Lattice realization of the axial U(1) non-invertible symmetry

Okuto Morikawa (森川億人)

Osaka University

16/2/2024 YITP Seminar

- Y. Honda, OM, S. Onoda and H. Suzuki, [arXiv:2401.01331v3 [hep-lat]].
- (Main) Results in latter part of this talk given by Tanizaki-san

Symmetry

- Symmetry: fundamental tool in physics
 - Universal applications to high energy physics, condensed matter physics and mathematics
- Noether theorem and conservation law

Sym :
$$\phi\mapsto\phi'$$
; $S(\phi)=S(\phi'),$ $\partial_{\mu}j^{\mu}=0$ Charge $Q\equiv\int j^0d^{D-1}x$

- Structure in the nature: Lorentz symmetry, CPT theorem, Gauge invariance, Internal symmetries
- More aspects of Symmetry
 - ► Landau theory: phase transition (or vacuum structure) from viewpoint of symmetry
 - Symmetry breaking: quantum anomaly, spontaneous breaking

Recent generalization of symmetry

- Generalized global symmetry [Gaiotto-Kapustin-Seiberg-Willet '14]
 - Coupled with topological field theory (TQFT)
 - ★ Changing topological structure without changing local dynamics [Kapustin-Seiberg '14]:
 - ★ Nontrivial information by using generalized 't Hooft anomaly matching (see later)
- An example: Higher-form symmetry

▶ Time slice
$$\rightarrow$$
 $(D-p-1)$ -dim surface

• p-form symmetry $G^{[p]}$ (codim p+1)

$$\sum_{D-p-1} Q \equiv \int_{\Sigma_{D-p-1}} \star j^{(p+1)}, \quad U_{lpha}(\Sigma) = e^{ilpha Q}$$

Topological under deformation of Σ

► Transforming a "loop" operator W(C) $W(C) \mapsto U(\Sigma)W(C)$

$$= e^{i\alpha\#(\Sigma,C)}W(C)$$
 w/ linking #

E.g., Center in YM theory and 't Hooft anomaly

- Center symmetry: $\mathbb{Z}_{N}^{[1]}$ intersection of Σ & ℓ

 - $e^{\frac{2\pi i}{N}k} \in \mathbb{Z}_N \subset SU(N)$: $U_\ell \mapsto e^{\frac{2\pi i}{N}k\#(\Sigma,\ell)}U_\ell$
- Gauging the center symmetry

$$S \sim \sum \operatorname{Tr} e^{-rac{2\pi i}{N} B_p} U_p$$

 B_p : 2-form gauge field assoc. $\mathbb{Z}_N^{[1]}$

invariant under
$$U_\ell\mapsto e^{rac{2\pi i}{N}\lambda_\ell}U_\ell,\ B_p\mapsto B_p+(d\lambda)_p$$

- ▶ Usually, topo. charge $Q \sim \int F\tilde{F} \in \mathbb{Z}$ under topo. sectors \star θ term: θQ (strong *CP* problem, axion physics, sign problem)
- $Q \sim \int B\tilde{B} \in \frac{1}{N}\mathbb{Z}$; 't Hooft anomaly $\mathcal{Z}_{\theta+2\pi}[B] = e^{-2\pi i Q} \mathcal{Z}_{\theta}[B]$

[Kapustin-Thorngren '13, Gaiotto-Kapustin-Komargodski-Seiberg '17]

 $\overset{\text{global}}{\Rightarrow}$ 't Hooft twisted boundary condition [79]: $U_{n+\mathbf{L}\hat{\nu},\mu}=g_{n,\nu}^{-1}U_{n,\mu}g_{n+\hat{\mu},\nu}$

gauge transf
$$z_{\mu\nu} = \sum_{l=0}^{\infty} B_{l} \log l$$
 $z_{\mu\nu} = \sum_{l=0}^{\infty} B_{l} \log l$ $z_{\mu\nu} = \sum_{l=0}^{\infty} B_{l} \log l$

[van Baal 82] cf. [Edwards-Heller-Narayanan, de Forcrand-Jahn,

Fodor-Holland-Kuti-Nógrádi-Schroeder, Kitano-Suyama-Yamada, Itou, ...]

