Infrared renormalon in the supersymmetric $\mathbb{C} P^{N-1}$ model

on $\mathbb{R} \times S^{1}$

Kosuke Ishikawa, Okuto Morikawa, Akira Nakayama, Kazuya Shibata,

Hiroshi Suzuki and Hiromasa Takaura (Kyushu U.) Based on arXiv:1908.00373 [hep-th]

1. Introduction

- Perturbative series in quantum field theory are typically divergent
- The number of the Feynman diagrams grows factorially k !.
- Amplitude of a single Feynman diagram grows factorially $\beta_{0}^{k} k$!. This is known as the renormalon ['t Hooft 1979].
- It is claimed that such ambiguities
disappear thanks to semi-classical objects.
$0 \leftarrow$ Instanton [Bogomolny 1980, Zinn-Justin 1981]
$0 \leftarrow$ Bion [Argyres-Ünsal 2012, ...]?
(a pair of fractional instanton and fractional anti-instanton)
- Semi-classical argument on $\mathbb{R}^{d-1} \times S^{1}\left[\right.$ Radius $\left.R \ll(\Lambda \text { scale })^{-1}\right]$
- It is important to clarify the renormalon structure on $\mathbb{R}^{d-1} \times S^{1}$. - We study the $2 \mathrm{D} \mathcal{N}=(2,2) \mathbb{C} P^{N-1}$ model in the large N limit.

Borel prescription

- For the perturbative series of a quantity $f(\lambda)$,

$$
f(\lambda) \sim \sum_{k=0}^{\infty} f_{k}(\lambda / 4 \pi)^{k+1}
$$

we define the Borel transform by

$$
B(u) \equiv \sum_{k=0}^{\infty}\left(f_{k} / k!\right) u^{k}
$$

- The Borel sum is given by

$$
f(\lambda) \equiv \int_{0}^{\infty} d u B(u) e^{-4 \pi u / \lambda}
$$

- If f_{k} grows factorially $f_{k} \sim b^{-k} k$! as $k \rightarrow \infty$,

$$
B(u)=1 /(1-u / b) .
$$

This possesses a pole singularity at $u=b$.

- If $b>0$, the Borel sum becomes ill-defined; one should avoid the pole by contour deformation.

- This induces the imaginary ambiguity proportional to $\sim e^{-4 \pi b / \lambda}$.
- Bion action $=\frac{4 \pi}{\lambda}$ in the present system $\rightarrow u=$ positive integers.

3. $2 \mathrm{D} \mathcal{N}=(2,2) \mathbb{C} P^{N-1}$ model

- The system in terms of the homogeneous coordinates of $\mathbb{C} P^{N-1}$

$$
\begin{aligned}
S=\frac{N}{\lambda} \int d^{2} x[& \partial_{\mu} \bar{z}^{A} \partial_{\mu} z^{A}+\bar{\chi}^{A} \gamma_{\mu}\left(\partial_{\mu}-i j_{\mu}\right) \chi^{A}-j_{\mu} j_{\mu} \\
& \left.-\left[\left(\bar{\chi}^{A} \chi^{A}\right)^{2}-\left(\bar{\chi}^{A} \gamma_{5} \chi^{A}\right)^{2}-\left(\bar{\chi}^{A} \gamma_{\mu} \chi^{A}\right)^{2}\right] / 4\right],
\end{aligned}
$$

where $j_{\mu}=(1 / 2 i)\left(\bar{z}^{A} \partial_{\mu} z^{A}-z^{A} \partial_{\mu} \bar{z}^{A}\right), \gamma_{5}=-i \gamma_{x} \gamma_{y}, A, B$ etc. run over $1, \ldots, N$, and we impose $\bar{z}^{A} z^{A}=1$ and $\bar{z}^{A} \chi_{ \pm}^{A}=0$.

- (In)Homogeneous coordinates are given by [Cremmer-Scherk 1978]
$\varphi^{a} \equiv z^{a} / z_{N}, \quad \psi_{ \pm}^{a} \equiv\left(1 / z^{N}\right) \chi_{ \pm}^{a}-\left[z^{a} /\left(z^{N}\right)^{2}\right] \chi_{ \pm}^{N} \quad(a=1, \ldots, N-1)$.
The above action can be obtained by dimensional reduction of $4 \mathrm{D} \mathcal{N}=1$
Wess-Zumino model with the Kähler potential $K=(N / \lambda) \ln \left(1+\bar{\Phi}^{a} \Phi^{a}\right)$.
- \mathbb{Z}_{N} invariant twisted boundary condition ($m_{a}=a / N R, m_{N}=0$)

$$
\begin{aligned}
z^{A}(x, y+2 \pi R) & =e^{2 \pi i m_{A} R} z^{A}(x, y) \\
\chi_{ \pm}^{A}(x, y+2 \pi R) & =e^{2 \pi i m_{A} R} \chi_{ \pm}^{A}(x, y)
\end{aligned}
$$

