
Bernoulli 30(2), 2024, 983–1006
https://doi.org/10.3150/23-BEJ1621

Malliavin calculus techniques for local
asymptotic mixed normality and their
application to hypoelliptic diffusions
MASAAKI FUKASAWA1,a and TEPPEI OGIHARA2,3,b

1Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560–8531,
Japan, afukasawa@sigmath.es.osaka-u.ac.jp
2Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113–8656, Japan, bogihara@mist.i.u-tokyo.ac.jp
3Risk Analysis Research Center, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo
190-8562, Japan

We study sufficient conditions for a local asymptotic mixed normality property of statistical models. We accommo-
date the framework of Jeganathan [Sankhyā Ser. A 44 (1982) 173–212] to a triangular array of variable dimension
to, in particular, treat high-frequency observations of stochastic processes. When observations are smooth in the
Malliavin sense, with the aid of Malliavin calculus techniques by Gobet [Bernoulli 7 (2001) 899–912], we further
give tractable sufficient conditions which do not require Aronson-type estimates of the transition density function.
The transition density function is even allowed to have zeros. For an application, we prove the local asymptotic
mixed normality property of hypoelliptic diffusion models under high-frequency observations, in both complete
and partial observation frameworks. The former and the latter extend previous results for elliptic diffusions and for
integrated diffusions, respectively.

Keywords: Hypoelliptic diffusion processes; integrated diffusion processes; local asymptotic mixed normality;
L2 regularity condition; Malliavin calculus; partial observations

1. Introduction
In the study of statistical inference for parametric models, asymptotic efficiency plays a key role when
we consider the asymptotic optimality of estimators. This notion was first studied for models that satisfy
local asymptotic normality (LAN); Hájek [8] showed the convolution theorem, and Hájek [9] showed
the minimax theorem under the LAN property. Both theorems give different concepts of asymptotic ef-
ficiency. For statistical models with the extended notion of local asymptotic mixed normality (LAMN),
Jeganathan [11,12] showed the convolution theorem and the minimax theorem.

The LAMN property for discretely observed elliptic diffusion processes on a fixed interval was
shown by Gobet [6], which in particular implies the asymptotic efficiency of the maximum-likelihood-
type estimator proposed by Genon-Catalot and Jacod [2]. For further results related to diffusion pro-
cesses on a fixed interval, see Gloter and Jacod [4] (LAN for noisy observations of diffusion processes
with deterministic diffusion coefficients), Gloter and Gobet [3] (LAMN for integrated diffusion pro-
cesses), Ogihara [17] (LAMN for nonsynchronously observed diffusion processes), and Ogihara [18]
(LAN for noisy, nonsynchronous observations of diffusion processes with deterministic diffusion coef-
ficients). For the proof of the LAMN property, Gobet [6] introduced Malliavin calculus techniques that
were effective for elliptic diffusions. One of the key ingredients of Gobet’s scheme was to control the
asymptotics of log-likelihood ratios by using that the transition density functions of elliptic diffusions
are estimated from below and above by Gaussian density functions. Such estimates are known as Aron-
son’s estimate. A key ingredient in Gloter and Gobet [3] to apply Gobet’s scheme to one-dimensional
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integrated diffusion models (that are two-dimensional hypoelliptic diffusions) was indeed to prove
Aronson’s estimate under those models. Aronson’s estimate for a more general multi-dimensional hy-
poelliptic diffusions has recently been shown by Menozzi [15]. In general, an Aronson-type estimate is
however difficult to obtain, which has been an obstacle for an application of Gobet’s scheme to more
general high-frequency observation models.

The original approach by Jeganathan [11] to show a LAMN property in an abstract framework, in
constrast, did not need estimates for the transition density functions and instead, assumed the so-called
L2 regularity condition. Our idea in this paper is to accommodate Jaganathan’s framework to high-
frequency observations and then to provide an alternative scheme to Gobet’s which works without
Aronson-type estimates. The results in [11] are not directly applicable to high-frequency observations
because they require a framework of triangular arrays. Further, for integrated diffusions, to follow
an idea in [3] to deal with their hidden Markov structure, we need to consider a triangular array of
expanding data blocks.

This paper studies four topics. First, we extend Theorem 1 in [11] so that it can be applied to statistical
models with triangular array observations appearing in the above diffusion models with high-frequency
observations. Second, we show that the new scheme based on the L2 regularity condition can be ap-
plied under several conditions described via notions of Malliavin calculus. The new scheme is highly
compatible with Gobet’s scheme. Indeed, the L2 regularity condition is satisfied when observations are
smooth in the Malliavin sense, and the inverse of Malliavin matrix and its derivatives have moments
(see (B1), (B2), and Theorem 2.2). Moreover, if observations admit an Euler–Maruyama approxima-
tion, then the sufficient condition for the LAMN property is simplified (Theorem 2.3). Third, by using
these schemes, we prove the LAMN property for diffusion processes with degenerate diffusion co-
efficient (hypoelliptic diffusions). Finally, we deal with partial observations of hypoelliptic diffusion
processes.

Our new schemes can be applied to general statistical models without transition density estimates.
In particular, they can potentially be applied even in situations where the transition density function
may have zero points. First, this scheme allows a simplified proof of the results in Gobet [6]. Moreover,
this scheme yields two interesting results. The first one is an extension of the results in Gobet [6]
to a wider class including hypoelliptic diffusion processes. The second one is an extension of the
LAMN property for one-dimensional integrated diffusion processes in Gloter and Gobet [3] to the
multi-dimensional case. We deal with the integrated diffusion process model in the general framework
of partial observations for hypoelliptic diffusion processes. We find that efficient asymptotic variance is
the same for an integrated diffusion process model and for a diffusion process model, which is exactly
twice as large as for the complete observations of both the diffusion and its integrated processes (see
Remark 2.11). Because our scheme does not require transition density estimates, we expect these ideas
to be useful also for jump-diffusion process models or Lévy driven stochastic differential equation
models. However, we left this for future work.

Our study of integrated diffusion models is motivated by experimental observations of single
molecules (see e.g. Li et al. [20]), behind which are Langevin-type molecular dynamics

�Y = b( �Y,Y ) + a( �Y ) �W .

Here Y represents the position of a molecule (or a particle) and �W is white noise. When a = 0 this
reduces to the Newtonian equation of classical dynamics. The system can be written as an integrated
diffusion

dYt = Xtdt,

dXt = b(Xt,Yt )dt + a(Xt )dWt .
(1.1)
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These models have recently attracted much attention in various contexts, and parametric inference from
high-frequency observations of (X,Y ) under ergodic assumptions has been studied in Melnykova [14]
and Gloter and Yoshida [5]. Our LAMN property enables us to discuss optimality in estimating the co-
efficient a based on high-frequency observations of the position Y , without any ergodicity assumption.

The rest of this paper is organized as follows. In Section 2, we introduce our main results, namely, the
extended scheme using the L2 regularity condition, the scheme via Malliavin calculus techniques, and
the LAMN property of degenerate diffusion processes. Section 3 contains details of Malliavin calculus
techniques. We combine the extended scheme of the L2 regularity condition with the approaches of
Gobet [6] and Gloter and Gobet [3].

Notations

• S̄ denotes the closure for a set S in a topological space.
• B(X) denotes the Borel σ-algebra of a topological space X .
• [V]l denotes the l-th element of a vector V .
• For a k × l matrix A,

– [A]i j denotes (i, j) element of A,
– ‖A‖op denotes the operator norm of A,
– Ker(A) = {x ∈ Rl; Ax = 0},
– Im(A) = {Ax; x ∈ Rl},
– A+ denotes the Moore–Penrose inverse,
– |A| denotes the Frobenius norm, |A| =

√∑
i j |[A]i j |2,

– A� denotes the transpose matrix of A.
• We often regard a p-dimensional vector v as a p × 1 matrix.
• Ik denotes the unit matrix of size k.
• Ok ,l denotes a k × l matrix with each element equal to zero.
• For a vector x = (x1, · · · , xk), ∂lx = ( ∂l

∂xi1 · · ·∂xil
)k
i1 , · · · ,il=1.

• We regard ∂xv = (∂xi vj )i, j as a matrix for vectors x = (xi)i and v = (vj )j .

2. Main results

2.1. The LAMN property via the L2 regularity condition

In this subsection, we extend Theorem 1 in Jeganathan [11] to statistical models of triangular array
observations so that it can be applied to high-frequency observations of stochastic processes.

For each n ≥ 1, let {Pθ,n}θ∈Θ be a family of probability measures defined on a measurable space
(Rn,Fn), where Θ is an open subset of Rd .

Condition (L). The following two conditions are satisfied for {Pθ,n}θ∈Θ.

1. There exists a sequence {Vn(θ0)} of Fn-measurable d-dimensional vectors and a sequence
{Tn(θ0)} of Fn-measurable d × d symmetric matrices such that

Tn(θ0) is nonnegative definite Pθ0,n-almost surely (2.1)

for any n ≥ 1, and

log
dPθ0+rnh,n

dPθ0,n
− h�Vn(θ0) +

1
2

h�Tn(θ0)h → 0 (2.2)
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in Pθ0 ,n-probability for any h ∈ Rd , where {rn}∞n=1 is a sequence of non-random, symmetric,
and positive definite (p.d. in short) matrices.