Our enterprise: Fully lattice regularized framework

- Topology on lattice without spacetime continuity?
 - ▶ Instead, what is \mathbb{Z}_N field in continuum? [Kapustin–Seiberg '14]
 - * $\mathbb{Z}_N^{[q]}$ gauge field: U(1) field $B^{(q)}$ with constraint $NB^{(q)}=dB^{(q-1)}$ from charge-N Higgs
 - * There are some subtleties: Many fields needed (which is essential?), different cohomological structure (\mathbb{Z}_N vs U(1)), What happens due to divergence in QFT...
 - ► Lattice construction of fiber bundle and *Q* [Lüscher '84]
- Fully lattice regularized framework:
 - ► Fractional *Q* and 't Hooft anomaly [Abe-OM-Suzuki, Abe-OM-Onoda-Suzuki-Tanizaki]
 - ► Higher-group symmetry under instanton-sum modification [Kan-OM-Nagoya-Wada, Abe-OM-Onoda]
 - Magnetic operators and "Witten effect" [Abe-OM-Onoda-Suzuki-Tanizaki]
 - ★ [See seminar slide at KEK Theory Center 3/10/2023]

Generalized symmetry: Non-invertibility

Lie Algebras in

- \bullet Particle Physics by H. Georgi "Group theory is the study of symmetry."
- Based on recent developments of generalized symmetry, symmetry is not necessarily described by group!
 - **1** Associativity: (ab)c = a(bc) for $\forall a, b, c$
 - 2 Identity element: $\exists e \text{ s.t. } ae = ea = a$
 - **1** Inverse element: $\exists b \text{ s.t. } ab = ba = e \ (b = a^{-1})$

So far, symmetry possesses invertibility.

• Now, for "naively unitary" symmetry operators $\{U_{\alpha}=e^{i\alpha Q}\}$, there can exist Non-invertible symmetry in some systems

$$\mathcal{D} imes\mathcal{D}^\dagger
eq 1$$

[Many studies; See recent lectures by Schäfer-Nameki, Shao]

• Let's consider non-invertible symmetry for axial U(1) transf, and then, in this talk, our aim is to realize it on lattice!

Axial U(1) symmetry in continuum theory

- ullet Quantum anomaly o loss of symmetry ABJ anomaly: no conserved current for axial U(1) symmetry
- For fractional rotation angles, conserved, gauge-invariant and topological non-invertible symmetry exists
 [Córdova-Ohmori '22, Choi-Lam-Shao '22]
- Naive symmetry operator

$$d\star j=rac{1}{4\pi^2}F\wedge F, \qquad U_{lpha}(M)=\exp\left(rac{ilpha}{2}\int_M\star j
ight)$$

is not topological

• Let us consider topological modification by Chern-Simons:

$$\hat{U}_{\alpha}(M) = \exp\left[\frac{i\alpha}{2}\int\left(\star j - \frac{1}{4\pi^2}A\wedge dA\right)\right]$$

But gauge non-invariant!!

• For $\alpha = \frac{2\pi}{N}$, $-i \int_M \frac{1}{4\pi N} A \wedge dA$ is still gauge non-invariant because of fractional CS level 1/N

Fractional quantum Hall effect and non-invertibility

• TQFT (fractional quantum Hall state) as

$$i\int_{M}\left(\frac{N}{4\pi}a\wedge da+\frac{1}{2\pi}a\wedge dA\right)$$

which is gauge-invariant with fractional CS level

- ightharpoonup a: additional dynamical U(1) gauge field
- ▶ Naively, this action is (level-N CS) + $(A_{\mu}J^{\mu})$; a = -A/N "Substituting" this into action reproduces $-i\int \frac{1}{4\pi N}A \wedge dA$
- To modify naive symmetry operator $U_{\alpha}(M)$, we use this action at boundary M instead of naive CS term:

$$\mathcal{D}_{1/N}(M) = \exp\left[i\int\left(rac{\pi}{N}\star j + rac{N}{4\pi}a\wedge da + rac{1}{2\pi}a\wedge dA
ight)
ight]$$

• Gauge invariant and topological; no inverse operator

$$\mathcal{D}_{1/ extsf{N}} imes \mathcal{D}_{1/ extsf{N}}^\dagger = \mathcal{C}
eq 1$$

 \triangleright \mathcal{C} : condensation operator

Lattice realization?

