Numerical study of the $\mathcal{N}=2$ Landau–Ginzburg model

Okuto Morikawa (Kyushu University)

O. M. and Hiroshi Suzuki, PTEP 2018 (2018) 083B05 [1805.10735]; O. M., JHEP 12 (2018) 045 [1810.02519].

Introduction

- In the IR limit, any quantum field theory is expected to become scale invariant, which would be described by conformal field theory.
- The original theory is called the Landau-Ginzburg (LG) model or LG description; e.g., $2D \mathcal{N} = 2$ Wess–Zumino (WZ) model.
 - String world sheet: N = 2 superconformal field theory (SCFT)
- Non-perturbative phenomenon
 - \rightarrow no complete proof of *conjectured* LG/SCFT correspondence.
- To this issue, lattice field theory provides an alternative approach. • Preceding numerical simulations [Kawai-Kikukawa '10, Kamata-Suzuki '11]
- ► Applying a SUSY-preserving numerical method to the WZ model, we directly measure the scaling dimension and the central charge; we obtain the results that are consistent with the conjecture.

2. Landau-Ginzburg description

- CFT on the complex plane (2D Euclidean space) is invariant under $z \to \text{holomorphic function } f(z)$, where $z, \bar{z} = x_0 \pm ix_1$.
- Virasoro algebra for generators $L_n \sim -z^{n+1}\partial/\partial z$ $(n \in \mathbb{Z})$:

$$[L_m, L_n] = (m-n)L_{m+n} + (c/12)m(m^2-1)\delta_{m+n,0},$$

where c is the central charge (center of the central extension).

- LG model: strongly interacting Lagrangian description of CFT.
- 2D $\mathcal{N}=2$ WZ model (dimensional reduction of the 4D $\mathcal{N}=1$ WZ model) is believed to provide the LG description of SCFT.

ADE-type theories

• WZ model $(\{\Phi_I\}_{I=1,...,N_\Phi};\ \partial_{z,\bar{z}}=\frac{1}{2}(\partial_0\mp i\partial_1))$

$$S = \int d^2x \sum_{I} \left[4\partial_z A_I^* \partial_{\bar{z}} A_I + \frac{\partial W(A)^* \partial W(A)}{\partial A_I^*} \frac{\partial W(A)^*}{\partial A_I} + (\bar{\psi}_1, \psi_2)_I \sum_{J} \begin{pmatrix} 2\delta_{IJ} \partial_z \frac{\partial^2 W(A)^*}{\partial A_I^* \partial A_J^*} \\ \frac{\partial^2 W(A)}{\partial A_I \partial A_J} 2\delta_{IJ} \partial_{\bar{z}} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \bar{\psi}_{\dot{2}} \end{pmatrix}_{J} \right]$$

 $\stackrel{\text{IR limit}}{\longrightarrow} \mathcal{N} = 2$ minimal model (simple and solvable SCFT model)

Algebra Superpotential WCentral charge c

$$A_n$$
 $\frac{\lambda_1}{n+1}\Phi_1^{n+1}$, $n \ge 1$ $3 - 6/(n+1)$ D_n $\frac{\lambda_1}{n-1}\Phi_1^{n-1} + \frac{\lambda_2}{2}\Phi_1\Phi_2^2$, $n \ge 3$ $3 - 6/2(n-1)$ E_7 $\frac{\lambda_1}{3}\Phi_1^3 + \frac{\lambda_2}{3}\Phi_1\Phi_2^3$ $3 - 6/18$

$$(E_6\cong A_2\otimes A_3,\ E_8\cong A_2\otimes A_4)$$

Another correspondence: LG/Calabi–Yau

e.g.,
$$\begin{cases} \text{LG model with } W = \sum_{I=1}^5 \Phi_I^5 \\ 6 \text{D Calabi-Yau manifold defined by } \sum_{I=1}^5 z_I^5 = 0 \end{cases}$$

3. Lattice formulation [Kadoh-Suzuki '09]

ullet System: finite physical box L^2 . We work in the momentum space,

$$p_{\mu}=2\pi n_{\mu}/L, \quad n_{\mu}=0,\pm 1,\ldots,\pm L/2a$$
 (Momentum cutoff).