- We introduce auxiliary fields as [Lindström-Roček 1983],

$$
S^{\prime}=\frac{N}{\lambda} \int d^{2} x\left[-f+\bar{\sigma} \sigma+\bar{z}^{A}\left(-D_{\mu} D_{\mu}+f\right) z^{A}\right.
$$

where $D_{\mu}=\partial_{\mu}+i A_{\mu}$, and $P_{ \pm}=\left(1 \pm \gamma_{5}\right) / 2$.
$-\sim 4 \mathrm{D}$ theory with $K=\bar{Z}^{A} Z^{A} e^{2 V}-2 V\left[U(1)\right.$ gauge field $\left.V \ni\left(A_{\mu}, \sigma, \eta, f\right)\right]$

- We impose the periodic boundary conditions for all the auxiliary fields, and the Fourier transformation is defined by
$\phi(x)=\int \frac{d p_{x}}{2 \pi} \frac{1}{2 \pi R} \sum_{p_{y}=n / R, n \in \mathbb{Z}} e^{i p x} \phi(p)$.

4. Effective action

- Fluctuations of the auxiliary fields around the large N saddle point:

$$
A_{\mu} \equiv A_{\mu 0}+\delta A_{\mu}, \quad f \equiv f_{0}+\delta f, \quad \sigma \equiv \sigma_{0}+\delta \sigma, \quad \eta_{0}=0
$$

where $f_{0}=\bar{\sigma}_{0} \sigma_{0}=\mu^{2} e^{-4 \pi / \lambda_{R}(\mu)}=\Lambda^{2}$ as $N \rightarrow \infty$.

- We apply dimensional regularization as $2 \rightarrow D=2-2 \epsilon$, and introduce

$$
\lambda=\left(\frac{e^{\gamma} E^{2} \mu^{2}}{4 \pi}\right)^{\epsilon} \lambda_{R}(\mu)\left[1+\frac{\lambda_{R}(\mu) 1}{4 \pi} \frac{1}{\epsilon}\right]^{-1} \quad \rightarrow \quad \mu^{2} \frac{d}{d \mu^{2}} \lambda_{R}(\mu)=-\frac{\beta_{0}}{4 \pi} \lambda_{R}^{2}(\mu)
$$

- The effective action to the quadratic order in the fluctuations:

$$
\begin{aligned}
& S_{\text {eff }}^{\text {quadratic }} \\
& =\frac{N}{4 \pi} \int \frac{d p_{x}}{2 \pi} \frac{1}{2 \pi R} \sum_{p_{y}} \\
& \quad \times\left(\frac{1}{2}\left(p^{2} \delta_{\mu \nu}-p_{\mu} p_{\nu}\right) \mathcal{L}_{\infty}(p) \delta A_{\mu}(p) \delta A_{\nu}(-p)\right. \\
& \quad+\frac{1}{2 \Lambda^{2}} \mathcal{L}_{\infty}(p)\left[\left(p^{2}+4 \Lambda^{2}\right) \delta R(p) \delta R(-p)+p^{2} \delta I(p) \delta I(-p)\right] \\
& \quad-\frac{1}{2} \mathcal{L}_{\infty}(p) \delta f(p) \delta f(-p) \\
& \quad-2 \bar{\eta}\left(i p p+2 \sigma_{0} P_{+}+2 \bar{\sigma}_{0} P_{-}\right) \mathcal{L}_{\infty}(p) \eta(-p) \\
& \left.\quad+\epsilon_{\mu \nu} p_{\mu} \mathcal{L}_{\infty}(p)\left[\delta A_{\nu}(p) \delta I(-p)-\delta I(p) \delta A_{\nu}(-p)\right]+\mathcal{H}\right),
\end{aligned}
$$

- Here $\delta R \equiv(1 / 2)\left[\bar{\sigma}_{0} \delta \sigma+\sigma_{0} \delta \bar{\sigma}\right], \delta I \equiv(1 / 2 i)\left[\bar{\sigma}_{0} \delta \sigma-\sigma_{0} \delta \bar{\sigma}\right],|\mathcal{H}| \lesssim e^{-\pi \Lambda R N}$, and $\mathcal{L}_{\infty}(p) \equiv \frac{2}{\sqrt{p^{2}\left(p^{2}+4 \Lambda^{2}\right)}} \ln \left(\frac{\sqrt{p^{2}+4 \Lambda^{2}}+\sqrt{p^{2}}}{\sqrt{p^{2}+4 \Lambda^{2}}-\sqrt{p^{2}}}\right)=\frac{2}{p^{2}} \ln \left(p^{2} / \Lambda^{2}\right)+\mathcal{O}\left(\Lambda^{2}\right)$. As $N R \Lambda \rightarrow \infty, S_{\text {eff }} \mid \mathbb{R} \times S^{1} \rightarrow S_{\text {eff }} \mathbb{R}^{2}$ in [D'Adda-Di Vecchia-Lüscher 1979].
- A_{μ} propagator in the $N R \Lambda \rightarrow \infty$ limit is given by
$\left\langle\delta A_{\mu}(p) \delta A_{\nu}(q)\right\rangle=\frac{4 \pi}{N} \frac{\delta_{\mu \nu}+4 \Lambda^{2} p_{\mu} p_{\nu} /\left(p^{2}\right)^{2}}{\left(p^{2}+4 \Lambda^{2}\right) \mathcal{L}_{\infty}(p)} 2 \pi \delta\left(p_{x}+q_{x}\right) 2 \pi R \delta_{p_{y}+q_{y}, 0}$