2. There exists an almost surely nonnegative definite random matrix T(θ0) such that

L(Vn(θ0),Tn(θ0)|Pθ0 ,n) → L(T1/2(θ0)W,T(θ0)),

where W is a d-dimensional standard normal random variable independent of T(θ0).

The following definition of the LAMN property is Definition 1 in [11].

Definition 2.1. The sequence of the families {Pθ,n}θ∈Θ (n ≥ 1) satisfies the LAMN condition at θ =
θ0 ∈ Θ if Condition (L) is satisfied, Tn(θ0) is p.d. Pθ0,n-almost surely for any n ≥ 1, and T(θ0) is p.d.
almost surely.

For proving the LAMN property for diffusion processes using a localization technique such as
Lemma 4.1 in [6], Condition (L) is useful because (L) for the localized model often implies (L) for
the original model. See the proofs of Theorems 2.4 and 2.5 for the details.

Remark 2.1. When Condition (L) is satisfied and T(θ0) is p.d. almost surely, by setting

T̃n(θ0) = Tn(θ0)1{Tn(θ0) is p.d.} + Id1{Tn(θ0) is not p.d.}, (2.3)

the LAMN property holds with T̃n(θ0) and Vn(θ0).

Let (mn)∞n=1 be a sequence of positive integers. Let {Rn, j}mn

j=1 be a sequence of complete, separable

metric spaces, and let Θ be an open subset of Rd . Let Rn =Rn,1 × · · · ×Rn,mn . We consider statistical
experiments (Rn,B(Rn), {Pθ,n}θ∈Θ). Let Xj = Xn, j :Rn →Rn, j be the natural projection, X́j = X́n, j =

(X1, . . . ,Xj ), F0 = Fn,0 = {∅,Rn}, and Fj = Fn, j = σ(X́j ) for 1 ≤ j ≤ mn. Suppose that there exists a
σ-finite measure μj = μn, j on Rn, j such that Pθ,n(X1 ∈ ·) � μ1 and Pθ,n(Xj ∈ ·| X́j−1 = x́j−1) � μj for
all x́j−1 ∈ Rn,1 × · · · ×Rn, j−1, 2 ≤ j ≤ mn. Let Eθ = Eθ,n denote the expectation with respect to Pθ,n,
and let pj = pn, j be the conditional density functions defined by

p1(θ) =
dPθ,n(X1 ∈ ·)

dμ1
:Rn,1 → R, pj(θ) =

dPθ,n(Xj ∈ ·| X́j−1)
dμj

:Rn, j → R

for 2 ≤ j ≤ mn. Then we can see that for g :Rn,1 × . . .Rn, j → R,∫
Rn , j

pj(θ)g(X́j−1, xj)dμj(xj ) = Eθ [g(X́j−1,Xj )|Fj−1]. (2.4)

Remark 2.2. In this section, we consider the general framework of non-Markovian models such that
the conditional density functions pj depend on X́j−1. Although diffusion processes are Markov pro-
cesses, there appear some non-Markovian models in statistics for diffusion processes, for example, the
partial observation models for hypoelliptic diffusion processes in Section 2.4 of this paper, and the
model for diffusion processes with market microstructure noise in Gloter and Jacod [4]. The partial
observation models become non-Markovian due to hidden components. To show the LAMN property
for the partial observation models in this paper, we consider Markovian augmented models obtained
by adding some observations, and we apply the results in this section to the augmented model, and
therefore, a Markovian setting is sufficient in this case. On the other hand, in Gloter and Jacod [4], they
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consider ‘superexperiments’ obtained by adding some observations and ‘subexperiments’ obtained by
reducing observations, to show the LAN property for diffusion process model with market microstruc-
ture noise. They show the LAN property of the original model by showing the LAN property for
both ‘superexmeriments’ and ‘subexperiments’. ‘Subexperiments’ are non-Markovian, and therefore,
the non-Markovian scheme to show the LAN property is required in such a setting.

Assumption (A1). There are a sequence {rn}∞n=1 of d × d symmetric and p.d. matrices and a measur-
able function �ξn, j(θ0, ·) : Rn,1 × · · · ×Rn, j → Rd for each 1 ≤ j ≤ mn and n ∈ N such that for every
h ∈ Rd ,

mn∑
j=1

Eθ0

[ ∫
[ξn, j(θ0,h) −

1
2

h�rn �ξj (θ0)]2dμj

]
→ 0 (2.5)

as n →∞, where ξn, j(θ0,h) =
√

pj(θ0 + rnh) −
√

pj (θ0) and �ξj (θ0) = �ξn, j(θ0, X́j−1, ·): Rn, j → Rd .

Condition (A1) is the L2 regularity condition. Jeganathan [11] established a scheme (Theorem 1)
with the L2 regularity condition to show the LAMN property, that has the advantage of not requir-
ing estimates for the transition density functions. To illustrate this, we first review the conventional
approach for diffusion processes in Gobet [6]. If pj is smooth with respect to θ and pj � 0, then the
log-likelihood ratio is rewritten as

log
dPθ′,n

dPθ,n
=

mn∑
j=1

log
pj (θ ′)
pj(θ)

=

mn∑
j=1

(θ ′ − θ)�
∫ 1

0

∂θpj

pj
(tθ ′ + (1 − t)θ)dt .

To show the LAMN property, we must identify the limit distribution of this function under Pθ,n. Doing
so requires estimates for density ratios with different probability measures, which are not easy to obtain
for stochastic processes in general. Gobet [6] dealt with this problem for discretely observed diffusion
processes by using estimates from below and above by Gaussian density functions and show the LAMN
property of that model.

On the other hand, by setting �ξj (θ0) = ∂θpj(θ0)pj(θ0)−1/2 and θh = θ0+rnh for h ∈ Rd , if pj ∈ C2(Θ)
and pj(θth) � 0 for any t ∈ [0,1] μj-a.e., then we obtain∫

[ξn, j(θ0,h) −
1
2

h�rn �ξj (θ0)]2dμj

=

∫ [
h�rn

∫ 1

0

∂θpj (θth)
2
√

pj (θth)
dt − 1

2
h�rn

∂θpj(θ0)√
pj (θ0)

] 2

dμj

=

∫ [
h�rn

2

∫ 1

0

∫ t

0

(
∂2
θ pj(θsh)√
pj(θsh)

−
∂θpj(∂θpj)�

2p3/2
j

(θsh)
)

dsdtrnh
] 2

dμj

(2.6)

≤ 1
4

sup
0≤s≤1

Eθsh

[{
h�rn

(
∂2
θ pj(θsh)
pj (θsh)

−
∂θpj(∂θpj )�

2p2
j

(θsh)
)

rnh
}2



Fj−1

]
.

In the right-hand side of the above inequality, the value θsh of the parameter is the same for the prob-
ability measure of expectation and pj in the integrand, and therefore we do not need estimates for the
transition density ratios. Thus, a scheme with the L2 regularity condition does not require estimates
for the transition density function. This is an advantage, and this scheme can be widely applicable to
degenerate diffusion processes including partial observation models.
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Define

ηj =

(
�ξj (θ0)√
pj (θ0)

1{p j (θ0)�0}

)
(Xj ).

We typically set �ξj (θ0) = ∂θpjp
−1/2
j (θ0) if pj ∈ C2(Θ) and pj(θ0) � 0 as seen above. In this case, ηj can

be simplified as ηj = ∂θpj/pj(θ0).
Assumption (A2). Eθ0[|ηj |2 |Fj−1] <∞ and Eθ0[ηj |Fj−1] = 0, Pθ0 ,n-almost surely for every j ≥ 1.
Assumption (A3). For every ε > 0 and h ∈ Rd ,

∑mn

j=1 Eθ0[|h�rnηj |21{ |h�rnη j |>ε }] → 0.

Assumption (A4). For every h ∈ Rd , there exists a constant K > 0 such that

sup
n≥1

mn∑
j=1

Eθ0[|h
�rnηj |2] ≤ K .

Let

Tn = rn
mn∑
j=1

Eθ0[ηjη
�
j |Fj−1]rn and Vn = rn

mn∑
j=1

ηj . (2.7)

Assumption (A5). There exists a random d× d symmetric matrix T such that T is nonnegative definite
almost surely and L((Vn,Tn)|Pθ0 ,n) → L(T1/2W,T), where W is a d-dimensional standard normal
random variable, and W and T are independent.

Assumption (P). T in (A5) is p.d. almost surely.

Conditions (A1)–(A4) correspond to (2.A.1), (2.A.2), (2.A.4), and (2.A.5) in [11], respectively. Con-
dition (A5) ensures Point 2 of Condition (L). For the sequential observations in [11], convergence of
rn
∑mn

j=1 ηj always holds by virtue of Hall [10] (see (2.3) in [11]). However, the results of [10] cannot
be applied to the triangular array observations, so we instead assume (A5) for our scheme. To check
(A5), the results in Sweeting [19] are useful. Moreover, it is not difficult to check (A5) for statistical
models of discretely observed diffusion processes by using a martingale central limit theorem. See, for
example, Theorems 2.4 and 2.5 and their proofs.

Theorem 2.1. Assume (A1)–(A5). Then (L) holds true with Tn and Vn in (2.7) for the family {Pθ,n}θ,n
of probability measures. If further (P) is satisfied, then {Pθ,n}θ,n satisfies the LAMN condition at θ = θ0
with T̃n in Remark 2.1.

The proof is given in Section A of the supplementary material [1].