Then, the action is given by (* denotes the convolution)

$$S = S_B + \frac{1}{L^2} \sum_{p,I,J} (\bar{\psi}_1, \psi_2)_I(-p) \begin{pmatrix} 2i\delta_{IJ} p_z & \frac{\partial^2 W(A)^*}{\partial A_I^* \partial A_J^*} * \\ \frac{\partial^2 W(A)}{\partial A_I \partial A_J} * & 2i\delta_{IJ} p_{\bar{z}} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \bar{\psi}_{\dot{2}} \end{pmatrix}_J(p),$$

$$S_B = \frac{1}{L^2} \sum_{p,I} N_I^*(-p) N_I(p), \qquad N_I(p) \equiv 2i p_z A_I(p) + \frac{\partial W(A)^*}{\partial A_I^*}(p) \\ \text{Nicolai map } (A, A^*) \to (N, N^*) \text{ ['80]}$$

• Partition function ($\{A\}_k$: solutions of the algebraic eq. (*)):

$$\mathcal{Z} = \int \prod_{\substack{|p_{\mu}| < \pi/a}} |dN(p)|^2 \underbrace{e^{-S_B}}_{\text{Gaussian}} \sum_{k} \operatorname{sign} \det \frac{\partial(N, N^*)}{\partial(A, A^*)} \Big|_{\{A\} = \{A\}_k}$$

- This formulation manifestly preserves translational inv. and SUSY.
- Numerical setup
- ① Consider $A_{2,3}$ -, $D_{3,4}$ and E_7 -type models with the couplings $a\lambda_{1,2}=0.3$
- 2 Take L/a as various even integers (typically ~ 30)
- **3** Generate ~ 640 confs. of N(p) using the Gaussian random number
- To solve Eq. (\star) numerically with respect to A, employ the Newton method

4. Scaling dimension Δ

Two-point correlation function

$$\langle \varphi_1(p)\varphi_2(-p)\rangle$$

Numerical simulation

$$=L^2 \int_{L^2} d^2x \, e^{-ipx} \, \underbrace{\langle \varphi_1(x) \varphi_2(0) \rangle}_{\text{Polations in SCE}}$$

• e.g., $\langle A(x)A^*(0)\rangle \propto 1/(x^2)^{\Delta}$

ullet Δ obtained from the fit in IR region

 $A_2, L/a = 36.$

(cf. Kawai-Kikukawa (A_2) : 0.660(11), Kamata-Suzuki (A_2) : 0.616(25)(13))

b. Central charge c

• Energy-momentum tensor $T_{\mu\nu}$ such that $T_{\mu\mu}=0$ in the UV limit:

$$T_{zz} = \frac{1}{4}(T_{00} - iT_{01} - iT_{10} - T_{22})$$

= $-4\pi\partial A^*\partial A - \pi\psi_2\partial\bar{\psi}_2 + \pi\partial\psi_2\bar{\psi}_2$, ...

• $\langle T_{zz}(x)T_{zz}(0)\rangle = c/2z^4 \to \langle T_{zz}(p)T_{zz}(-p)\rangle = L^2\pi c p_z^3/12p_{\bar{z}}$

Numerical determination of the central charge

Central charge Expected value

 $A_2 1.061(36)(34) 1$

 $A_3 1.415(36)(36) 1.5$

 $D_3 1.595(31)(41) 1.5$

 $D_4 \ 2.172(48)(39) \ 2$ $E_7 \ 2.638(47)(59) \ 2.666...$

- 1.09(14)(31)
- "Effective central charge" $(D_3, L/a = 44)$

- Various fitted regions (n = 1, 2,...): $\frac{2\pi}{L}n \le |p| \le \frac{2\pi}{L}(n+1)$
- $c_{\rm IR} \approx 1.5$
 - $\Leftrightarrow c_{\text{UV}} \approx 6 = 3N_{\Phi}$ (free theory)
- Analogous to Zamolodchikov C-function

Zamolodchikov C-function

• General forms $(\tau = \ln z\bar{z})$:

$$\langle T_{zz}(x)T_{zz}(0)\rangle = F(\tau)/z^4 \xrightarrow{\text{IR}} c/2z^4,$$

 $\langle T_{zz}(x)T_{z\bar{z}}(0)\rangle = G(\tau)/4z^3\bar{z} \to 0, \quad \langle T_{z\bar{z}}(x)T_{z\bar{z}}(0)\rangle = H(\tau)/z^2\bar{z}^2 \to 0$

• Zamolodchikov C-function: $C(\tau) \equiv 2F(\tau) - G(\tau) - 3H(\tau)/8$. Conservation laws and unitarity imply $dC/d\tau \leq 0$ (c-theorem).

- We numerically studied the IR behavior of $2\mathsf{D}\,\mathcal{N}=2\,\mathsf{WZ}$ model, and determined Δ and c.
- This study supports the conjectured LG correspondence.
- We hope that this numerical approach will be useful to investigate superstring theory via the LG/Calabi-Yau correspondence.