- We want to realize lattice axial U(1) non-invertible symmetry
- Problems:
 - Lattice Chern–Simons theory?
 - ★ cf. Villain formulation of U(1) GT [Jacobson–Sulejmanpasic '23] ⇒ non-Abelian generalization
 - (Anomaly-free) Chiral lattice gauge theory?
 - ★ For U(1) gauge theory, Lüscher's construction ['98]
 - ★ See [Intensive lecture by Kikukawa-san @YITP, 2/19-21]
 - Anomalous gauge theory? (Continuation of studying it?)
 - ★ E.g., [Forster-Nielsen-Ninomiya '80, Harada-Tsutsui '87, ...]
 - ★ Lattice framework: e.g., [Kikukawa-Suzuki '07]
- ? Prescription by Karasik ['22] instead of [Choi–Lam–Shao '22]
 - "Gauge average" (similar to Harada—Tsutsui formalism)

$$ilde{U}_{lpha}(M) = \int \mathrm{D}\phi \ \hat{U}_{lpha}(M)|_{A o A - d\phi}$$

- ► There are some subtleties → other method by Tanizaki-san
- Construct (fermion measure in) anomalous chiral gauge theory

$U(1) \times U(1)'$ lattice gauge theory: Gauge

- Vector $U(1) \ni u(x,\mu)$ (physical) and Chiral $U(1)' \ni U(x,\mu)$ (non-dynamical) gauge group
- Expectation value with magnetic flux m:

$$\label{eq:continuity} \left\langle \mathcal{O} \right\rangle = \frac{1}{\mathcal{Z}} \int \mathrm{D} \textit{\textbf{u}} \, e^{-\textit{\textbf{S}}_{\mathrm{G}}} \, \left\langle \mathcal{O} \right\rangle_{\mathrm{F}}, \quad \left\langle \mathcal{O} \right\rangle_{\mathrm{F}} = \textit{\textbf{w}}[\textit{\textbf{m}}] \int \mathrm{D} \psi \mathrm{D} \bar{\psi} \, e^{-\textit{\textbf{S}}_{\mathrm{F}}} \mathcal{O}.$$

ullet (Unconventional) Gauge action $S_{
m G}$ following [Lüscher],

$$\mathcal{S}_{\mathrm{G}} = rac{1}{4g_0^2} \sum_{x \in \Gamma} \sum_{\mu,
u} \mathcal{L}_{\mu
u}(x)$$

$$\mathcal{L}_{\mu
u}(x) = egin{cases} [f_{\mu
u}(x)]^2 \left\{1 - rac{[f_{\mu
u}(x)]^2}{\epsilon^2}
ight\}^{-1} & ext{if } |f_{\mu
u}(x)| < \epsilon, \ \infty & ext{otherwise}. \end{cases}$$

for $0 < \epsilon < \pi/3$, where the field strength of $u(x, \mu)$ is

$$f_{\mu\nu}(x) = \frac{1}{i} \ln u(x,\mu) u(x+\hat{\mu},\nu) u(x+\hat{\nu},\mu)^{-1} u(x,\nu)^{-1}.$$

$U(1) \times U(1)'$ lattice gauge theory: Fermion

• Two left-handed Weyl fermions $\psi_{1,2}$ possess U(1) charges

$$(e_1, e_1') = (+1, -1),$$
 $(e_2, e_2') = (-1, -1).$

• Since overlap Dirac operator fulfills Ginsparg-Wilson relation

$$\gamma_5 D + D\gamma_5 = D\gamma_5 D,$$

chirality projection operators are defined by

$$\hat{\gamma}_5 = \gamma_5 (1 - D), \qquad \hat{P}_{\pm} = \frac{1}{2} (1 \pm \hat{\gamma}_5), \qquad P_{\pm} = \frac{1}{2} (1 \pm \gamma_5).$$

Fermion action is

$$S_{\mathrm{F}} = \sum_{x \in \Gamma} \bar{\psi}(x) D\psi(x) = \sum_{x \in \Gamma} \bar{\psi}(x) P_{+} D\hat{P}_{-} \psi(x)$$