Remark 2.3. We assumed that rn is symmetric and p.d. because this assumption is made in the defi-
nition of the LAMN property in Jeganathan [11] (Definition 1). However, we can see that Theorem 2.1
holds even if rn is a nondegenerate asymmetric matrix. In that case, even though the assumptions of
convolution theorem (Corollary 1) in [11] are not satisfied, the convolution theorem in Hájek [8] is
satisfied when local asymptotic normality is satisfied (i.e., T in (A5) is non-random) and the operator
norm of rnr�n converges to zero.

2.2. The LAMN property via Malliavin calculus techniques

Gobet [6,7] used Malliavin calculus techniques to show the LAMN property for discretely observed
diffusion processes. Gloter and Gobet [3] developed Gobet’s scheme into a more general one and
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showed the LAMN property for a one-dimensional integrated diffusion process. These approaches re-
quire estimates for transition density functions by Gaussian density functions. Our alternative approach
introduces tractable sufficient conditions to show the LAMN property for smooth observations in the
Malliavin sense, by combining with a scheme with the L2 regularity condition in Section 2.1. In partic-
ular, we can show the L2 regularity condition under (B1) and (B2), which are related to the smoothness
of observations and estimates for the inverse of the Malliavin matrix (Theorem 2.2). If further, obser-
vations admit a Gaussian approximation like the Euler–Maruyama approximation, then the sufficient
conditions for the LAMN property are simplified as in Theorem 2.3.

We assume that Θ is convex and that mn in Section 2.1 satisfies that mn →∞ as n →∞. Let (εn)∞n=1
be a sequence of positive numbers and (Ω,F ,P) be a probability space. We set rn = εnId for rn in Sec-
tion 2.1. Let (knj )

mn

j=0 be an increasing sequence of nonnegative integers such that kn0 = 0. Hereinafter,

we abbreviate knj as simply k j . Let Nn = kmn and Xn,θ
j be an Rk j−k j−1 -valued random variable on

(Ω,F ,P) for 1 ≤ j ≤ mn. Let Pθ,n be the induced probability measure by {Xn,θ
j }mn

j=1 on (RNn ,B(RNn ))
and Fj ,n = {A × RNn−k j |A ∈ B(Rk j )} ⊂ B(RNn ). For each 1 ≤ j ≤ mn, we adopt the notation of Nu-
alart [16]. Specifically, let Hj be a real separable Hilbert space and Wj = {Wj (h),h ∈ Hj } be an isonor-
mal Gaussian process defined on a complete probability space (Ωj,Gj,Q j ). We assume that Gj is
generated by Wj . Even though these objects possibly depend on n, we omit the dependence in our
notation. Let δj be the Hitsuda–Skorokhod integral (the divergence operator), Dj be the Malliavin–
Shigekawa derivative, and Sj = { f (Wj(h1), · · · ,Wj (hk )); k ≥ 1,hi ∈ Hj (i = 1, · · · , k), f ∈ C∞(Rk)}. For
a nonnegative integer k and p ≥ 1, ‖·‖k ,p denotes the operator on Sj defined by

‖F‖k ,p =
[
Ej [|F |p] +

k∑
l=1

Ej [‖Dl
jF‖p

H⊗l
j

]
] 1/p

,

where Ej denotes the expectation with respect to Q j . Let Dk ,p
j be the completion of Sj with respect

to the distance d(F,G) := ‖F − G‖k ,p . For general properties of Wj , Dj , and δj , see Nualart [16].
Let Fn,θ, j , x́ j−1 be an Rk j−k j−1 -valued random variable on (Ωj,Gj ) such that Q jF−1

n,θ, j , x́ j−1
= P(Xn,θ

j ∈

·| X́n,θ
j−1 = x́j−1), where X́n,θ

j−1 = {Xn,θ
l

} j−1
l=1 and x́j−1 ∈ Rk j−1 . We assume that Fn,θ, j , x́ j−1 is Fréchet dif-

ferentiable with respect to θ on Lp(Ωj ) for any p > 1 and denote its derivative by ∂θFn,θ, j , x́ j−1 =

(∂θ1 Fn,θ, j , x́ j−1, · · · , ∂θd Fn,θ, j , x́ j−1)�. We often omit the parameter x́j−1 in Fn,θ, j , x́ j−1 and write Fn,θ, j .
Let k̄n =maxj(k j − k j−1).

Remark 2.4. The dimension k j − k j−1 of state space depends on n because we apply Theorem 2.3 to a
sequence of block observations (defined in (C.1) (C.2)) in Section C of the supplementary material [1],
to obtain the LAMN property for partial observation models. In these models, k j − k j−1 depends on a
slowly divergent sequence (en)∞n=1.

We assume the following conditions.

Assumption (B1). ∂lθ [Fn,θ, j]i ∈ ∩p>1D
4−l,p
j for any n, θ, j,i,0 ≤ l ≤ 3, and

sup
n,i, j , x́ j−1,θ

‖∂lθ [Fn,θ, j]i ‖4−l,p <∞

for p > 1.
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Assumption (B2). The matrix Kj (θ) = (〈Dj [Fn,θ, j]k,Dj [Fn,θ, j]l〉Hj )k ,l is invertible almost surely for
any j, x́j−1 and θ, and there exists a sequence {αn}∞n=1 of positive numbers such that αn ≥ 1 for n ∈ N,

sup
i,l, j , x́ j−1,θ

‖[K−1
j (θ)]il ‖2,8 ≤ αn, and ε2

n k̄4
n

√
mnα

2
n → 0 (2.8)

as n →∞.

In (B2), mn corresponds to the number of (block) observations, k̄n corresponds to the maximum
of the dimensions of the observations, εn corresponds to the convergence rate, and αn controls the
nondegeneracy of the matrix Kj(θ). The rate ε2

n k̄4
n
√

mnα
2
n in (2.8) appears in the calculation of the left-

hand side of (2.5). Therefore, the convergence in (2.8) is required to demonstrate the convergence in
(A1). In the statistical model of discrete observations (Xk/n)nk=0 of the m-dimensional nondegenerate
diffusion process (Xt )t∈[0,1] in Gobet [6], we set mn = n, k̄n = m, εn = 1/

√
n, and αn = const.. In this

case, we can check that

ε2
n k̄4

n

√
mnα

2
n = const ./

√
n → 0

as n →∞. In Section 2.4, we cannot take k̄n and αn to be constants because we consider block ob-
servations, however, we can choose these sequences so that (2.8) is satisfied. We list in Table 1 at the
end of this section how we choose these sequences for the model of degenerate diffusion processes in
Section 2.3 and the partial observation models of the degenerate diffusion processes in Section 2.4.

Fix θ0 ∈ Θ. We will see later in Proposition 3.1 that Fn,θ, j admits a density pj , x́ j−1(xj, θ) that sat-
isfies pj , x́ j−1(xj, ·) ∈ C2(Θ) almost everywhere in xj ∈ Rk j−k j−1 under (B1) and (B2). Let Nj = {xj ∈
R
k j−k j−1 | supθ∈Θ pj , x́ j−1(xj, θ) > infθ∈Θ pj , x́ j−1(xj, θ) = 0}. We further assume the following condition.

Assumption (N1). For any h ∈ Rd ,

Eθ0

[ mn∑
j=1

∫
N j

pj , x́ j−1(xj, θ0 + rnh)dxj

]
→ 0

as n →∞.

If supθ∈Θ pj(xj, θ) = 0 or infθ∈Θ pj(xj, θ) > 0, we have xj ∈ Nc
j . Condition (N1) says that the prob-

ability of other cases is asymptotically negligible. This condition is used to validate an estimate such
as (2.6). However, if Fn,θ, j is approximated by a Gaussian random variable and satisfies (B3) and (N2)
below, then we can check (A1) without (N1) (see Lemma 3.3).

With these definitions, the following theorem shows that the L2 regularity condition is automatically
satisfied under (B1), (B2), and (N1). Let

�ξj (θ) =
∂θpj
√pj

1{p j�0}(xj, θ), ηj =
∂θpj

pj
1{p j�0}(xj, θ0). (2.9)

Theorem 2.2. Assume (B1), (B2), (N1), (A4), and (A5) with �ξj (θ) and ηj defined in (2.9). Then (L)
holds true for {Pθ,n}θ,n at θ = θ0 with rn = εnId . If further (P) is satisfied, then {Pθ,n}θ,n satisfies the
LAMN condition at θ = θ0.

In the following, we give sufficient conditions for (A4) and (A5) when Fn,θ, j has a Gaussian approx-
imation F̃n,θ, j .
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Assumption (B3). There exist a matrix Bj ,i,θ = Bj ,i,θ, x́ j−1,n and hj ,l = hn,θ, j ,l, x́ j−1 ∈ Hj (1 ≤ l ≤ k j −
k j−1) such that F̃n,θ, j , x́ j−1 = (Wj(hj ,l))

k j−k j−1
l=1 is Fréchet differentiable with respect to θ on Lp space,

and

∂θi F̃n,θ, j = Bj ,i,θ F̃n,θ, j . (2.10)

Moreover, ∂θBj ,i,θ exists and is continuous with respect to θ, and there exists a constant Cp and a
sequence (ρn)n≥1 of positive numbers such that

sup
n,i, j , x́ j−1,θ,l1,l2

|[∂lθBj ,i,θ ]l1 ,l2 | <∞,

and

‖[Fn,θ, j − F̃n,θ, j]i′ ‖3,p + ‖∂θi [Fn,θ, j − F̃n,θ, j]i′ ‖2,p ≤ Cpρn

for p > 1, 1 ≤ j ≤ mn, 1 ≤ i ≤ d, 1 ≤ i′ ≤ k j − k j−1, θ ∈ Θ and x́j−1.

