論文

国際誌
2020年8月14日

Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets.

Nature communications
  • Stephanie A Harmon
  • Thomas H Sanford
  • Sheng Xu
  • Evrim B Turkbey
  • Holger Roth
  • Ziyue Xu
  • Dong Yang
  • Andriy Myronenko
  • Victoria Anderson
  • Amel Amalou
  • Maxime Blain
  • Michael Kassin
  • Dilara Long
  • Nicole Varble
  • Stephanie M Walker
  • Ulas Bagci
  • Anna Maria Ierardi
  • Elvira Stellato
  • Guido Giovanni Plensich
  • Giuseppe Franceschelli
  • Cristiano Girlando
  • Giovanni Irmici
  • Dominic Labella
  • Dima Hammoud
  • Ashkan Malayeri
  • Elizabeth Jones
  • Ronald M Summers
  • Peter L Choyke
  • Daguang Xu
  • Mona Flores
  • Kaku Tamura
  • Hirofumi Obinata
  • Hitoshi Mori
  • Francesca Patella
  • Maurizio Cariati
  • Gianpaolo Carrafiello
  • Peng An
  • Bradford J Wood
  • Baris Turkbey
  • 全て表示

11
1
開始ページ
4080
終了ページ
4080
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41467-020-17971-2

Chest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19 associated lung disease. Artificial intelligence (AI) has the potential to aid in rapid evaluation of CT scans for differentiation of COVID-19 findings from other clinical entities. Here we show that a series of deep learning algorithms, trained in a diverse multinational cohort of 1280 patients to localize parietal pleura/lung parenchyma followed by classification of COVID-19 pneumonia, can achieve up to 90.8% accuracy, with 84% sensitivity and 93% specificity, as evaluated in an independent test set (not included in training and validation) of 1337 patients. Normal controls included chest CTs from oncology, emergency, and pneumonia-related indications. The false positive rate in 140 patients with laboratory confirmed other (non COVID-19) pneumonias was 10%. AI-based algorithms can readily identify CT scans with COVID-19 associated pneumonia, as well as distinguish non-COVID related pneumonias with high specificity in diverse patient populations.

リンク情報
DOI
https://doi.org/10.1038/s41467-020-17971-2
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/32796848
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429815
ID情報
  • DOI : 10.1038/s41467-020-17971-2
  • PubMed ID : 32796848
  • PubMed Central 記事ID : PMC7429815

エクスポート
BibTeX RIS