• Fermion integration measure is

$$\mathrm{D}\psi\mathrm{D}\bar{\psi}=\prod_{j}\mathrm{d}c_{j}\prod_{k}\mathrm{d}\bar{c}_{k},\,\psi(x)=\sum_{j}v_{j}(x)c_{j},\,\bar{\psi}(x)=\sum_{k}\bar{c}_{k}\bar{v}_{k}(x)$$

Basis $v_i(x)$ are in projected space $\hat{P}_-v_i=v_i$, $(v_k,v_i)=\delta_{kj}$

Construction of fermion integration measure

- ullet Basis vectors depend on gauge field due to \hat{P}_-
- Under variation δ of gauge field, δv_j is not determined...
 - ► Requirements: (single-valued, gauge-inv) smooth, & local
- Under infinitesimal variations $\delta_{\eta} u(x, \mu) = i \eta_{\mu}(x) u(x, \mu)$, $\delta_{\eta} U(x, \mu) = i \eta'_{\mu}(x) U(x, \mu)$,

$$\delta_{\eta} \ln \det \bar{v} D v = (\operatorname{term \ from \ } \delta_{\eta} D) + (\operatorname{term \ from \ } \delta_{\eta} v).$$

Second term is called measure term (measure currents)

$$-i\mathfrak{L}_{\eta} = \sum_{j} (\mathsf{v}_{j}, \delta_{\eta} \mathsf{v}_{j}) := -i \sum_{\mathsf{x} \in \Gamma} \left[\eta_{\mu}(\mathsf{x}) j_{\mu}(\mathsf{x}) + \eta_{\mu}'(\mathsf{x}) J_{\mu}(\mathsf{x}) \right].$$

- ► Consistent/covariant anomaly: $A_{cons} = \frac{1}{3}A_{cov}$ for Abelian GT
- ► To remedy this issue, we need to include counterterm [E.g., see Fujikawa—Suzuki Chap. 6]

Construction of measure currents

• For
$$\eta_{\mu}(x) = -\partial_{\mu}\omega(x)$$
, $\eta'_{\mu}(x) = -\partial_{\mu}\Omega(x)$, $(\gamma = -\frac{1}{32\pi^2})$

$$\delta_{\eta}\langle\mathcal{O}\rangle_{F} = \langle\delta_{\eta}\mathcal{O}\rangle_{F} - 2i\gamma\sum_{x\in\Gamma}\Omega(x)\epsilon_{\mu\nu\rho\sigma}f_{\mu\nu}(x)f_{\rho\sigma}(x+\hat{\mu}+\hat{\nu})\langle\mathcal{O}\rangle_{F}.$$
(*)

- To prove this, measure currents fulfill the following conditions:
 - depend smoothly and locally on gauge fields
 - 2 satisfy "integrability condition" ($[\delta_{\eta}, \delta_{\zeta}]$)
 - 3 satisfy "anomalous conservation law" $(\partial^* j, \partial^* J)$
- We find non-local dependence of $U(x, \mu)$; but $U(x, \mu)$ is external
- In infinite volume, one can construct the currents explicitly w.r.t.

$$u(x,\mu) = e^{i\mathfrak{a}_{\mu}(x)}, \quad |\mathfrak{a}_{\mu}(x)| \leq \pi(1+8\|x\|), \quad f(x) = d\mathfrak{a}(x),$$
 $U(x,\mu) = e^{i\mathfrak{A}_{\mu}(x)}, \quad |\mathfrak{A}_{\mu}(x)| \leq \pi(1+8\|x\|), \quad F(x) = d\mathfrak{A}(x),$

as follows:

Backup: Construction of measure currents $L \to \infty$

$$\begin{split} \mathfrak{L}_{\eta}^{\mathsf{xinv}} &= i \int_{0}^{1} ds \ \mathsf{Tr}(\hat{P}_{-}[\partial_{s}\hat{P}_{-}, \delta_{\eta}\hat{P}_{-}]) + \int_{0}^{1} ds \ \sum_{x \in \mathbb{Z}^{4}} \left[\eta_{\mu}(x) k_{\mu}(x) + \mathfrak{a}_{\mu}(x) \delta_{\eta} k_{\mu}(x) \right] \\ &+ \int_{0}^{1} ds \ \sum_{x \in \mathbb{Z}^{4}} \left[\eta_{\mu}'(x) K_{\mu}(x) + \mathfrak{A}_{\mu}(x) \delta_{\eta} K_{\mu}(x) \right] \\ &- \frac{4}{3} \gamma \sum_{x \in \mathbb{Z}^{4}} \epsilon_{\mu\nu\rho\sigma} \left\{ \eta_{\mu}'(x) \mathfrak{a}_{\nu}(x + \hat{\mu}) f_{\rho\sigma}(x + \hat{\mu} + \hat{\nu}) \right. \\ &+ \mathfrak{A}_{\mu}(x) \delta_{\eta} \left[\mathfrak{a}_{\nu}(x + \hat{\mu}) f_{\rho\sigma}(x + \hat{\mu} + \hat{\nu}) \right] \right\} \\ &:= \sum_{x \in \mathbb{Z}^{4}} \left[\eta_{\mu}(x) j_{\mu}^{\mathsf{xinv}}(x) + \eta_{\mu}'(x) J_{\mu}^{\mathsf{xinv}}(x) \right], \\ \mathfrak{L}_{\eta}^{\mathsf{xnon-inv}} &= 4 \gamma \sum_{x \in \mathbb{Z}^{4}} \epsilon_{\mu\nu\rho\sigma} \left\{ \eta_{\mu}'(x) \mathfrak{a}_{\nu}(x + \hat{\mu}) f_{\rho\sigma}(x + \hat{\mu} + \hat{\nu}) \right. \\ &+ \mathfrak{A}_{\mu}(x) \delta_{\eta} \left[\mathfrak{a}_{\nu}(x + \hat{\mu}) f_{\rho\sigma}(x + \hat{\mu} + \hat{\nu}) \right] \right\} \\ &:= \sum_{x \in \mathbb{Z}^{4}} \left[\eta_{\mu}(x) j_{\mu}^{\mathsf{xnon-inv}}(x) + \eta_{\mu}'(x) J_{\mu}^{\mathsf{xnon-inv}}(x) \right]. \end{split}$$

Introduction of topological defect

• $U(x,\mu)=e^{\pm i\alpha/2}$ for 3D closed surface $\widetilde{\mathcal{M}}_3$; otherwise 1

• From Eq. (*), anomalous Ward-Takahashi identity is

$$\begin{split} \langle \mathcal{O} \rangle_{\mathrm{F}}^{\widetilde{\mathcal{M}}_3} &= \exp \left[-i\alpha \gamma \sum\nolimits_{x \in \mathcal{M}_4} \epsilon_{\mu\nu\rho\sigma} f_{\mu\nu}(x) f_{\rho\sigma}(x+\hat{\mu}+\hat{\nu}) \right] \langle \mathcal{O}^\alpha \rangle_{\mathrm{F}}, \\ \text{where } \psi(x)^\alpha &= e^{-i\alpha/2} \psi(x), \ \bar{\psi}(x)^\alpha = \bar{\psi}(x) e^{i\alpha/2} \ \text{for } x \in \mathcal{M}_4 \end{split}$$

• Symmetry operator may be written by

$$\left\langle \mathit{U}_{lpha}(\widetilde{\mathcal{M}}_{3})\mathcal{O}
ight
angle _{\mathrm{F}}:=\left\langle \mathcal{O}
ight
angle _{\mathrm{F}}^{\widetilde{\mathcal{M}}_{3}}\exp\left[ilpha\gamma\sum\nolimits_{x\in\mathcal{M}_{4}}\epsilon_{\mu
u
ho\sigma}\mathit{f}_{\mu
u}(x)\mathit{f}_{
ho\sigma}(x+\hat{\mu}+\hat{
u})
ight]$$