Equation (2.10) is required for the following reasons. In Proposition 3.1, we obtain an expression
for ∂θpj , x́ j−1(xj, θ) using a conditional expectation. Under (B3), we replace Fn,θ, j and ∂θFn,θ, j with
F̃n,θ, j and ∂θ F̃n,θ, j in the integrand of the conditional expectation, respectively. Then, the integrand is
approximated by a functional of F̃n,θ, j and ∂θ F̃n,θ, j . Thereafter, we can remove conditional expectation
by using (2.10). As a result, ηj can be approximated by a simple quadratic form in Proposition 3.3,
which is crucial to deduce the LAMN property. For a statistical model of diffusion processes, Fn,θ, j

corresponds to normalized increments of discrete observations and F̃n,θ, j corresponds their Euler–
Maruyama approximations. In this case, we obtain (2.10) if the diffusion coefficient is a square matrix
and nondegenerate. For the case of degenerate diffusion processes, (2.10) is satisfied under Assumption
(C2) (see Section B of the supplementary material [1]).

Let K̃j (θ) = (〈hj ,l1,hj ,l2〉Hj )l1,l2 . Then, we will see that for sufficiently large n, K̃j (θ) is invertible
almost surely under (B1)–(B3) and that αnρn k̄2

n → 0 in Lemma 3.1 of Section 3. Let

L j ,i, x́ j−1(u, θ) = u�B�
j ,i,θ K̃−1

j (θ)u − tr(Bj ,i,θ ).

Let Φj ,i = (B�
j ,i,θ0

K̃−1
j (θ0) + K̃−1

j (θ0)Bj ,i,θ0)/2, and let

γj(x́j−1) = (2tr(Φj ,iK̃j (θ0)Φj ,i′K̃j(θ0)))di,i′=1.

Assumption (B4). There exist Rd-valued random variables {Gn
j }1≤ j≤mn ,n,θ and a filtration {Gj }mn

j=1

on (Ω,F ,P) such that (Xn,θ0
j ,Gn

j ) is Gj -measurable, E[Gn
j |Gj−1] = 0, and

Q j((Fn,θ0 , j,(L j ,i, x́ j−1(F̃n,θ0, j, θ0))di=1) ∈ A)|
x́ j−1=X́

n ,θ0
j−1

= P((Xn,θ0
j ,Gn

j ) ∈ A|Gj−1)
(2.11)

for A ∈ B(Rk j−k j−1 ×Rd) and sufficiently large n. Moreover,

sup
n

(
ε2
n

mn∑
j=1

E[|γj(X́n,θ0
j−1 )|]

)
<∞,
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αnρn k̄2
n → 0 and ε2

nmnα
3
nρn k̄6

n → 0 (2.12)

as n →∞, and there exist a random d × d matrix Γ and a d-dimensional standard normal random
variable N such that N and Γ are independent and(

εn

mn∑
j=1

Gn
j , ε

2
n

mn∑
j=1

γj(X́n,θ0
j−1 )

)
d→ (Γ1/2N,Γ). (2.13)

Assumption (N2). [Fn,θ, j]i ∈ ∩p>1,r≥1 D
r ,p for n, θ, j,i, x́j−1 and supθ∈Θ‖[Fn,θ, j]i ‖r ,p < ∞ for any

n,i, j, x́j−1, r ≥ 1 and p > 1. Also,

∂θi Dj[F̃n,θ, j]k =
k j−k j−1∑

l=1

[Bj ,i,θ]k ,lDj[F̃n,θ, j]l

and supθ∈Θ Ej [| det K−1
j (θ)|p] <∞ for any p > 1, n, j, k, x́j−1 and 1 ≤ i ≤ d.

Assumption (B5). (N1) or (N2) holds true.
Assumption (P′). Γ in (B4) is p.d. almost surely.

The condition (2.12) is required to evaluate the error in approximating ηj by a function of F̃n,θ, j .
The rate ρn controls the difference between Fn,θ, j and F̃n,θ, j . For the nondegenerate diffusion process
model in Gobet [6], we can set ρn = 1/

√
n. In this case, we obtain αnρn k̄2

n = const ./
√

n → 0, and
ε2
nmnα

3
nρn k̄6

n = const ./
√

n → 0 as n →∞.

Remark 2.5. For x = (x1, · · · , xd) ∈ Rd , let Xj =
∑d

i=1 xiΦj ,i . Then because

x�γj x = 2tr(Xj K̃jXj K̃j ) = 2tr(K̃1/2
j Xj K̃jXj K̃

1/2
j ) ≥ 0,

γj is symmetric and nonnegative definite. Hence Γ is also symmetric and nonnegative definite almost

surely under (B1)–(B3) and the assumption that ε2
n

∑mn

j=1 γj(X́
n,θ0
j−1 ) d→ Γ as n →∞.

Theorem 2.3. Assume (B1)–(B5). Then {Pθ,n}θ,n satisfies (L) with T(θ0) equal to Γ in (B4), rn = εnId ,
Vn defined in (2.7) and (2.9), and

Tn(θ0) = ε2
n

mn∑
j=1

γj (X́n,θ0
j−1 ). (2.14)

Moreover,

εn

mn∑
j=1

ηj (X́n,θ0
j ) − εn

mn∑
j=1

Gn
j

P→ 0 (2.15)

as n →∞. If further (P′) is satisfied, then {Pθ,n}θ,n satisfies the LAMN property at θ = θ0 with T̃n in
Remark 2.1.

Note that Theorem 2.3 works without having to identify zero points of the density function pj , unlike
in previous studies. This is useful because it is often not an easy task to show either that pj has no zero
points or that zero points are common for every θ. In the following section, we see that Theorem 2.3
can be applied to this model.

The following lemma is useful when we check (2.13) by using a martingale central limit theorem.
The proof is given in Section D of the supplementary material [1].
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Table 1. List of the notations related to Theorem 2.3 for each statistical model

statistical model mn k̄n εn αn ρn

The nondegenerate diffusion model in Gobet [6] n m 1/
√

n C 1/
√

n
The degenerate diffusion model in Section 2.3 n m 1/

√
n C 1/

√
n

The partial observation model in Section 2.4 ≤ Cne−1
n ≤ Cen 1/

√
n ι(en) en/

√
n

∗ C denotes a generic positive constant.
∗ (en)∞n=1 is a sequence of positive integers converging to infinity very slowly (defined in Section C of the supplementary
material [1]).
∗ (ι(en))∞n=1 is a sequence of positive numbers that can be taken arbitrarily slowly converging to infinity by suitably choosing
(en)∞n=1.
∗ For the partial observation model, Theorem 2.3 is applied to an augmented model.
∗ See Sections B and C of the supplementary material [1] for the detailed discussions.

Lemma 2.1. Assume (B1)–(B3), that αnρn k̄2
n → 0, and that (2.11) is satisfied for any A ∈ B(Rk j−k j−1 ×

R
d). Then,

1. E[Gn
j (G

n
j )

�|Gj−1] = γj(X́n,θ0
j−1 ) for any 1 ≤ j ≤ mn, and

2. ε4
n

∑mn

j=1 E[|Gn
j |

4 |Gj−1]
P→ 0 as n →∞ if

ε4
nmnα

8
n k̄12

n sup
j ,i, x́ j−1

‖Bj ,i,θ0 K̃j (θ0) + K̃j (θ0)B�
j ,i,θ0

‖4
op → 0. (2.16)

2.3. The LAMN property for degenerate diffusion models

In this section, we show the LAMN property for degenerate diffusion processes by applying the results
in Sections 2.1 and 2.2.

Let r ≥ 1, and let (Ω,F ,P) be the canonical probability space associated with an r-dimensional
Wiener process W = {Wt }t∈[0,1], that is, Ω = C([0,1];Rr ), P is the r-dimensional Wiener measure,
Wt (ω) = ω(t) for ω ∈ Ω, and F is the completion of the Borel σ-field of Ω with respect to P. Let D be
the Malliavin–Shigekawa derivative related to the underlying Hilbert space H = L2([0,1];Rr ). Let Θ
be a bounded open convex set in Rd .

For θ ∈ Θ, let Y θ = (Y θ
t )t∈[0,1] be an m-dimensional diffusion process satisfying Y θ

0 = zini, and

dY θ
t =

(
b̃(Y θ

t , θ)
b̌(Y θ

t )

)
dt +

(
ã(Y θ

t , θ)
Om−κ,r

)
dWt . (2.17)

where zini ∈ Rm, m/2 ≤ κ < m, and ã, b̃ and b̌ are Rκ ⊗ Rr -, Rκ -, and Rm−κ-valued Borel functions,
respectively. We consider a statistical model with observations (Y θ

j/n)
n
j=0.

We assume the following conditions.

Assumption (C1). The derivatives ∂iz∂
j
θ ã(z, θ), ∂iz∂

j
θ b̃(z, θ), and ∂iz b̌(z) exist on (z, θ) ∈ Rm × Θ and

can be extended to continuous functions on (z, θ) ∈ Rm × Θ̄ for i ≥ 0 and 0 ≤ j ≤ 3. Moreover,
supz,θ (|∂z ã(z, θ)| ∨ |∂z b̃(z, θ)| ∨ |∂z b̌(z)|) <∞, and ãã�(z, θ) is p.d. for any (z, θ) ∈ Rm × Θ̄.