5. R renormalon in gluon condensate

- Gluon condensate in the large N limit

$$
\begin{aligned}
& \left\langle F_{\mu \nu}(x) F_{\mu \nu}(x)\right\rangle \\
& =\frac{4 \pi}{N} \int \frac{d p_{x}}{2 \pi} \frac{1}{2 \pi R} \sum_{p_{y}} \frac{2 p^{2}}{\left(p^{2}+4 \Lambda^{2}\right) \mathcal{L}_{\infty}(p)}
\end{aligned}
$$

- Positive powers of $\Lambda^{2} \sim e^{-4 \pi / \lambda_{R}}$ are regarded as the non-perturbative part; $\langle F F\rangle$ in perturbation theory is given by

$$
\begin{aligned}
& \left\langle F_{\mu \nu}(x) F_{\mu \nu}(x)\right\rangle_{\mathrm{PT}}=\left.\frac{4 \pi}{N} \int \frac{d p_{x}}{2 \pi} \frac{1}{2 \pi R} \sum_{p_{y}} \frac{p^{2}}{\ln \left(p^{2} / \Lambda^{2}\right)}\right|_{\text {expansion in } \lambda_{R}} \\
& \quad=\frac{4 \pi}{N} \sum_{k=0}^{\infty} \int \frac{d p_{x}}{2 \pi} \frac{1}{2 \pi R} \sum_{p_{y}} p^{2}\left[-\ln \left(p^{2} / \mu^{2}\right)\right]^{k}\left[\frac{\lambda_{R}(\mu)}{4 \pi}\right]^{k+1}
\end{aligned}
$$

Note that $\ln \left(p^{2} / \Lambda^{2}\right)=\ln \left(p^{2} / \mu^{2}\right)+4 \pi / \lambda_{R}(\mu)$.

- Only the $p_{y}=0$ term can be singular. Focusing on the IR region by introducing a UV cutoff $q\left(p^{2} \leq q^{2}\right)$,

$$
B_{p_{y}=0}(u)=\frac{4 \pi}{N} \frac{1}{2 \pi R} \int_{\left|p_{x}\right| \leq q} \frac{d p_{x}}{2 \pi} p_{x}^{2}\left(\frac{\mu^{2}}{p_{x}^{2}}\right)^{u}=-\frac{\mu^{2 u}}{\pi R N} \frac{q^{3-2 u}}{u-3 / 2}
$$

- The Borel singularity at $u=3 / 2$ gives rise to the renormalon:

$$
\left\langle F_{\mu \nu}(x) F_{\mu \nu}(x)\right\rangle_{\text {renormalon }}= \pm \pi i \frac{\Lambda^{3}}{\pi R N} .
$$

Peculiar to the compactified space $\mathbb{R} \times S^{1}$!

- On the other hand, on $\mathbb{R}^{2}\left[(1 / R) \sum_{p_{y}} \rightarrow \int d p_{y}\right]$, we have

$$
\left.+\bar{\chi}^{A}\left(\not D+\bar{\sigma} P_{+}+\sigma P_{-}\right) \chi^{A}+2 \bar{\eta} \bar{z}^{A} \chi^{A}+2 \bar{\chi}^{A} z^{A} \eta\right]
$$

$$
\left\langle F_{\mu \nu}(x) F_{\mu \nu}(x)\right\rangle_{\text {renormalon on } \left.\mathbb{R}^{2} \text { (at } u=2\right)}= \pm \pi i \Lambda^{4} / N .
$$

Conclusion

- We find an unfamiliar renormalon singularity at $u=3 / 2$.
- Despite large N volume independence of the integrand, that is shifted by effective reduction as $\int d p^{d} \rightarrow \int d p^{d-1}$ [1909.09579] - cf. $S U(N)$ QCD (adj.) [Anber-Sulejmanpasic 2014; 1909.05489]
- No obvious semi-classical interpretation so far.
- Bion calculations with $N R \Lambda \ll 1$ [Fujimori et al.]