Gauge average and projection

- ullet U_lpha is not invariant under gauge transf on boundary variables
- An operator defined by average over gauge transf

$$\left\langle \widetilde{U}_{\alpha}(\widetilde{\mathcal{M}}_{3})\mathcal{O}\right\rangle_{\mathrm{F}} := \left\langle \mathcal{O}\right\rangle_{\mathrm{F}}^{\widetilde{\mathcal{M}}_{3}} \int \mathrm{D}\lambda \, \mathrm{e}^{\left[i\alpha\gamma\sum_{\mathbf{x}\in\mathcal{M}_{4}}\epsilon_{\mu\nu\rho\sigma}f_{\mu\nu}(\mathbf{x})f_{\rho\sigma}(\mathbf{x}+\hat{\mu}+\hat{\nu})\right]^{\lambda}}$$

[] $^{\lambda}$ indicates $u(x,\mu) \to \lambda(x)u(x,\mu)\lambda(x+\hat{\mu})^{-1}$

Smoothness condition

• Winding k_{ν} can be defined under this gauge non-inv condition

- $|k_{\nu}| < \frac{\delta}{2\pi}L$ with lattice size L; if $L \to \infty$, $\sum_{k=-\infty}^{\infty} e^{ikx} \propto \sum_{n=-\infty}^{\infty} \delta(x-2\pi n)$
- Gauge average implies (S^1_μ)

$$\delta\left(rac{lpha}{2\pi}rac{1}{4\pi}\sum_{\mathbf{x}\in\mathcal{M}_2^
u}\epsilon_{\mu
u
ho\sigma}f_{
ho\sigma}(\mathbf{x})-\mathbb{Z}
ight)$$

- $\stackrel{\alpha}{\triangleright} \frac{\alpha}{2\pi}$ irrational: no magnetic flux
- $\widetilde{U}(\widetilde{\mathcal{M}}_3) = U(\widetilde{\mathcal{M}}_3)P(\widetilde{\mathcal{M}}_3)$
 - P for allowed magnetic fluxes
 on the lattice 16/2/2024 @YITP

Some subtleties in Karasik prescription on lattice

- ullet We constructed non-invertible symmetry operator \ddot{U} following Karasik in lattice gauge theory
 - Non-locality of $U(x, \mu)$ in fermion integration measure
 - ▶ Gauge non-invariant constraint for gauge transf; but irrelevant in continuum limit?
 - Non-intrinsically 3D construction in reference to auxiliary 4D bulk
 - (Are relative weights correct? Really topological?)
- Instead of CS, lattice \mathbb{Z}_N TQFT (thanks to Tanizaki-san)
 - ▶ Set rotation angles α as $2\pi p/N$ (p, $N \in \mathbb{Z}$)
 - ▶ It is natural to consider 3D level-N BF theory

$$S_{\mathrm{BF}} = -\frac{ip\pi}{N} \sum_{x \in \mathcal{M}_3} \epsilon_{\mu\nu\rho} \left\{ b_{\mu}(\tilde{x}) \left[\partial_{\nu} c(x+\hat{\mu}) - \frac{1}{2} z_{\nu\rho}(x+\hat{\mu}) \right] - \frac{1}{2} z_{\mu\nu}(x) c_{\rho}(x+\hat{\mu}+\hat{\nu}) \right\}$$

- ★ Dual lattice \tilde{x} ; $f = \delta a + 2\pi z$, $-\pi < a_{\mu}(x) \equiv \frac{1}{2} \ln u(x, \mu) \leq \pi$
- For simplicity, $S_{\rm BF} = \frac{-ip\pi}{N} \sum [b(\delta c z) z \cup c]$

16/2/2024 @YITP

Symmetry operator in terms of \mathbb{Z}_N TQFT

- Consider $\mathcal{Z}_{\mathcal{M}_3}[z] = \frac{1}{N^s} \int \mathrm{D}b \mathrm{D}c \ e^{-S_{\mathrm{BF}}}$, s: # of sites $\in \mathcal{M}_3$
- ullet From summation over b, $\mathcal{Z}_{\mathcal{M}_3}[z]=0$ if $\sum_{\mathcal{M}_2}z
 eq 0$ mod N
 - ▶ If z = 0, $\mathcal{Z}_{\mathcal{M}_3}[0] = N^{b_2-1}$, where b_2 : 2nd Betti number of \mathcal{M}_3
 - If $z = \delta \nu \mod N$,

$$\mathcal{Z}_{\mathcal{M}_3}[z] = \exp\left(-\frac{ip\pi}{N}\sum_{\mathcal{M}_3}\delta\nu\cup\nu\right)\mathcal{Z}_{\mathcal{M}_3}[0]$$