There exists a unique strong solution (Y θ
t )t∈[0,1] of (2.17) under (C1). Let Pθ,n be the distribution of

(Y θ
k/n)

n
k=0, and let θ0 be the true value of θ. We denote Yt =Y θ0

t .
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We denote z = (x, y) for x ∈ Rκ and y ∈ Rm−κ , ∇1 = (∂z1, · · · , ∂zκ ), and ∇2 = (∂zκ+1, · · · , ∂zm ).
Assumption (C2). The derivative ∂iz b̌(z) is bounded for i ≥ 1, ((∇1b̌)�∇1b̌)(z) is invertible for z ∈ Rm

and

sup
z∈Rm

‖((∇1b̌)�∇1b̌)−1(z)‖op <∞.

Moreover,

Ker(ã(z, θ)) ⊂ Ker(∂θi ã(z, θ)),

Ker((∇1b̌)�(z)) ⊂ Ker((∇1b̌)�(z)∂θi ãã+(z′, θ))
(2.18)

for any z, z′ ∈ Rm, 1 ≤ i ≤ d, and θ ∈ Θ. Furthermore, at least one of the following two conditions is
satisfied;

1. b̌ is bounded;
2. ∇2ã(z, θ) = 0 and ∇2b̌(z) = 0 for any z ∈ Rm and θ ∈ Θ.

We need (C2) to satisfy ∂θ F̃n,θ, j = Bj ,i,θ F̃n,θ, j in (B3). See Section B of the supplementary material [1]
for the details.

We can write ã+ = ã�(ãã�)−1 because ãã� is invertible. If r = κ and (C1) is satisfied, then we can
easily check Ker(ã(z, θ)) ⊂ Ker(∂θi ã(z, θ)) because ã(z, θ) is invertible. Similarly, we can easily check
Ker((∇1b̌)�(z)) ⊂ Ker((∇1b̌)�(z)∂θi ãã+(z′, θ)) if m − κ = κ and (∇1b̌)�∇1b̌(z) is p.d.

Let Ψt ,θ = (∇1b̌)�ãã�∇1b̌(Yt, θ), and let

Γ =

(
1
2

∫ 1

0
tr((ãã�)−1∂θi (ãã�)(ãã�)−1∂θ j (ãã�))(Yt, θ0)dt

+
1
2

∫ 1

0
tr(Ψ−1

t ,θ0
∂θiΨt ,θ0Ψ

−1
t ,θ0

∂θ jΨt ,θ0 )dt
)

1≤i, j≤d
.

(2.19)

Assumption (C3). Γ is p.d. almost surely.

Theorem 2.4. Assume (C1)–(C3). Then {Pθ,n}θ,n satisfies the LAMN property at θ = θ0 with rn =
n−1/2Id and Tn(θ0) = Γ where Γ is defined in (2.19).

Remark 2.6. If κ < m/2, (C2) is not satisfied because (∇1b̌)�∇1b̌ is not invertible (∇1b̌ is κ × (m − κ)
matrix and m− κ > κ). In that case, Ψt ,θ appearing the definition of Γ is not invertible either. Therefore,
we need to assume κ ≥ m/2.

Remark 2.7. The proof of Theorem 2.4 in Section B of the supplementary file [1] shows that we obtain
similar results when κ = m by ignoring b̌ and Ψt ,θ . This approach allows another proof of the LAMN
property for nondegenerate diffusion processes by Gobet [6].

Remark 2.8. The first term in the right-hand side of (2.19) is equal to Γ in Gobet [6] for nondegenerate
diffusion processes when we observe {[Yj/n]l}0≤ j≤n,1≤l≤κ . Then, the second term in the right-hand
side of (2.19) corresponds to additional information obtained by observation {[Yj/n]l}0≤ j≤n,κ+1≤l≤m
for the degenerate process. Assumption (C3) is satisfied if the first term in the right-hand side of (2.19)
is p.d. almost surely, and therefore, we can reduce (C3) to almost sure positive definiteness of Γ for the
statistical model with the nondegenerate process. In fact, in Examples 2.1–2.4, the second term in the
right-hand side of (2.19) is a scalar multiple of the first term, and therefore, the positive definiteness of
Γ is derived from the positive definiteness of the first term.
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Remark 2.9. Menozzi [15] showed Aronson-type estimates for models of degenerate diffusion pro-
cesses including the settings of this section. So it may be possible to show the LAMN property fol-
lowing Gobet’s approach. On the other hand, as discussed in the introduction of Kohatsu, Nualart,
and Tran [13], Aronson-type estimates do not hold with fat-tailed noise like compound Poisson pro-
cesses. Our approach is robust enough to show the LAMN property when asymptotically negligible
noise which is independent of θ and violates Aronson-type estimates is added to (2.17). Moreover, our
approach is also valid when the density functions of the noise are not specified or do not exist.

Example 2.1. Let κ ≥ 1. Let X = (Xθ
t )t∈[0,1] and X̄ = (X̄θ

t )t∈[0,1] be κ-dimensional diffusion processes
satisfying

dXθ
t = d(Xθ

t , X̄
θ
t , θ)dt + c(Xθ

t , θ)dWt, dX̄θ
t = Xθ

t dt, t ∈ [0,1], (2.20)

where θ ∈ Θ ⊂ Rd and (Wt )t∈[0,1] is a κ-dimensional standard Wiener process. We assume that
cc�(x, θ) is p.d. and c(x, θ) and d(z, θ) are smooth functions with bounded derivatives ∂xc and ∂zd.
Then, (C1) and (C2) are satisfied. Γ is given by

Γ =

(∫ 1

0
tr((cc�)−1∂θi (cc�)(cc�)−1∂θ j (cc�))(Xθ0

t , θ0)dt
)

1≤i, j≤d
. (2.21)

If further Γ is p.d. almost surely, then we obtain the LAMN property of this model by Theorem 2.4.

Example 2.1 pertains to Langevin-type molecular dynamics (1.1). Here we assumed that the position
Xθ
t and velocity X̄θ

t of a molecule are observed at discrete time points. In Example 2.5 of Section 2.4,
we deal with the case where we observe only the position X̄θ

t .
With some restriction on the diffusion coefficient c, we can extend Example 2.1 to the case where

dim(Xθ
t ) > dim(X̄θ

t ).

Example 2.2. Let κ′ ≤ κ. Let (Xθ
t )t∈[0,1] be the same as in Example 2.1, and let (X̄θ

t )t∈[0,1] be a κ′-
dimensional stochastic process satisfying [X̄θ

t ]i =
∫ t

0 [X
θ
s ]ids for 1 ≤ i ≤ κ′. Moreover, the structure of

the diffusion coefficient c is specific, proportional to a scalar function, that is, let c(x, θ) = f (x, θ)A for
some R-valued function f and matrix A independent of x and θ. We assume that AA� is p.d., f is
positive-valued, and f (x, θ) and d(z, θ) are smooth functions with bounded derivatives ∂x f and ∂zd.
Then, (C1) and (C2) are satisfied because (∇1b̌)� = (Iκ′ Oκ′,κ−κ′) and ∂θcc−1(x, θ) = ∂θ f f −1(x, θ)Iκ .
We have Ψt ,θ = f 2(Xθ

t , θ)([AA�]i j )1≤i, j≤κ′ , and hence we have

[Γ]i j =
1
2

∫ 1

0

{
2∂θi f

f

2∂θ j f

f
(Xt, θ0) · κ +

2∂θi f
f

2∂θ j f

f
(Xt, θ0) · κ′

}
dt

= 2(κ + κ′)
∫ 1

0

∂θi f ∂θ j f

f 2 (Xt, θ0)dt .

If we only observe (Xθ
k/n)

n
k=0, then Γ in Gobet [6] is calculated as

Γ =

(
2κ
∫ 1

0

∂θi f ∂θ j f

f 2 (Xt, θ0)dt
)

1≤i, j≤d
.

Therefore, we conclude that Γ for observations Xθ
t and X̄θ

t is (κ + κ′)/κ times as much as the one for
observations Xθ

t .



996 M. Fukasawa and T. Ogihara

Remark 2.10. In the above example, even if the structure of c(x, θ) = f (x, θ)A does not hold,
we can apply Theorem 2.4 if (2.18), (C1), and (C3) hold. In that case, however, the expres-
sion of Γ is not generally expected to be equal to (κ + κ′)/κ times as much as the one for ob-
servations Xθ

t . The second term on the right-hand side of (2.19) is expressed by using Ψt ,θ =
(Iκ′ Oκ′,κ−κ′)cc�(Xt, θ)(Iκ′ Oκ′,κ−κ′)�.

