mathcal{D}_{\chi}=1+\gamma_{5}\left[1-\left(1-\epsilon_{\star}\right) \frac{1}{\epsilon \epsilon_{\star}+1}(1-\epsilon)\right]
$$

where we have used the sign functions

$$
\epsilon=H_{w}[A] / \sqrt{H_{w}[A]^{2}}, \quad \epsilon_{\star}=H_{w}\left[A_{\star}\right] / \sqrt{H_{w}\left[A_{\star}\right]^{2}}
$$

of the hermitian Wilson-Dirac operator

$$
H_{w}=\gamma_{5}\left[\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-\frac{1}{2} a \nabla_{\mu} \nabla_{\mu}^{*}-m\right]
$$

$\nabla_{\mu}, \nabla_{\mu}^{*}$: forward and backward gauge covariant lattice derivatives

3. Fermion Number Anomaly

```
Ginsparg-Wilson relation: \(\gamma_{5} \mathcal{D}_{\chi}+\mathcal{D}_{\chi} \gamma_{5}=a \mathcal{D}_{\chi} \gamma_{5} \mathcal{D}_{\chi}\)
Modifications
- \(\gamma_{5}: \quad \hat{\gamma}_{5} \equiv \gamma_{5}\left(1-a \mathcal{D}_{\chi}\right)\)
- Chiral projection operators: \(\hat{P}_{ \pm} \equiv\left(1 \pm \hat{\gamma}_{5}\right) / 2\)
- Chiral components: \(\hat{P}_{-} \psi_{L}(x)=\psi_{L}(x), \bar{\psi}_{L}(x) P_{+}=\bar{\psi}_{L}(x)\),
    \(\hat{P}_{+} \psi_{R}(x)=\psi_{R}(x), \bar{\psi}_{R}(x) P_{-}=\bar{\psi}_{R}(x)\).
Decomposition \(\quad \bar{\psi} \mathcal{D}_{\chi} \psi=\bar{\psi}_{L} \mathcal{D}_{\chi} \psi_{L}+\bar{\psi}_{R} \mathcal{D}_{\chi} \psi_{R}\)
```


Fermion number anomaly

Consider the fermion number $U(1)$ transformation

$$
\psi_{L} \rightarrow e^{i \theta} \psi_{L}, \bar{\psi}_{L} \rightarrow e^{-i \theta} \bar{\psi}_{L}
$$

Fermion number anomaly on the lattice associated
with the left-handed fermion [Okumura \& Suzuki 2016]

$$
\begin{aligned}
\mathcal{A}_{L}^{(a)}(x) & \equiv\left\langle\partial_{\mu} j_{L \mu}(x)\right\rangle \\
& =\operatorname{tr}\left[\hat{P}_{-}(x, x)-P_{+} \delta(x, x)\right]=-\operatorname{tr} \hat{\gamma}_{5}(x, x) / 2
\end{aligned}
$$

\rightarrow the continuum limit $\lim _{a \rightarrow 0} \mathcal{A}_{L}^{(a)}(x)$
Properties of $\mathcal{A}_{L}^{(a)}$

- Symmetry under the exchange of A and A_{\star} in parity-odd/even parts

$$
\mathcal{A}_{L}^{(a)}=\mathcal{A}_{L}^{(a) \text { odd }}+\mathcal{A}_{L}^{(a) \text { even }} \rightarrow \begin{aligned}
& \mathcal{A}_{L}^{(a) \text { odd }}\left[A_{\star}, A\right]=+\mathcal{A}_{L}^{(a) \text { odd }}\left[A, A_{\star}\right] \\
& \mathcal{A}_{L}^{(a) \text { even }}\left[A_{\star}, A\right]=-\mathcal{A}_{L}^{(a) \text { even }}\left[A, A_{\star}\right]
\end{aligned}
$$

- When $A_{\star}=A, \mathcal{A}_{L}^{(a)}(x)[A, A]=\operatorname{tr} \epsilon(x, x) / 2$
- Integral over spacetime $a^{4} \sum_{x} \mathcal{A}_{L}^{(a)}(x)=\frac{1}{2} a^{4} \sum_{x} \operatorname{tr} \epsilon(x, x)$

$$
\text { and } \frac{1}{2} \operatorname{tr} \epsilon(x, x) \xrightarrow{x}-\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma}^{x} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}\right]
$$

Result

By explicit calculation, we can find
$\left(\mathcal{D}_{\rho}=\partial_{\rho}+\left[A_{\rho}, \cdot\right]\right)$ $\lim _{a \rightarrow 0} \mathcal{A}_{L}^{(a)}=-\frac{1}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma}\left\{\operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}+F_{\star \mu \nu} F_{\star \rho \sigma}\right]\right.$ $\left.-\frac{2}{3} \partial_{\mu} \operatorname{tr}\left[C_{\nu} \mathcal{D}_{\rho} C_{\sigma}+C_{\nu} \mathcal{D}_{\star \rho} C_{\sigma}\right]\right\}$ $+\underline{d_{1}} \partial_{\mu} \operatorname{tr}\left[C_{\mu} C_{\nu} C_{\nu}\right]+\underline{d_{1}^{\prime}} \partial_{\mu} \operatorname{tr}\left[C_{\mu} C_{\mu} C_{\mu}\right]$

Lorentz Symmetry Violating Term

Adjoint variable

$$
C_{\mu}(x) \equiv A_{\star \mu}(x)-A_{\mu}(x)
$$

transforms
as the adjoint representation under the gauge transformation.

4. Discussion

In this chiral lattice formulation,

- $d_{1}^{\prime} \partial_{\mu} \operatorname{tr}\left[C_{\mu}^{3}\right] \propto$ the gauge anomaly coefficient $\operatorname{tr} T^{a}\left\{T^{b}, T^{c}\right\}$
- Then, for the fermion number $U(1)$, anomaly-free \rightarrow only \square contributes.
- For more general $U(1)$ charges, anomaly-free $\rightarrow d_{1}^{\prime} \partial_{\mu} \operatorname{tr}\left[C_{\mu}^{3}\right]$ does not necessarily vanish. Lorentz symmetry and gauge anomaly are linked in this way.

In the sudden flow model,
the right-handed fermion seems not to successfully decouple,
so we may have to choose a gradual flow scenario.