• Redefine symmetry operator on arbitrary 3-cycle $\widetilde{\mathcal{M}}_3$:

$$\left\langle \widetilde{U}_{\frac{2\pi p}{N}}(\widetilde{\mathcal{M}}_3)\mathcal{O} \right\rangle_{\mathrm{F}} = \left\langle \mathcal{O} \right\rangle_{\mathrm{F}}^{\widetilde{\mathcal{M}}_3} \exp \left[-\frac{ip}{4\pi N} \sum_{\mathcal{M}_3} (a \cup f + 2\pi z \cup a) \right] \mathcal{Z}_{\mathcal{M}_3}[z]$$

- ▶ Then, topological: $\left\langle \widetilde{U}_{\frac{2\pi p}{N}}(\widetilde{\mathcal{M}'_3})\mathcal{O} \right\rangle_{\mathrm{F}} = \left\langle \widetilde{U}_{\frac{2\pi p}{N}}(\widetilde{\mathcal{M}}_3)\mathcal{O} \right\rangle_{\mathrm{F}}$
- ► Gauge invariant: cancellation between exp and $\mathcal{Z}_{\mathcal{M}_3}$ under $a \mapsto a \delta \phi 2\pi I$ and $z \mapsto z + \delta I$

Fusion rules

• From $\mathcal{Z}_{\mathcal{M}_3}^{(p,N)}[z]\mathcal{Z}_{-\mathcal{M}_3}^{(p,N)}[z] = \mathcal{Z}_{\mathcal{M}_3}[0]\mathcal{C}_{\mathcal{M}_3}[z]$, condensation operator:

$$\mathcal{C}_{\mathcal{M}_3}[z] = rac{1}{\mathit{N}^s} \int \mathrm{D}b \mathrm{D}c \, e^{b(\delta c - z)}$$

• For different p_1 and p_2 (assuming $gcd(p_1 + p_2, N) = 1)$

$$ilde{U}_{2\pi
ho_1/N} ilde{U}_{2\pi
ho_2/N} = \mathcal{Z}_{\mathcal{M}_3}[0] ilde{U}_{2\pi (
ho_1 +
ho_2)/N}$$

• More generally $(\gcd(p_1, N_1) = 1, \gcd(p_2, N_2) = 1, \gcd(N[p_1/N_1 + p_2/N_2], N) = 1$ with $N = \operatorname{lcm}(N_1, N_2)$,

$$\tilde{U}_{2\pi p_1/N_1} \tilde{U}_{2\pi p_2/N_2} = \frac{\mathcal{Z}_{\mathcal{M}_3}^{(N_1)}[0] \mathcal{Z}_{\mathcal{M}_3}^{(N_2)}[0]}{\mathcal{Z}_{\mathcal{M}_3}^{(N)}[0]} \tilde{U}_{2\pi(p_1/N_1 + p_2/N_2)}$$

Summary

- Generalized symmetries have been developed in this decade
 - Axial U(1) non-invertible symmetry
- Standing on a fully regularized framework: lattice gauge theory
 - ▶ Generalized Lüscher's construction of chiral lattice gauge theory
 - ► Construction of fermion measure: for dynamical fields, smooth and local; for external $U(x, \mu)$, non-local (unphysical)
- Karasik prescription
 - ► Under gauge non-invariant constraint and in terms of 4D bulk, we constructed symmetry operator
- Level-N BF theory (thanks to Tanizaki-san)
 - By using his technique, we can construct symmetry operator for rational angles, and evaluate fusion rules
- Questions
 - Physical phenomena (e.g., monopole?)
 - Generalization to non-Abelian gauge theory
 - ► Some aspects of anomalous/chiral lattice gauge theory (w/ boundary)