Example 2.3. Let (Xθ
t )t∈[0,1] = ((X

θ,1
t ,Xθ,2

t )�)t∈[0,1] be a two-dimensional diffusion process satisfy-
ing {

dXθ,1
t = (d(Xθ,1

t ,Xθ,2
t , θ) + e(Xθ,1

t ,Xθ,2
t ))dt + c(Xθ,1

t ,Xθ,2
t , θ)dWt,

dXθ,2
t = d(Xθ,1

t ,Xθ,2
t , θ)dt + c(Xθ,1

t ,Xθ,2
t , θ)dWt,

(2.22)

where θ ∈ Θ ⊂ Rd and (Wt )t∈[0,1] is a one-dimensional standard Wiener process. That is, the diffusion
coefficients of Xθ,1

t and Xθ,2
t are the same. We assume that c is positive-valued, supx,y |∂xe(x, y)|−1 <

∞, and c(x, y, θ), d(x, y, θ), and e(x, y) are smooth functions with bounded derivatives ∂zc, ∂zd, and
∂ize for i ≥ 1 (z = (x, y)). Moreover, we assume that at least one of the following two conditions holds
true:

1. e is bounded;
2. e(x, y) = ẽ(x + y) and c(x, y, θ) = c̃(x + y, θ) for some functions ẽ and c̃.

Then (C1) and (C2) are satisfied by setting Y θ
t =UXθ

t , where

U =
1
√

2

(
1 1
1 −1

)
,

and Γ is given by (2.21). If further Γ is p.d. almost surely, then we obtain the LAMN prop-
erty of this model by Theorem 2.4. For the statistical model with observations (Xθ,2

j/n)
n
j=0, Γ is

equal to half of the one in (2.21). The above result shows that the efficient asymptotic vari-
ance for estimators does not depend on e and is equal to just half of the one when we observe
(Xθ,2

j/n)
n
j=0.

Example 2.4. Let m/2 ≤ κ < m. Let (Xθ
t )t∈[0,1] be an m-dimensional diffusion process satisfying

dXθ
t = e(Xθ

t )dt + f (Xθ
t , θ)AdWt, (2.23)

where W = (Wt )t∈[0,1] is a κ-dimensional standard Wiener process, f (z, θ) is an R-valued function, and
A is an m× κ matrix independent of z and θ. Let U�(ΛOκ,m−κ)�V be the singular value decomposition
of A for a κ × κ diagonal matrix Λ, and orthogonal matrices U and V of size m and κ, respectively.
Then we have

U f (z, θ)A =
(

c̃(Uz, θ)
Om−κ,κ

)
, Ue(z) =

(
ẽ(Uz)
ě(Uz)

)
,

where c̃(z, θ) = f (U�z, θ)ΛV , and ẽ(z) and ě(z) are suitable functions.
We assume that rank(A) = κ (that is,Λ is invertible), f is positive–valued, f (z, θ) and e(z) are smooth

functions, and ∂z f , ∂ize, and ‖((∇1ě)�∇1ě)−1‖op are bounded for i ≥ 0. Then we obtain ∂θ c̃c̃−1(z, θ) =
∂θ f f −1(U�z, θ)Iκ , and consequently (C1) and (C2) hold with Y θ

t =UXθ
t . Moreover, we have

Ψt ,θ = f 2(Xθ0
t , θ)((∇1ě)�Λ2∇1ě)(UXθ0

t )
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and hence

Γ =

(
2m
∫ 1

0

∂θi f ∂θ j f

f 2 (Xθ0
t , θ0)dt

)
1≤i, j≤d

.

If Γ is p.d. almost surely, then we have the LAMN property of this model.
We can regard (2.23) as a multi-factor model for stock prices, where each component of W is regarded

as a factor that influences the stock prices, A comprises the contributions of each factor to each stock,
and f is a scalar that depends on the stock prices. The above results show that we obtain the LAMN
property of such a degenerate model if the number κ of factors is in [m/2,m).

2.4. The LAMN property for partial observations

In this section, we show the LAMN property for degenerate diffusion processes with partial observa-
tions. This setting includes the one-dimensional integrated diffusion model by Gloter and Gobet [3]
which is a similar model to the one in Example 2.1 but the observations are only the integrated process
X̄θ0
t (partial observations). We extend their results of the LAMN property to multi-dimensional pro-

cesses and combinatorial observations of Xθ0
t and X̄θ0

t . Our setting also includes an interesting example
of a stock process and integrated volatility observations (Example 2.6).

Let m ≥ 1, and let (Ω,F ,P), W , D, H, κ, and Θ be the same as in Section 2.3. We consider a process
Y θ
t = ((Ỹ θ

t )�,(Y̌ θ
t )�)� that satisfies a slightly restricted version of the stochastic differential equation

(2.17): Ỹ θ
0 = z̃ini, Y̌ θ

0 = žini, and

dỸ θ
t = b̃(Ỹ θ

t ,Y̌
θ
t , θ)dt + ã(Ỹ θ

t , θ)dWt,

dY̌ θ
t = BỸ θ

t dt,
(2.24)

where B is an (m − κ) × κ matrix such that B is independent of θ, and BB� is p.d.. Let Q : Rκ → Rκ
be a projection. We assume that (QỸ θ0

k/n)
n
k=0 and (Y̌ θ0

k/n)
n
k=0 are observed. Let q1 = rank(Q), q2 = m − κ,

and let q = q1 + q2. We assume that 0 ≤ q1 < κ.

Assumption (C2′). The derivatives ∂ix∂
j
θ ã(x, θ) and ∂iz∂

j
θ b̃(z, θ) exist onRm×Θ and can be extended to

continuous functions on Rm × Θ̄ for i ≥ 0 and 0 ≤ j ≤ 3. Moreover, supz,θ (|∂z b̃(z, θ)| ∨ |∂x ã(x, θ)|) <
∞, ãã�(x, θ) is p.d., Ker(ã(x, θ)) ⊂ Ker(∂θi ã(x, θ)), and Ker(B) ⊂ Ker(B∂θi ãã+(x, θ)) for any x ∈ Rκ ,
1 ≤ i ≤ d, and θ ∈ Θ̄.

Assumption (C4). For any 1 ≤ i ≤ d, x ∈ Rκ , and θ ∈ Θ,

Ker(B) ⊂ Im(Q), and Q∂θi ãã+(x, θ) = ∂θi ãã+(x, θ)Q. (2.25)

By (2.25), we have

q1 = dim Im(Q) ≥ dim Ker(B) = κ − dim Im(B) = κ − q2, (2.26)

which implies q ≥ κ.
Let R1 : Im(Q) → Rq1 and R3 : Im(Iκ − Q) → Rκ−q1 be any isomorphism on vector spaces. We

denote Q̃1 = R1Q, Q̃2 = B, and Q̃3 = R3(Iκ −Q). For a κ × κ matrix A, we denote Υi, j(A) = Q̃iAQ̃�
j for

1 ≤ i, j ≤ 3,

Ξ1(A) =
(
Υ1,1 Υ1,2/2
Υ2,1/2 Υ2,2/3

)
(A), Ξ2(A) =

(
Oq1 ,q1 Υ1,2/2
Oq2 ,q1 Υ2,2/6

)
(A),
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Ξ3(A) =
(
Υ1,1 Υ1,2/2
Υ2,1/2 2Υ2,2/3

)
(A),

and for L ≥ 1, and 1 ≤ k, l ≤ 2, we define an (Lq + (κ − q1)(k − 1)) × (Lq + (κ − q1)(l − 1)) matrix
ψk ,l
L (A) by

ψ1,1
L (A) =

����������

Ξ1 Ξ2 Oq,q · · · Oq,q

Ξ�2 Ξ3
. . .

. . .
...

Oq,q
. . .

. . .
. . . Oq,q

...
. . .

. . . Ξ3 Ξ2
Oq,q · · · Oq,q Ξ

�
2 Ξ3

����������
(A),

ψ1,2
L (A) = ���

O(L−1)q,κ−q1

ψ1,1
L Υ1,3/2

Υ2,3/6

��� (A), ψ2,1
L (A) = (ψ1,2

L )�(A),

ψ2,2
L (A) =

(
ψ1,2
L

Oκ−q1 ,(L−1)q Υ3,1/2 Υ3,2/6 Υ3,3/3

)
(A).

Here we ignore Υi, j if rank(Q̃i) = 0 or rank(Q̃ j ) = 0. Let

Tk ,l,L(x) =
(
tr(∂θi (ψ

k ,k
L (ãã�)−1)(x, θ0)ψk ,l

L (ãã�)(x, θ0)

× ∂θ j (ψ
l,l
L (ãã�)−1)(x, θ0)ψl,k

L (ãã�)(x, θ0))
)

1≤i, j≤d
.

Assumption (C5). There exists an Rd ⊗ Rd-valued continuous function g(x) such that

L−1Tk ,l,L(x) → g(x) (2.27)

as L →∞ uniformly in x on compact sets for 1 ≤ k, l ≤ 2.

Let

Γ′ =
1
2

∫ 1

0
g(Ỹt )dt. (2.28)

Assumption (C6). Γ′ is p.d. almost surely.

The intuition for Assumption (C5) is as follows. In the partial observation model, the observation
sequence is non-Markovian in general. To show the LAMN property, we consider an augmented model
generated by block observations with some observations of (Iκ − Q)Ỹ , following the idea of Gloter
and Gobet [3]. This observation sequence for the augmented model is Markovian, and this model
becomes a good approximation of the original model. Therefore, we show the LAMN property of the
original model by showing the LAMN property of the augmented model. The number of observations
in each block is controlled by en, where (en)∞n=1 is a sequence of positive integers converging to infinity
very slowly. The matrix ψk ,l

L corresponds to the covariance matrix of the block observations with the
number of observations equal to L, and Tk ,l,L is quantity corresponding to Γ for the block observations.
Then, (C5) is required when we show the LAMN property for the block observations. See Sections C.2
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and C.3 of the supplementary material [1] for the details. In Examples 2.5 and 2.6 below, (C5) is
confirmed by using Lemma E.1 of the supplementary material [1].

Let Pθ,n be the distribution of partial observations (QỸ θ
k/n)

n
k=0 and (Y̌ θ

k/n)
n
k=0.

Theorem 2.5. Assume (C2′) and (C4)–(C6). Then {Pθ,n}θ,n satisfies the LAMN property at θ = θ0
with rn = n−1/2Id and Tn(θ0) = Γ′ where Γ′ is defined in (2.28).

Example 2.5 (Integral observations). Let (Xθ
t )t∈[0,1] and (X̄θ

t )t∈[0,1] be the same as in Example 2.1.
We consider a statistical model with observations (X̄θ0

k/n)
n
k=0. In this case, we have m = 2κ, B = Iκ ,

Q =Oκ,κ . We assume that cc�(x, θ) is p.d. and that c(x, θ) and d(z, θ) are smooth functions with
bounded derivatives ∂xc and ∂zd. As in Example 2.1, we have (C2′). Moreover, we can check (C4).

We can see that ψ2,2
L (A) = VL ⊗ A, where ⊗ denotes the Kronecker product, and VL is an (L + 1) ×

(L + 1) matrix satisfying

[VL]i j = (2/3)1{i=j } + (1/6)1{ |i−j |=1} − (1/3)1{i=j and i∈{1,L+1}} . (2.29)

Because we obtain similar equations for ψ1,1
L (A) and ψ1,2

L (A), together with Lemma E.1 in the sup-
plementary material [1], we have (2.27) for

g(x) = (tr((cc�)−1∂θi (cc�)(cc�)−1∂θ j (cc�))(x, θ0))1≤i, j≤d . (2.30)

Therefore, we have the LAMN property of this model if Γ′ in (2.28) is p.d. almost surely.
This result is an extension of Gloter and Gobet [3] to multi-dimensional processes. Moreover, the

result can be applied to the Langevin-type molecular dynamics in (1.1) with positional observations.

Remark 2.11. If we observe (Xθ0
k/n)

n
k=0 instead of (X̄θ0

k/n)
n
k=0, then Gobet [6] shows the LAMN property

for this model with Γ the same as (2.28) and (2.30). On the other hand, if we observe both (Xθ0
k/n)

n
k=0

and (X̄θ0
k/n)

n
k=0, then Example 2.1 shows the LAMN property with Γ twice that in (2.28). Therefore, we

can say that the efficient asymptotic variance with observations (Xθ0
k/n)

n
k=0 and (X̄θ0

k/n)
n
k=0 is half of that

with observations (Xθ0
k/n)

n
k=0 or half of that with (X̄θ0

k/n)
n
k=0.

Example 2.6 (Observations of a stock process and integrated volatility). Let (Wt )t∈[0,1] be a two-
dimensional standard Wiener process, and let c be an R2 ⊗R2-valued function with the j-th row vector
c j for j ∈ {1,2}. Let (Xt )t∈[0,1] = ((X1

t ,X
2
t ,X

3
t )�)t∈[0,1] be a three-dimensional process satisfying

dX1
t = d1(Xt, θ)dt + c1(X1

t ,X
2
t , θ)dWt,

dX2
t = d2(Xt, θ)dt + c2(X1

t ,X
2
t , θ)dWt,

dX3
t = X2

t dt .

(2.31)

We assume that we observe ((X1
k/n,X

3
k/n)

�)n
k=0. In this case, we have m = 3, κ = 2, r = 2,

Q =
(

1 0
0 0

)
, B = (0 1). (2.32)

We assume that cc�(x, θ) is p.d. for each (x, θ), and c(x, θ), d1(z, θ), and d2(z, θ) are smooth functions
with bounded derivatives ∂xc, ∂zd1, and ∂zd2. We can check (2.25). We regard X1 as a stock process
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and X3 as the integrated volatility process. If we observe daily stock prices and realized volatility cal-
culated from high-frequency data, then we can regard it as an approximation of the integrated volatility
process.

We consider the following two cases.

1. The case where c(x1, x2, θ) = f (x1, x2, θ)A for a matrix A and a positive–valued function
f (x1, x2, θ):

We have that AA� is p.d. and ∂θi ãã+ = ∂θi cc−1 = ∂θi f f −1I2. Then (C2′) and (C4) are satisfied.
Moreover, we obtain

ψk ,l
L

(∂θi (ãã�)) =
2∂θi f

f
ψk ,l
L

(ãã�). (2.33)

Together with Lemma E.1 in the supplementary material [1], we have (C5) with

g(x1, x2) =
( 8∂θi f ∂θ j f

f 2 (x1, x2, θ0)
)
i, j

.

Therefore, we have the LAMN property if Γ′ in (2.28) is p.d. almost surely.
2. The case where c(x1, x2, θ) is a diagonal matrix for any (x1, x2, θ):

Because ∂θi ãã+ also becomes a diagonal matrix, (C2′) and (C4) are satisfied. Moreover, we
have Υ1,2 = 0 and Υ1,3 = 0. Then, by rearranging the rows and columns of ψ2,2

L by using an
orthogonal matrix VL of size 2L + 1, we have

VLψ
2,2
L

(M)V�
L =

(
[M]11IL OL,L

OL,L [M]22VL

)
(2.34)

for any diagonal matrix M of size 2, where VL is defined in (2.29). Together with Lemma E.1 in
the supplementary material [1] and similar equations for ψ1,2

L and ψ1,1
L , we have (2.27) with

g(x1, x2) =
( ( 4∂θi [c]11∂θ j [c]11

[c]211

+
4∂θi [c]22∂θ j [c]22

[c]222

)
(x1, x2, θ0)

)
1≤i, j≤d

. (2.35)

Then we have the LAMN property if Γ′ in (2.28) is p.d. almost surely.

3. Malliavin calculus and the L2 regularity condition

In this section, we show how to check (A1)–(A5) in Section 2.1 under (B1)–(B5). The equations for
density derivatives in Proposition 3.1 are crucial for the proof. From these equations, we obtain Propo-
sition 3.2 and Lemma 3.2, which are necessary for checking (A1).

Let

Lθ (V) =
∑
k ,k′

[K−1
j (θ)]k ,k′Dj[Fn,θ, j]k′ [V]k

for a vector V ∈ Rk j−k j−1 .
The following proposition is essentially from Proposition 4.1 in [6] and Theorem 5 in [3]. To check

(A1), we need an equation for ∂2
θ pj . The proof is given in Section D of the supplementary material [1].
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Proposition 3.1. Assume (B1) and (B2). Then Fn,θ, j admits a density denoted by pj , x́ j−1(xj, θ). More-
over, pj , x́ j−1(xj, ·) ∈ C2(Θ),

∂θpj , x́ j−1(xj, θ) = pj , x́ j−1(xj, θ)Ej

[
δj (Lθ (∂θFn,θ, j))



Fn,θ, j = xj
]
, (3.1)

and

∂2
θ pj , x́ j−1(xj, θ) = pj , x́ j−1(xj, θ)Ej

[
δj (Lθ (∂2

θ Fn,θ, j)) + δj (Lθ (A j))


Fn,θ, j = xj

]
(3.2)

almost everywhere in xj ∈ Rk j−k j−1 , where A j = (δj (Lθ (∂θFn,θ, j∂θ [Fn,θ, j]k )))k .

The proof of the following proposition is given in Section D of the supplementary material [1].

Proposition 3.2. Assume (B1) and (B2). Then

sup
i, j , x́ j−1,θ

Ej [|∂θi pj , x́ j−1/pj , x́ j−1 |
41{p j , x́ j−1�0}(Fn,θ, j, θ)]1/4 ≤ Cαn k̄2

n, (3.3)

sup
i,l, j , x́ j−1,θ

Ej [|∂θi ∂θl pj , x́ j−1/pj , x́ j−1 |
21{p j , x́ j−1�0}(Fn,θ, j, θ)]1/2 ≤ Cα2

n k̄4
n. (3.4)

Let θh = θ0 + εnh for h ∈ Rd ,

E1
j (xj, θ) = E

1
j (xj, θ, x́j−1) = (Ej [δj (Lθ (∂θi Fn,θ, j , x́ j−1))|Fn,θ, j , x́ j−1 = xj])di=1,

and E2
j (xj, θ) be a d × d random matrix with elements

[E2
j (xj, θ)]il = Ej [δj (Lθ (∂θi ∂θl Fn,θ, j))|Fn,θ, j = xj]

+ Ej

[
δj
(
Lθ ((δj (Lθ (∂θi Fn,θ, j∂θl [Fn,θ, j]k )))k

) ) 


Fn,θ, j = xj
]
.