Backup: Gauge average and smooth gauge transf

- ullet U_lpha is not invariant under gauge transf on boundary variables
- An operator defined by average over gauge transf

$$\begin{split} \left\langle \widetilde{U}_{\alpha}(\widetilde{\mathcal{M}}_{3})\mathcal{O} \right\rangle_{\mathrm{F}} \\ := \left\langle \mathcal{O} \right\rangle_{\mathrm{F}}^{\widetilde{\mathcal{M}}_{3}} \int \mathrm{D}\lambda \, \exp \left[i\alpha\gamma \sum\nolimits_{x \in \mathcal{M}_{4}} \epsilon_{\mu\nu\rho\sigma} f_{\mu\nu}(x) f_{\rho\sigma}(x + \hat{\mu} + \hat{\nu}) \right]^{\lambda} \end{split}$$

• $[]^{\lambda}$ indicates gauge transf on boundary variables

$$u(x,\mu) \to \lambda(x)u(x,\mu)\lambda(x+\hat{\mu})^{-1}, \ \lambda(x) = e^{-i\phi(x)}, \ -\pi < \phi(x) \le \pi.$$

• Impose smoothness (gauge non-inv) condition on possible λ : for $-\pi < \frac{1}{2} \ln \left[e^{-i\phi(x)} e^{i\phi(x+\hat{\mu})} \right] = \partial_{\mu}\phi(x) + 2\pi I_{\mu}(x) < \pi$,

$$\sup_{x,\mu} |\partial_{\mu}\phi(x) + 2\pi I_{\mu}(x)| \leq \pi$$

$$\sup_{x,\mu} |\partial_{\mu}\phi(x) + 2\pi I_{\mu}(x)| < \delta, \qquad 0 < \delta < \pi/6.$$

Then $f_{\mu\nu}(x) \rightarrow f_{\mu\nu}(x) + \partial_{\nu}\phi(x+\hat{\mu}) + 2\pi I_{\nu}(x+\hat{\mu})$.

• Gauge-inv of CS term is realized by this condition on the lattice.

Backup: Sum over winding number and projection

- Assume $\widetilde{\mathcal{M}}_3=\mathcal{T}^3$ is perpendicular to $\hat{\mu}$; $\widetilde{\mathcal{M}}_3=S^1 imes\widetilde{\mathcal{M}}_2^{
 u}$
- Introduce "scalar potential" $\varphi(x)$ as $I_{\nu}(x) = \partial_{\nu}\varphi(x)$
- Winding on a cycle (ν direction) provides additional integer k_{ν} to φ ; $|k_{\nu}| < \frac{\delta}{2\pi}L$ with lattice size L
- \sum ff acquires $4\pi k_{\nu} \sum_{\mathbf{x}+\hat{\mu}\in\mathcal{M}_{3},\mathbf{x}_{\nu}=0} \epsilon_{\mu\nu\rho\sigma} \left[f_{\rho\sigma}(\mathbf{x}+\hat{\mu}) + f_{\rho\sigma}(\mathbf{x}) \right]$
- Gauge average implies that

$$\int \mathrm{D}\lambda \, e^{8\pi i\alpha\gamma k_{\nu} \sum_{\mathbf{x}\in\mathcal{M}_{2}^{\nu}} \epsilon_{\mu\nu\rho\sigma} f_{\rho\sigma}(\mathbf{x})} \text{ and } \sum_{k=-\infty}^{\infty} e^{ik\mathbf{x}} = 2\pi \sum_{n=-\infty}^{\infty} \delta(\mathbf{x} - 2\pi n),$$

and then
$$\delta\left(\frac{\alpha}{2\pi}\frac{1}{4\pi}\sum_{x\in\mathcal{M}_2^{\nu}}\epsilon_{\mu\nu\rho\sigma}f_{\rho\sigma}(x)-\mathbb{Z}\right)$$
 if $L\to\infty$.

- $ightharpoonup \alpha/(2\pi)$ is irrational: no magnetic flux
- $\alpha/(2\pi)$ is rational (p/N): $\frac{1}{2\pi} \int_{\mathcal{M}_2} da = N\mathbb{Z}$
- $\widetilde{U}(\widetilde{\mathcal{M}}_3) = U(\widetilde{\mathcal{M}}_3)P(\widetilde{\mathcal{M}}_3)$, P is a projection operator for allowed magnetic fluxes