We set the conditional expectations equal to zero when pj(xj, θ) = 0. Then E1
j (xj, θ) and E2

j (xj, θ) are
measurable with respect to θ almost everywhere in xj because Proposition 3.1 yields

[E1
j (xj, θ)]i = (∂θi pj/pj)1{p j�0} and [E2

j (xj, θ)]il = (∂θi ∂θl pj/pj)1{p j�0} . (3.5)

Proof of Theorem 2.2. We check (A1)–(A3) in Theorem 2.1 by setting pj(θ) = pj(xj, θ) =
pj , x́ j−1(xj, θ).
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For sufficiently large n, we have {θth}t∈[0,1] ⊂ Θ. (N1), Proposition 3.2, and the Cauchy-Schwarz
inequality yield

Eθ0

[ mn∑
j=1

∫
N j

[
√

pj(xj, θh) −
√

pj(xj, θ0) −
εn
2

h�
∂θpj
√pj

1{p j�0}(xj, θ0)
] 2

dxj

]
≤ CEθ0

[ mn∑
j=1

∫
N j

[
pj(xj, θh) + pj (xj, θ0) +

ε2
n

4

(
h�∂θpj

pj

) 2

pj1{p j�0}(xj, θ0)
]

dxj

]

≤ o(1) +Cε2
n

√√√
Eθ0

[ mn∑
j=1

∫ 



∂θpj

pj





4pj1{p j�0}(xj, θ0)dxj

]√√√
Eθ0

[ mn∑
j=1

∫
N j

pj(xj, θ0)dxj

]
≤ o(1) +Cε2

n

√
mnα

2
n k̄4

n × o(1)

as n →∞. The right-hand side of the above inequality converges to zero by (2.8).
Moreover, similarly to (2.6), we have∫

N c
j

{
√

pj(xj, θh) −
√

pj(xj, θ0) −
εn
2

h� �ξj (θ0)
}2

dxj

≤
ε4
n |h|4

4

∫ 1

0
E
[""""∂2

θ pj

pj
−
∂θpj∂θp�j

2p2
j

""""2
op

1{p j�0}(Fn,θsh , j, θsh)
]

ds.

Together with Proposition 3.2 and (2.8), we have

mn∑
j=1

E
[ ∫

N c
j

{
√

pj(xj, θh) −
√

pj(xj, θ0) −
εn
2

h� �ξj (θ0)
}2

dxj

]
→ 0, (3.6)

which implies (A1).
Moreover, we have (A2) because

Eθ0

[
∂θpj

pj
1{p j�0}(xj, θ0)





Fj−1

]
=

∫
∂θpj(xj, θ0)dxj = 0,

by Proposition 3.1, where Fj−1 is the one in Section 2.1.
Further, Proposition 3.2 yields (A3).

In the following, we prove Theorem 2.3. To show (A5), we replace E1
j (Fn,θ, j, θ) by

(L j ,i, x́ j−1(F̃n,θ, j))di=1, and then we apply (B4). For that purpose, we first estimate the difference be-
tween Kj and K̃j .

Lemma 3.1. Assume (B1)–(B3) and that αnρn k̄2
n → 0. Then, for any 1 ≤ j ≤ mn and p > 1, K̃j (θ) is

an invertible matrix almost surely and satisfies

sup
i,l, j , x́ j−1,θ

‖[Kj (θ) − K̃j(θ)]il ‖2,p ≤ Cpρn, sup
j , x́ j−1,θ

‖K̃−1
j (θ)‖op ≤ Cαn k̄n (3.7)

for sufficiently large n.
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The proof is given in Section D of the supplementary material [1].

Proposition 3.3. Assume (B1)–(B3) and that αnρn k̄2
n → 0 as n → ∞. Then there exists a positive

constant C such that

sup
i, j , x́ j−1,θ

Ej

[



∂θi pj , x́ j−1

pj , x́ j−1

1{p j�0}(Fn,θ, j, θ) − L j ,i, x́ j−1(F̃n,θ, j, θ)




2] 1/2

≤ Cα2
nρn k̄4

n (3.8)

for sufficiently large n.

Proof. For V ∈ (D1,p
j

)k j−k j−1 , we regard DjV = (Dj [V]l)l as a vector of size k j − k j−1. Let Lθ
j ,i =

∂θi F̃�
n,θ, j K̃

−1
j (θ)Dj F̃n,θ, j . First, we show that

sup
i, j , x́ j−1,θ

‖Lθ (∂θi Fn,θ, j) − Lθ
j ,i ‖D1,4(Hj ) ≤ Cα2

nρn k̄4
n. (3.9)

Conditions (B1)–(B3) and Lemma 3.1 yield estimates for

(∂θi Fn,θ, j − ∂θi F̃n,θ, j)�K−1
j DjFn,θ, j and ∂θi F̃�

n,θ, j K̃
−1
j (DjFn,θ, j − Dj F̃n,θ, j).

Because K−1
j − K̃−1

j = K̃−1
j (K̃j −Kj)K−1

j , we also obtain an estimate for ∂θi F̃�
n,θ, j(K

−1
j − K̃−1

j )DjFn,θ, j .
Then we have (3.9).

Moreover, Proposition 1.3.3 in Nualart [16] and (B3) yield

δj (Lθ
j ,i) = ∂θi F̃�

n,θ, j K̃
−1
j δj (Dj F̃n,θ, j) − tr(K̃−1

j 〈Dj∂θi F̃n,θ, j,Dj F̃n,θ, j〉Hj )

= F̃�
n,θ, jB

�
j ,i,θ K̃−1

j F̃n,θ, j − tr(K̃−1
j Bj ,i,θ K̃j ) = L j ,i, x́ j−1(F̃n,θ, j, θ).

(3.10)

Together with Proposition 3.1, we have

∂θi pj

pj
1{p j�0}(Fn,θ, j) − L j ,i, x́ j−1(F̃n,θ, j, θ)

= Ej [δj (Lθ (∂θi Fn,θ, j) − Lθ
j ,i)|Fn,θ, j] + Ej[ri |Fn,θ, j] − ri

almost surely, where ri = L j ,i, x́ j−1(F̃n,θ, j, θ) − L j ,i, x́ j−1(Fn,θ, j, θ). Then we obtain (3.8) by (B3), (3.9),
and the fact that

Ej[|ri |p]1/p ≤ Cpαnρn k̄3
n (3.11)

for any p ≥ 1.

Lemma 3.2. Assume (B1), (B2), and (N2). Then, for any n ≥ 1, 1 ≤ j ≤ mn, and h ∈ Rd satisfying
{θth}t∈[0,1] ⊂ Θ, the function √pj , x́ j−1(xj, θth) is absolutely continuous on t ∈ [0,1] almost everywhere
in xj .

The proof is given in Section D of the supplementary material [1].

Lemma 3.3. Assume (B1)–(B3), (B5), and (2.12). Then (A1) holds true.

The proof is given in Section D of the supplementary material [1].
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Proof of Theorem 2.3. Thanks to Remark 2.1, Lemma 3.3, and the proof of Theorem 2.2, to show
(L), it is sufficient to check (A4) and (A5) under (B1)–(B5). Let Xj = Xn,θ0

j , X́j−1 = (X1, · · · ,Xj−1), and

Hj = E[E1
j (E

1
j )
�(Xj, θ0, X́j−1)|σ(X́j−1)]. Then by (3.5), it suffices to show that

sup
n

(
ε2
n

mn∑
j=1

E[|Hj |]
)
<∞ (3.12)

and
mn∑
j=1

(εnE1
j (Xj, θ0, X́j−1), ε2

nHj)
d→ (Γ1/2N,Γ). (3.13)

For sufficiently large n, (2.11) and Proposition 3.3 yield

E[|E1
j (Xj, θ0, X́j−1) − Gn

j |
2 |Gj−1]

= Ej [|E1
j (Fn,θ0 , j, θ0, x́j−1) − (L j ,i, x́ j−1(F̃n,θ0 , j, θ0))di=1 |

2]|x́ j−1=X́j−1

≤ Cα4
nρ

2
n k̄8

n.

Together with (2.12) and (B4), we obtain

E
[



εn mn∑

j=1

E1
j (Xj, θ0, X́j−1) − εn

mn∑
j=1

Gn
j





2] ≤ ε2
n

mn∑
j=1

E
[
E[|E1

j (Xj, θ0, X́j−1) − Gn
j |

2 |Gj−1]
]

=O(ε2
nmnα

4
nρ

2
n k̄8

n) → 0

(3.14)

as n →∞.
Let Fj = (L j ,i, x́ j−1(F̃n,θ0, j))di=1, then we have

γj(x́j−1) = Ej[FjF�j ], (3.15)

and supx́ j−1
Ej [|Fj |2]1/2=O(αn k̄2

n) by (D.7) of the supplementary material [1]. Together with (2.12)
and Propositions 3.2 and 3.3, we have

sup
x́ j−1

|Ej[E1
j (E

1
j )
�(Fn,θ0 , j, θ0, x́j−1)] − γj(x́j−1)|

≤ C sup
x́ j−1

(
Ej [E1

j |
2]

1
2 Ej [|E1

j −Fj |
2]

1
2 + Ej [|Fj |2]

1
2 Ej [|E1

j −Fj |
2]

1
2

)
=O(αn k̄2

n · α2
nρn k̄4

n) = o(ε−2
n m−1

n ).

(3.16)

Then, (3.14), (3.16), and (B4) yield

sup
n

(
ε2
n

mn∑
j=1

E[|Hj |]
)
= sup

n

(
ε2
n

mn∑
j=1

E[|γj(X́j−1)|] +O(1)
)
<∞

and
mn∑
j=1

(εnE1
j (Xj, θ0, X́j−1), ε2

nHj) =
mn∑
j=1

(εnGn
j , ε

2
nγj(X́j−1)) + op(1)

d→ (Γ1/2N,Γ). (3.17)
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Moreover, we can define Tn(θ0) by (2.14), and (2.15) holds because of (3.17).
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